首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Populations of animals with resident and migratory individuals provide an ideal system for addressing questions concerning the evolution of migration. Partially migratory populations may persist because residents and migrants have equal fitness or because migration is based on conditional asymmetries. Studies measuring the costs and benefits of migration provide empirical data to test hypotheses concerning the maintenance of partial migration within a population. In this study, we measured the reproductive differences between resident and migrant females in a pond-breeding amphibian, the red-spotted newt Notophthalmus viridescens . We used large field enclosures to repeatedly sample egg laying over the prolonged breeding season of this species. Resident females did not lay a greater number of eggs or begin laying eggs earlier, despite beginning the breeding season earlier and having a higher mass than migrant newts. The only difference in reproduction we detected was that the eggs of resident females hatched into larger larvae compared with the larvae of migrant females. We discuss this result in the context of other potential trade-offs between residency and migration. This study illustrates the phenology of egg laying of N. viridescens and our results contribute to understanding the population dynamics of partially migratory species.  相似文献   

2.
Knowledge of species interactions is vital to understand ecological and evolutionary patterns in nature. Traditional species interactions (e.g., competition, predation, symbiosis) have received a great deal of deserved attention and their general importance in shaping the evolution of populations and structure of communities is unquestioned. Recently, reproductive interference has been receiving attention as an important species interaction. Reproductive interference is defined as interspecific reproductive activities that decrease the fitness of at least one of the species involved in the interaction. Reproductive interference has the potential to affect the evolutionary trajectories of populations and structure of communities. Here, I comment on seven papers that make up this special feature on reproductive interference. Along the way I highlight key discoveries of these studies and areas of research that may contribute to our understanding of the causes and consequences of reproductive interference.  相似文献   

3.
Islands offer unique opportunities for studies of evolution and historical demography. We hypothesized that wintering North American migrant bird species would show genetic evidence of population expansion over recent millennia due to the expansion of their breeding distributions following the retreat of the Laurentide ice sheet. In contrast, we presumed that non-migratory species would exhibit more stable historical demographies. We used mtDNA sequences from 649 individuals of 16 avian species on the Caribbean island of Hispaniola to test this prediction. Mismatch distributions did not differ significantly between migrants and non-migrants. However, neutrality indices indicated population expansion in the migrant species, as well as two non-migratory resident species with extensive distributions. Evidence of population expansion was less consistent in other non-migratory residents. We infer that climate prior to the Last Glacial Maximum significantly reduced effective population sizes of most migratory North American bird populations and some resident Hispaniolan bird populations. Our data further revealed that mismatch statistics were poorly correlated with and less informative than the neutrality test statistics, a consideration for future demographic studies.  相似文献   

4.
Partially migratory populations comprise both resident and migratory individuals. These tactics may coexist if their demographic contribution to future generations (i.e. fitness) are equal or vary temporally with environmental conditions, or if individuals switch between being migrant and resident. Alternatively, the choice of movement tactic can be based on individual attributes such as age, competitive ability or personality. In the latter cases, the two tactics are not expected to have similar average fitness. In this study, we examined the effect of movement tactic on reproductive performance and survival of 82 GPS‐marked female moose and their offspring in a partial migratory population in central Norway. The results indicated higher growth in the migrating part of the population because migrating females produced more twins than resident females. We found no differences in pregnancy rates or survival of adults or their offspring, indicating a net fitness benefit of being migrant. We found the average shoulder height of residents to be slightly lower than of migrants, but doubt that this affected their migration ability. A more likely explanation is that migratory females are both more fecund and grow bigger because of better conditions in their summer ranges. This may be a temporal phenomenon if the fitness differences between migratory and resident moose vary according to environmental fluctuations.  相似文献   

5.
Partial migration is widespread in ungulates, yet few studies have assessed demographic mechanisms for how these alternative strategies are maintained in populations. Over the past two decades the number of resident individuals of the Ya Ha Tinda elk herd near Banff National Park has been increasing proportionally despite an overall population decline. We compared demographic rates of migrant and resident elk to test for demographic mechanisms partial migration. We determined adult female survival for 132 elk, pregnancy rates for 150 female elk, and elk calf survival for 79 calves. Population vital rates were combined in Leslie‐matrix models to estimate demographic fitness, which we defined as the migration strategy‐specific population growth rate. We also tested for differences in factors influencing risk of mortality between migratory strategies for adult females using Cox‐proportional hazards regression and time‐varying covariates of exposure to forage biomass, wolf predation risk, and group size. Despite higher pregnancy rates and winter calf weights associated with higher forage quality, survival of migrant adult females and calves were lower than resident elk. Resident elk traded high quality food to reduce predation risk by selecting areas close to human activity, and by living in group sizes 20% larger than migrants. Thus, residents experienced higher adult female survival and calf survival, but lower pregnancy and calf weights. Cause‐specific mortality of migrants was dominated by wolf and grizzly bear mortality, whereas resident mortality was dominated by human hunting. Demographic differences translated into slightly higher (2–3%), but non‐significant, resident population growth rate compared to migrant elk, suggesting demographic balancing between resident strategies during our study. Despite statistical equivalence, our results are also consistent with slow long‐term declines in migrants because of high predation because of higher wolf‐caused mortality in migrants. These results emphasize that migrants and residents will make different tradeoffs between forage and risk may affect the demographic balance of partially migratory populations, which may explain recent declines in migratory behavior in many ungulate populations around the world.  相似文献   

6.
Decomposing variation in juvenile recruitment is a key component of understanding population dynamics for partially migratory ungulates. We investigated reproductive parameters of adult female elk (Cervus canadensis) with calves at heel, and survivorship, cause-specific mortality, and intrinsic and extrinsic factors affecting risk of mortality for calves in a partially migratory elk population from 2013–2016 in Alberta, Canada. Elk calves born to resident mothers had 45% lower survivorship on average compared to migrant calves (0.24 vs. 0.69) and nearly twice the mortality rate (0.37 vs. 0.19) from bears (Ursus spp.), the dominant source of mortality. Contrary to our predictions, we found that increasing levels of maternal ingesta-free body fat were associated with increasing risk of calf mortality, indicating predation may have overwhelmed nutritional effects. We found no evidence that timing of calf birth or birth weight differed between migratory tactics or influenced mortality risk. We found that as percentage of cut forest increased, risk of calf mortality marginally decreased, which benefited migrant elk that were exposed to more clear-cuts compared to residents. Exposure to bear predation risk was unimportant during the hiding phase (≤10 days after birth) for either migratory tactic, presumably because neonatal hiding behavior reduced vulnerability. In contrast, bear predation risk was important for mortality risk after 10 days in age, especially for resident elk calves, which were exposed to higher bear predation risk compared to migrants. We conclude that relative differences in bear predation between migratory tactics are contributing to the dynamics of partial migration in this population through additive effects on calf mortality. Thus, wildlife managers should anticipate that recovering grizzly bear (U. arctos) populations may substantially lower elk recruitment through effects on summer calf survival, especially in areas with diverse carnivore assemblages.  相似文献   

7.
Migrant species are commonly thought to be poor competitors in aggressive interactions with resident species. However, no studies have tested whether this relationship is widespread. Here, we compare the behavioural dominance of closely related species of migratory and nonmigratory birds, testing whether migrants are consistently subordinate to resident species in aggressive contests. We compiled published behavioural dominance data involving migrant and resident congeners, gathering additional data on the body mass and migratory distance of each species. Focal species included a diverse array of birds (28 taxonomic families, 12 orders) from around the world. We found that migrant species are usually subordinate to resident species, but that this relationship disappears at larger body sizes. For smaller birds (<500 g), resident species were behaviourally dominant in 83%–88% of comparisons; for larger birds (>500 g), resident species were dominant in only 25%–30% of comparisons. The relative difference in body mass best predicted dominance relationships among species, with larger species dominant in 80%–84% of comparisons. When migrant and resident masses were equal, however, resident species were still more likely to be dominant in smaller birds, suggesting that other factors may also contribute to the subordinate status of migrants. Overall, our results suggest that in smaller species, the evolution of migration is associated with lighter weights and other traits that compromise the competitive abilities of migrants relative to residents. In contrast, larger species appear able to evolve migration without compromising their size or competitive abilities in aggressive contests, suggesting size‐dependent constraints on the evolution of migration.  相似文献   

8.
W. Alice Boyle 《Oikos》2011,120(12):1803-1816
Partial migration of tropical birds was long believed to be driven by variation in food abundance. Recent evidence from a partially‐migratory species suggests that in contrast, limited foraging opportunities at high elevations during severe wet season storms drives the most metabolically‐challenged individuals down to elevations where rainfall is lighter. Here, I test community‐level predictions of this hypothesis by examining the relationship between high‐elevation rainfall in the second half of the year and counts of migrant birds in lowland forest during late December each year from 1990–2009. I contrast results derived from analysis of all migrant species with both analyses of only the frugivorous migrants, and analyses of resident species. Counts of migrant species were on average positively associated with montane rainfall with differences of up to 72% in the numbers of birds counted in drier or wetter years. Frugivores and smaller birds responded more strongly to variation in rainfall compared to the broader migrant species pool. Interestingly, counts of resident species were also higher following wetter montane wet seasons. Results of analyses exploring the cause of resident responses were not consistent with climatic effects on breeding productivity or short‐term weather effects on detectability. Results were, however, consistent with cryptic down‐slope migration of individuals breeding at higher elevations augmenting lowland resident populations in wet years. These results suggest that changes in rainfall amount, storm intensity, and timing of severe weather events would lead to large increases in or losses of an important behaviour.  相似文献   

9.
Partial diel vertical migrations in pelagic fish   总被引:1,自引:0,他引:1  
1. Field studies on diel vertical migration (DVM) usually report uniform behaviour with population-wide ascents and descents during crepuscular periods. This contrasts partial seasonal migrations of many animal populations, where individuals choose either the resident or the migrant strategy depending on population density, feeding opportunity and predation risk in the resident and migrant habitats. 2. We tested whether DVM of freshwater zooplanktivorous fish (Coregonus spp.) resembles partial migrations. Twenty-eight hydroacoustic surveys were performed in the deep Lake Stechlin (Germany) between 2000 and 2010, with samplings encompassing all months between March and December. Zooplankton samples were simultaneously taken in epilimnetic and hypolimnetic layers. Fish obtained from depth-stratified samplings by a midwater trawl were used to test for individual differences between residents and migrants. 3. We show for the first time that DVMs of freshwater fish resemble patterns of partial migrations often found in seasonal environments. Across all samplings, 7-33% of fish did not ascend at dusk, but exhibited the resident strategy. The proportion or residents increased at low zooplankton feeding rates in the daytime habitat and during months when the temperature difference between daytime and night-time habitats was minor. 4. Slightly larger size and higher caloric density of migrants over residents in one of the coexisting Coregonus species suggested that individual differences contributed to the migration strategy performed. However, these results were based on one sample only, and extrapolation to the entire data set is not possible. 5. Our results are indirect evidence that the balance between migrants and residents may primarily depend on the trade-off between feeding gains and metabolic and predation costs of migration. However, the results also suggest that the global fitness consequences for the resident and migrant strategies may not be identical, rendering the importance of individual traits in the 'decision to migrate' likely.  相似文献   

10.
种子与花粉的随机迁移对植物群体遗传结构分化的影响   总被引:1,自引:0,他引:1  
胡新生 《遗传学报》2000,27(4):351-360
将Wright的经典岛屿模型拓广到植物群体上,同时考虑了含有花粉和种子随机迁移的影响。并给出了3种不同遗传方式的基因(双亲遗传,父本和母本遗传)频率的期望均值和方差。理论结果证明花粉或种子的随机迁移可增加基因频率方差,其幅度取决于迁移率和迁移基因频率的方差。同绝对迁移率一样,花粉和种子的迁移率方差及迁移基因频率的方差对群体遗传结构的分化有着同样的重要。一个重要结论就是花粉或种子的随机迁移率和随机迁  相似文献   

11.
Theoretical studies have predicted that reproductive interference must exclude either of the interacting species, but no testing of this prediction has ever been reported for natural populations. This study surveyed the distribution patterns of herbaceous Veronica plants, including one native and three alien species, to test whether the invasion of the alien species exerting reproductive interference excluded the native species. Results showed that the native species was repeatedly excluded from islands where an alien species invaded, exerting reproductive interference, and that other alien species had no significant effect on the native population survival. This survey also demonstrated that the native species altered its habitat from the ground to stone walls on the mainland where the alien species had been predominant. In the mainland populations, the fruit morphology differed from that of the islands, and the morphology in the mainland population seemed suitable for seed dispersion by ants at a stone wall habitat. We also surveyed the genetic differentiation among populations, the results of which did not support the native species genetically differentiated between mainland and island populations before the alien species invasion. These results strongly suggest that the reproductive interference excluded the recipient species at the population level and facilitated the habitat change. Additionally, results indicated that a series of field surveys of islands close to the mainland can be a powerful tool to test the ecological importance of reproductive interference.  相似文献   

12.
Gene flow between populations can allow the spread of beneficial alleles and genetic diversity between populations, with importance to conservation, invasion biology, and agriculture. Levels of gene flow between populations vary not only with distance, but also with divergence in reproductive phenology. Since phenology is often locally adapted, arriving migrants may be reproductively out of synch with residents, which can depress realized gene flow. In flowering plants, the potential impact of phenological divergence on hybridization between populations can be predicted from overlap in flowering schedules—the daily count of flowers capable of pollen exchange—between a resident and migrant population. The accuracy of this prospective hybridization estimate, based on parental phenotypes, rests upon the assumptions of unbiased pollen transfer between resident and migrant active flowers. We tested the impact of phenological divergence on resident–migrant mating frequencies in experiments that mimicked a single large gene flow event. We first prospectively estimated mating frequencies two lines of Brassica rapaselected or early and late flowering. We then estimated realized mating frequencies retrospectively through progeny testing. The two estimates strongly agreed in a greenhouse experiment, where procedures ensured saturating, unbiased pollination. Under natural pollination in the field, the rate of resident–migrant mating, was lower than estimated by phenological divergence alone, although prospective and retrospective estimates were correlated. In both experiments, differences between residents and migrants in flowering schedule shape led to asymmetric hybridization. Results suggest that a prospective estimate of hybridization based on mating schedules can be a useful, although imperfect, tool for evaluating potential gene flow. They also illustrate the impact of mating phenology on the magnitude and symmetry of reproductive isolation.  相似文献   

13.
M. A. Asmussen  A. Schnabel 《Genetics》1991,128(3):639-654
We explicitly solve and analyze a series of deterministic continent-island models to delimit the effects of pollen and seed migration on cytonuclear frequencies and disequilibria in random-mating, mixed-mating and self-fertilized populations. Given the critical assumption of maternal cytoplasmic inheritance, five major findings are (i) nonzero cytonuclear disequilibria will be maintained in the island population if and only if at least some migration occurs each generation through seeds with nonrandom cytonuclear associations; (ii) immigrant seeds with no cytonuclear disequilibria can strongly affect the genetic structure of the island population by generating significant and long-lasting transient associations; (iii) with all else being equal, substantially greater admixture disequilibria are generally found with higher rates of seed migration into, or higher levels of self-fertilization within, the island population (with the possible exception of the heterozygote disequilibrium); (iv) pollen migration can either enhance or reduce the cytonuclear disequilibria caused by seed migration, or that due to mixed-mating in the absence of seed migration, but the effect is usually small and appears primarily to make a noticeable difference in predominantly outcrossing populations; and (v) pollen migration alone cannot generate even transient disequilibria de novo in populations with completely random associations. This same basic behavior is exhibited as long as there is some random outcrossing in the island population. Self-fertilized populations represent a special case, however, in that they are necessarily closed to pollen migration, and nonzero disequilibria can be maintained even in the absence of seed migration. All of these general results hold whether the population is censused as adults or as seeds, but the ability to detect nonrandom cytonuclear associations can depend strongly on the life stage censused in populations with a significant level of random outcrossing. We suggest how these models might be used for the estimation of seed and pollen migration.  相似文献   

14.
It is generally expected that small, isolated populations will suffer reduced fitness due to inbreeding, yet few studies have investigated the relation between population characteristics, inbreeding and fitness. Among Ontario populations of the short‐lived, perennial plant Aquilegia canadensis, large populations (N>90 flowering plants) outcross twice as frequently as small populations (N=30–40), and inbreeding depression is extremely strong. We tested the prediction that reproductive output, a major component of population fitness, should be positively associated with population size. Data from a survey of 33 populations located on small islands in the St. Lawrence River, Canada and 23 populations on adjacent mainland areas supported this prediction. Population size correlated positively with reproductive output, measured as the number of seedlings produced per plant in 1995 (average r=+0.39 pooled P=0.019), and the number of fruits per plant in 1997 (r=+0.30, P=0.056). We also tested the prediction that fitness should decline with increasing spatial isolation between populations by measuring the distance separating all island populations. However, reproductive output did not correlate with isolation in either year. We compared island and mainland populations to test the prediction that reproductive output should be lower for populations on small islands than those occurring in more continuous mainland habitat. In contrast to our predictions, island populations exhibited, if anything, higher reproductive output than mainland populations. We also found no support for the prediction that the positive association between population size and reproductive output should be stronger for presumably isolated populations on small islands than for those on adjacent mainland areas. While the mechanisms underlying the association between population size and fitness are impossible to identify with correlations alone, our results are consistent with the hypothesis that inbreeding can significantly reduce the fitness of natural populations.  相似文献   

15.
Phenotypic variation linked to habitat use has been observed in fish, both between and within species. In many river systems, migratory and resident forms of salmonids coexist, including anadromous (migrant) and resident brook trout, Salvelinus fontinalis. In such populations, juvenile anadromous (migrant) brook trout, prior to migration, inhabit regions of higher current velocity than residents. Because it is more costly to occupy fast currents than slow currents, differences in morphology minimizing the effects of drag were expected between the two forms. As predicted, migrant brook trout were found to be more streamlined (narrower and shallower bodies) than resident brook trout, and these differences persisted into the marine life of the fish. Migrants also exhibited shorter pectoral fins, which facilitate pelagic swimming, indicating that migrants, prior to their migration to the sea, possess the appropriate morphology for swimming in open water habitats. The reported differences between migrants and residents were powerful enough to derive discriminant functions, using only five of the seven measured traits, allowing for accurate classification of brook trout as either migrants or residents with an overall correct classification rate of 87%. Importantly, this study contributes to the notion that a link exists between morphology, habitat use, metabolic costs and life-history strategies. Contribution to the program of CIRSA (Centre Interuniversitaire de Recherche sur le Saumon Atlantique).  相似文献   

16.
In the mid 1970s, the breeding populations of the migrant White Stork Ciconia ciconia were close to extinction in the northeastern region of France (Alsace). A re-introduction project was implemented, resulting in the year-round settlement of some individuals in the region, which rely on additional food supplied by humans during the winter. Today, both resident and migrant birds breed in the same areas and take food from rubbish dumps and humans (farmers). The effects of these anthropogenic influences, altering Stork behaviour, on Stork reproductive success are not known. The aim of this study was to test the influence of bird status (resident vs. migrant) and food availability (control nests vs. nests that benefit from high food supply) on reproductive success. In control nests, the mean laying date was earlier in resident than in migrant White Storks. There was also a clear seasonal decline in clutch size. For all nests, the numbers of eggs and hatchlings were higher in resident birds than in migrants, which can be attributed to the earlier breeding of resident Storks. The large broods of resident birds showed a high mortality rate, leading to the same fledgling success (fledglings/hatchlings) and number of fledglings as in migrants. Fledgling success and the number of fledglings were higher for nests close to a reliable food supply. In summary, although resident birds can breed earlier and produce more eggs than migrants, we found no advantage in terms of number of fledglings. The higher mortality rate of chicks found in pairs with a large brood could be caused by the deterioration of their habitat. Thus, the year-round settlement of Storks may not present a biological advantage if the quality of their habitat is not guaranteed by the conservation of their grasslands.  相似文献   

17.
Vogl C  Das A  Beaumont M  Mohanty S  Stephan W 《Genetics》2003,165(3):1385-1395
Population subdivision complicates analysis of molecular variation. Even if neutrality is assumed, three evolutionary forces need to be considered: migration, mutation, and drift. Simplification can be achieved by assuming that the process of migration among and drift within subpopulations is occurring fast compared to mutation and drift in the entire population. This allows a two-step approach in the analysis: (i) analysis of population subdivision and (ii) analysis of molecular variation in the migrant pool. We model population subdivision using an infinite island model, where we allow the migration/drift parameter Theta to vary among populations. Thus, central and peripheral populations can be differentiated. For inference of Theta, we use a coalescence approach, implemented via a Markov chain Monte Carlo (MCMC) integration method that allows estimation of allele frequencies in the migrant pool. The second step of this approach (analysis of molecular variation in the migrant pool) uses the estimated allele frequencies in the migrant pool for the study of molecular variation. We apply this method to a Drosophila ananassae sequence data set. We find little indication of isolation by distance, but large differences in the migration parameter among populations. The population as a whole seems to be expanding. A population from Bogor (Java, Indonesia) shows the highest variation and seems closest to the species center.  相似文献   

18.
Within-species colour variation is widespread among animals. Understanding how this arises can elucidate evolutionary mechanisms, such as those underlying reproductive isolation and speciation. Here, we investigated whether five island populations of Aegean wall lizards (Podarcis erhardii) have more effective camouflage against their own (local) island substrates than against other (non-local) island substrates to avian predators, and whether this was linked to island differences in substrate appearance. We also investigated whether degree of local substrate matching varied among island populations and between sexes. In most populations, both sexes were better matched against local backgrounds than against non-local backgrounds, particularly in terms of luminance (perceived lightness), which usually occurred when local and non-local backgrounds were different in appearance. This was found even between island populations that historically had a land connection and in populations that have been isolated relatively recently, suggesting that isolation in these distinct island environments has been sufficient to cause enhanced local background matching, sometimes on a rapid evolutionary time-scale. However, heightened local matching was poorer in populations inhabiting more variable and unstable environments with a prolonged history of volcanic activity. Overall, these results show that lizard coloration is tuned to provide camouflage in local environments, either due to genetic adaptation or changes during development. Yet, the occurrence and extent of selection for local matching may depend on specific conditions associated with local ecology and biogeographic history. These results emphasize how anti-predator adaptations to different environments can drive divergence within a species, which may contribute to reproductive isolation among populations and lead to ecological speciation.  相似文献   

19.
Partial migration, where populations of animals are composed of a mixture of resident and migratory individuals, is a widespread phenomenon in nature. It has been reported to occur in all major vertebrate groups, and can have significant ecological consequences. Here we give an overview of the ecology and evolution of partial migration in animals. We firstly review the different types of partial migration, and assess the ecological drivers responsible for driving individual differences in migratory tendency within populations. A variety of factors can be important in promoting the evolution of partial migration, including competition for resources or breeding opportunities, predation risk and intraspecific niche diversity. Often various factors act synergistically to create complex patterns of movement polymorphism within populations. The question of how partial migration is maintained over evolutionary timescales is also addressed. Whilst many theoretical considerations of partial migration utilise an evolutionary stable state (ESS) paradigm, empirical evidence for this is lacking. Rather the evidence suggests that partial migration is mostly condition dependent, and the optimum outcome for an individual is dependent upon its phenotype. What determines whether an individual follows a migratory or resident strategy is discussed in light of new theory and empirical data which supports the idea that environmentally responsive genetic thresholds are important across a range of species, from birds to fish, in proximately shaping migratory tendency. Finally we espouse our vision of how partial migration research will develop in the future, and suggest a number of exciting directions that studies into migratory dimorphism may take in the coming years.  相似文献   

20.
Body size and the adoption of a migratory tactic in brook charr   总被引:3,自引:0,他引:3  
The presence of a conditional strategy based on size attained before migration and a sex-ratio at migration biased towards females were explored in a population of brook charr Salvelinus fontinalis in the Sainte-Marguerite River, Quebec Province, Canada, where anadromous and resident forms live sympatrically. Seaward migration in the system occurred at 1 and 2 years old. Comparisons between backcalculated size-at-age of migrant and resident fish revealed that smaller fish at age 1 year delay migration to the following year and that bigger fish either migrated at age 1 year or remained resident for the rest of their life-cycle. Slow growth was associated with migration later in life (age 2 years) at a bigger size, which is consistent with the hypothesis of a threshold size for migration. No difference in size at age 1 year between migrant and resident fish suggests that other factors, such as growth efficiency and the presence of heritability of the tactics, are involved. Overall the sex ratio was equal for migrant and resident fish, while an age-specific bias was found: more males migrated at age 1 year and more females at age 2 years. These differences suggest that different tactics are adopted by different sexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号