首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The ubiquitous freshwater pathogen Saprolegnia parasitica has long been considered a true generalist, capable of infecting a wide range of fish species. It remains unclear, however, whether different isolates of this pathogen, obtained from distinct geographic locations and host species, display differences in host preference. To assess this, the current study examined the induced zoospore encystment responses of four S. parasitica isolates towards the skin of four fish species. While three of the isolates displayed ‘specialist’ responses, one appeared to be more of a ‘generalist’. In vivo challenge infections involving salmon and sea trout with the ‘generalist’ (salmon isolate EA001) and a ‘specialist’ (sea trout isolate EA016) pathogen, however, did not support the in vitro findings, with no apparent host preference reflected in infection outcomes. Survival of sea trout and salmon though was significantly different following a challenge infection with the sea trout (EA016) isolate. These results indicate that while S. parasitica isolates can be considered true generalists, they may target hosts to which they have been more frequently exposed (potential local adaptation). Understanding host preference of this pathogen could aid our understanding of infection epidemics and help with the development of fish management procedures.  相似文献   

2.
Prey choice is often evaluated at the species or population level.Here,we analyzed the diet of octopuses of different populations with the aim to assess the importance of individual feeding habits as a factor affecting prey choice.Two methods were used,an assessment of the extent to which an individual octopus made choices of species representative of those population (PSi and IS) and 25% cutoff values for number of choices and percentage intake of individual on their prey.In one population of Octopus cf vulgaris in Bermuda individuals were generaiist by IS=0.77,but most chose many prey of the same species,and were specialists on it by >75% intake.Another population had a wider prey selection,still generalist with PSi=0.66,but two individuals specialized by choices.In Bonaire,there was a wide range of prey species chosen,and the population was specialists by IS=0.42.Individual choices revealed seven specialists and four generalists.A population of Octopus cyanea in Hawaii all had similar choices of crustaceans,so the population was generalist by IS with 0.74.But by individual choices,three were considered a specialist.A population of Enteroctopus dofleini from Puget Sound had a wide range of preferences,in which seven were also specialists,IS=0.53.By individual choices,thirteen were also specialists.Given the octopus specialty of learning during foraging,we hypothesize that both localized prey availability and individual personality differences could influence the exploration for prey and this translates into different prey choices across individuals and populations showed in this study.  相似文献   

3.
    
Common types of plant defense mechanisms are thought to affect the host ranges of polyphagous herbivorous insects, yet few studies have examined the relationship between host plant suitability for polyphagous insects and defense against them. We investigated the suitability of the 19 plant species growing in the habitat of the polyphagous grasshopper, Parapodisma subastris, to determine the relationship between the physical characteristics of leaves and the growth and survival of grasshopper nymphs. We examined leaf toughness, trichome density, and length. Nymph survival was greater on plants with characteristics ranging from soft leaves and dense trichomes to tough leaves and few trichomes than on plants with soft leaves and few trichomes. The exception was Rorippa indica, a plant with soft leaves and few trichomes that uses biotic defense, on which nymph survival was maximal. Higher-quality plants that share common physical characteristics over families may favor polyphagy by grasshoppers that possess ability to overcome the physical defense easily with their robust mandibles.An erratum to this article can be found at  相似文献   

4.
Eurasian watermilfoil (Myriophyllum spicatum L.) is a nuisance aquatic weed, exotic to North America. The freshwater weevil Euhrychiopsis lecontei (Dietz) is a potential control agent of Eurasian watermilfoil and is a fully submersed aquatic specialist herbivore. Its presumed original host is the native northern watermilfoil (Myriophyllum sibiricum Komarov). We conducted a set of oviposition experiments to reveal first and second oviposition preference of Euhrychiopsis lecontei when presented with seven macrophytes. We tested differences between source (lake) populations of weevils, differences in behavior between weevils reared on the exotic Eurasian watermilfoil and the native northern watermilfoil and between weevils in the presence and absence of their preferred hostplant. Oviposition assays confirmed that E. lecontei is a watermilfoil specialist. Out of the 207 females that laid eggs, only three oviposited on a non-watermilfoil plant, Megalodonta beckii. The weevils' degree of specificity was influenced by the watermilfoil species on which they were reared. Weevils reared on Eurasian watermilfoil tended to oviposit on Eurasian watermilfoil, spent more time on Eurasian watermilfoil than on other plants, and spent more time off plants and took longer to oviposit when Eurasian watermilfoil was removed. Weevils reared on northern watermilfoil did not exhibit a preference for either watermilfoil species in oviposition or in time allocation, although they oviposited on and spent significantly more time on watermilfoils than on other species. Rearing of the two populations on their complementary watermilfoil hostplant resulted in responses typical of the rearing plant, not the original host. These results show that although both weevil populations are watermilfoil specialists, Eurasian-reared weevils prefer Eurasian watermilfoil in general host attraction and oviposition, whereas northern-reared weevils do not. The results support the contention that E. lecontei may be a good biocontrol agent for Eurasian watermilfoil because of its high specificity. The results also suggest that the current host range expansion of the weevil to Eurasian watermilfoil has the potential to become a host shift due to the increased specificity. Herbivory in freshwater systems is not well studied, and the E. lecontei-M. spicatum relationship is a rare example of submersed freshwater specialist herbivore-host-plant interactions.  相似文献   

5.
    
The host suitability of Centrosema pubescens (Leguminosae) was evaluated within two sympatric populations feeding on Solanum plants (Solanaceae) and C. pubescens in Epilachna vigintioctopunctata in Malaysia (Kuala Lumpur) and Indonesia (Bogor and Padang). In the Bogor and Padang populations, Centrosema strains had a significantly higher emergence rate than sympatric Solanum strains. In Kuala Lumpur, there was no significant difference in emergence rates between the two strains. When Centrosema strains from Kuala Lumpur and Padang were reared and maintained solely on Solanum plants, the emergence rate on C. pubescens gradually decreased with successive rearing generation and resulted in 0% in the 7th or 20th generations. These findings suggest that the current host suitability of C. pubescens depends on the previous experience of each population with the use of this plant as a host. However, we were not able to demonstrate from laboratory selection that Solanum strains increase the host adaptation to C. pubescens because every Solanum strain became extinct in the third generation when reared solely on C. pubescens. Received: August 16, 1999 / Accepted: June 5, 2000  相似文献   

6.
About 202 specimens of snipefishes (Macroramphosus spp.) from Great Meteor Seamount (GMR, subtropical NE Atlantic, 30°N, 28.5°W) were analysed with respect to diet composition and morphology. Fifty specimens belonged to the deep-bodied benthos-feeding type (b-type) whose diet consisted of foraminifers, pteropods, decapods and polychaetes, whereas the slender planktivorous individuals (p-type, n=140) mainly fed on ostracods, copepods, pteropods and foraminifers. Twelve specimens showed no specialisation with respect to feeding (p/b-type). Both feeding types can be significantly distinguished from each other by means of bi- and multivariate morphological analysis considering the variables body depth, length of second dorsal spine, diameter of orbit and standard length. We discuss the hypothesis that M. gracilis represents a transient juvenile stage of M. scolopax. Since our specimens of the M. gracilis type were larger than specimens of the M. scolopax-type, such an ontogenetic shift is unlikely to occur. Our results support the hypothesis of Clarke for Australian snipefishes that for Macroramphosus spp. locally two distinct sympatric species must be anticipated, corresponding to M. scolopax and M. gracilis and the b- and p-types, respectively. Electronic Publication  相似文献   

7.
Why and how specialist and generalist strategies evolve are important questions in evolutionary ecology. In this paper, with the method of adaptive dynamics and evolutionary branching, we identify conditions that select for specialist and generalist strategies. Generally, generalist strategies evolve if there is a switching benefit; specialists evolve if there is a switching cost. If the switching cost is large, specialists always evolve. If the switching cost is small, even though the consumer will first evolve toward a generalist strategy, it will eventually branch into two specialists.  相似文献   

8.
Division of labor (DoL) occurs when individual members of a group specialize by performing particular tasks toward some common goal. Under complete DoL, every individual acts as a specialist and so performs only one kind of task. But under incomplete DoL, some individuals may act as generalists and so have the capacity to perform more than one kind of task. This persistence of generalists in the presence of specialists presents a theoretical challenge, particularly if generalists must pay an extra cost, an inefficiency penalty, for their capacity to perform more than one type of task. Prior work focused on how such costs tend to drive evolution toward complete DoL, with only specialists typically remaining at equilibrium [Wahl, L.M., 2002a. Evolving the division of labor: generalists, specialists and task allocation. J. Theoret. Biol. 219, 371-388; Wahl, L.M., 2002b. The division of labor: genotypic versus phenotypic specialization. Am. Nat. 160, 135-145]. Relaxing this key assumption, we show that generalists, despite paying some extra costs, can coexist with specialists. Relaxing another assumption, we also show that this coexistence can hold even when generalists often perform the wrong task. How can stable multitasking emerge despite this flawed decision-making? From the perspective that cognitive errors matter only when they translate into fitness decrements, we observe that error-prone generalists may persist most commonly in situations in which their mistakes do little to jeopardize group success. Our findings show that incomplete DoL can emerge even when generalists often err and must pay extra costs for their multitasking capacity.  相似文献   

9.
Fairly regular multiannual microtine rodent cycles are observed in boreal Fennoscandia. In the southern parts of Fennoscandia these multiannual cycles are not observed. It has been proposed that these cycles may be stabilized by generalist predation in the south.We show that if the half-saturation of the generalist predators is high compared to the number of small rodents the cycles are likely to be stabilized by generalist predation as observed. We give examples showing that if the half-saturation of the generalist predators is low compared to the number of small rodents, then multiple equilibria and multiple limit cycles may occur as the generalist predator density increases.  相似文献   

10.
    
Microbial growth under extreme conditions is often slow. This is partly because large amounts of energy are diverted into cellular mechanisms that allow survival under hostile conditions. Because this challenge is universal and diversity in extreme environments is low compared to non-extreme environments, slow-growing microorganisms are not overgrown by other species. In some cases, especially when nutrients are scarce, slow growth was even shown to increase stress tolerance. And in at least some species of extremotolerant and extremophilic fungi, growth rate appears to be coupled with their very unusual morphologies, which in turn may be an adaptation to extreme conditions. However, there is more than one strategy of survival in extreme environments. Fungi that thrive in extremes can be divided into (i) ubiquitous and polyextremotolerant generalists and (ii) rarely isolated specialists with narrow ecological amplitudes. While generalists can compete with mesophilic species, specialists cannot. When adapting to extreme conditions, the risk of an evolutionary trade-off in the form of reduced fitness under mesophilic conditions may limit the maximum stress tolerance achievable by polyextremotolerant generalists. At the same time, specialists are rarely found in mesophilic environments, which allows them to evolve to ever greater extremotolerance, since a reduction of mesophilic fitness is likely to have little impact on their evolutionary success.  相似文献   

11.
    
In concept, regulation or suppression of target nematode pest species should be enhanced when an abundance of predator species is supported by ample availability of bacterial- fungal- and non-damaging plant-feeding prey species. We selected soils from natural and managed environments that represented different levels of resource availability and disturbance. In microcosm chambers of each soil, in its natural state or after heat defaunation, we introduced test prey species not already resident in the soils (Meloidogyne incognita and Steinernema feltiae). Survival of the test prey was determined after a 5-day bioassay exposure. Across the soils tested, predator abundance and biomass were greater in undisturbed soils with plentiful resources and lower in soils from agricultural sites. Suppressiveness to the two introduced species increased with both numerical abundance and metabolic footprint of the predator assemblages. The magnitude of the increase in suppressiveness was greater at low numbers of predators then dampened to an asymptotic level at greater predator abundance, possibly determined by temporal and spatial aspects of the bioassay system and/or satiation of the predators. The more resource-limited the predators were and the higher the metabolic predator footprint, the greater the suppressiveness. The applied implications of this study are that soil suppressiveness to pest species may be enhanced by increasing resources to predators, removing chemical and physical constraints to their survival and increase, and altering management practices so that predators and target prey are co-located in time and space.  相似文献   

12.
In this paper we propose a mathematical learning model for the feeding behaviour of a specialist predator operating in a random environment occupied by two types of prey, palatable mimics and unpalatable models, and a generalist predator with additional alternative prey at its disposal. A well known linear reinforcement learning algorithm and its special cases are considered for updating the probabilities of the two actions, eat prey or ignore prey. Each action elicits a probabilistic response from the environment that can be favorable or unfavourable. To assess the performance of the predator a payoff function is constructed that captures the energetic benefit from consuming acceptable prey, the energetic cost from consuming unacceptable prey, and lost benefit from ignoring acceptable prey. Conditions for an improving predator payoff are also explicitly formulated.  相似文献   

13.
A resolution of the paradox of enrichment   总被引:1,自引:0,他引:1  
Theoretical studies have shown a paradoxical destabilizing response of predator-prey ecosystems to enrichment, but there is the gap between the intuitive view of nature and this theoretical prediction. We studied a minimal predator-prey system (a two predator-two prey system) in which the paradox of enrichment pattern can vanish; the destabilization with enrichment is reversed, leading to stabilization (a decrease in the amplitude of oscillation of population densities). For resolution of the paradox, two conditions must be met: (1) the same prey species must be preferred as a dietary item by both predator species, creating the potential for high exploitative competition between the predator species, and (2), while both predators are assumed to select their diet in accordance with optimal diet utilization theory, one predator must be a specialist and the other a generalist. In this system, the presence of a less profitable prey species can cause the increase in population oscillation amplitudes associated with increasing enrichment to be suppressed via the optimal diet utilization of the generalist predator. The resulting stabilization is explained by the mitigating effect of the less profitable prey showing better population growth with increasing enrichment on the destabilization underlying the specialist predator and prey relation, thus resolving the paradox of enrichment.  相似文献   

14.
微生境选择分化是生境相似的物种间共存的重要原因。社鼠和大林姬鼠为北京东灵山地区常见鼠种,生境需求、活动节律及食物组成等相似,但二者共存的原因尚不清楚。2016—2017年,我们对北京东灵山地区社鼠和大林姬鼠的微生境选择进行了研究。不同季节和生境类型中,社鼠和大林姬鼠微生境选择存在明显分化。灌丛生境中,春季社鼠偏好于乔木密度、草本盖度更高和落叶盖度相对偏低的微生境,而大林姬鼠选择郁闭度、落叶盖度较高而草本盖度较低的微生境;主成分分析表明,地表覆盖物是影响二者微生境选择的主要因素;秋季社鼠喜好乔木种类多、灌木密度和草本盖度更高的微生境,而大林姬鼠选择乔木胸径、灌木距离、落叶盖度和空地比例更高的微生境,食物丰富度是影响社鼠和大林姬鼠微生境选择的主要因素。弃耕地生境中,春季社鼠倾向于灌木密度和草本盖度较高的微生境,而大林姬鼠首选郁闭度、乔木胸径、落叶盖度较大而草本盖度较低的微生境,地表覆盖物是影响二者微生境选择的主要因素;秋季社鼠偏好郁闭度和落叶盖度都相对较低的微生境,大林姬鼠则相反,食物多度是影响二者微生境选择的主要因素。次生林生境中,春季因样本量太少,未作分析;秋季社鼠优先选择灌木密度、灌木基径和草本盖度更高的微生境,大林姬鼠更倾向乔木胸径、落叶盖度较高,而灌木密度、草本盖度较低的微生境,地表覆盖物是影响二者微生境选择的主要因素。结果表明,不同生境和季节,两种鼠的微生境选择具有明显分化,这可能是二者共存的重要原因之一。  相似文献   

15.
Summary T-even type phages recognize their cellular receptors with the tip of their long tail fibres. The gene products involved in receptor recognition are proteins 37 and 38. While screening libraries of phage K3 with a probe of gene38 from phage T2, a class of weakly hybridizing clones was found in addition to the expected clones of gene38 of K3. One of these clones was identified as being from gene23 of the phage which codes for the major head subunit; another clone originated from gene34, which codes for the proximal half of the long tail fibres. Neither gene product 23 nor 34 is involved in receptor recognition. Phages can recombine with the DNA of the gene23 and gene34 clones and change the host range. This paper is dedicated to Prof. Dr. Wolfgang Beermann, Tübingen, on the occation of his 65th birthday  相似文献   

16.
The success of combined release of the predatory mitesPhytoseiulus persimilis and Neoseiulus californicus insuppression of spider mites may be related to the effects of the interactionsbetween the two predators on their population dynamics. We studied populationgrowth and persistence of the specialist P. persimilis andthe generalist N. californicus reared singly versus rearedin combination after simultaneous and successive predator introductions ondetached bean leaf arenas with abundant prey, Tetranychusurticae, and with diminishing prey. When reared singly with abundantprey, either predator population persisted at high densities to the end of theexperiment. In every predator combination system with abundant prey and variousinitial predator:predator ratios N. californicus displacedP. persimilis. When held singly with diminishing prey, thepopulation of P. persimilis grew initially faster than thepopulation of N. californicus but both species reachedsimilar population peaks. Irrespective whether reared singly or in combination,N. californicus persisted three to five times longer afterprey depletion than did P. persimilis. Regarding thecrucial interactions in the predator combination systems, we conclude thatintraguild predation was a stronger force than food competition and finallyresulted in the displacement of P. persimilis. Previousstudies showed that intraguild predation between the specialist P.persimilis and the generalist N. californicusisstrongly asymmetric favoring the generalist. We discuss the implications ofpotential interactions between P. persimilis andN. californicus to biological control of spider mites.  相似文献   

17.
Habitat loss is a major threat to biodiversity and ecosystem function. As habitats are lost, one factor affecting their community structures is the niche-width demand of species, which ranges from specialist to generalist. This study focused on specialist and generalist species in plant–pollinator interactions and tested the hypothesis that plant and pollinator communities become more generalized as habitat loss increases. The study was made in seven selected sites in southern Ontario, Canada, at the level of landscape that is characterized by distributed forests within intensively managed agricultural fields. We quantified both the degree of habitat loss and the degree of specialization/generalization for each of the plant and insect communities using a sampling method of hexagonal transects. Regression analysis indicated a significant relationship between the increase of habitat loss and the shift to generalization in insect, but not in plant, communities. Our results suggest that, in plant–pollinator interactions, insect communities are more sensitive and/or quicker than plant communities to respond to the effects of habitat loss.  相似文献   

18.
Two species of Phytoseiidae are found in the same agroecosystem: Typhlodromus exhilaratus prevails in vine plots, while T. phialatus prevails in uncultivated surrounding areas. The objective of the present paper was to investigate whether the poor settlement of T. phialatus in vine plots can be explained by intraguild predation of these two species and/or cannibalism. Predatory abilities of the females on larvae and protonymphs were studied under laboratory conditions. A first experiment was conducted with only conspecific or heterospecific phytoseiid prey, in a second experiment Tetranychus urticae eggs were added to the phytoseiid prey. Oviposition, prey consumption, and escape rates of females were recorded. Oviposition and intraguild predation rates were higher for T. exhilaratus than for T. phialatus. Typhlodromus exhilaratus consumed fewer conspecifics than heterospecific phytoseiids, and oviposited when feeding on both diets. Typhlodromus phialatus consumed equal amounts of con- and heterospecifics. Although these two generalist predators belong to the type III defined by McMurtry and Croft (Annual Review of Entomology 42:291–321, 1997), our results suggest that they have different predation behaviour. However, because these results were obtained in experiments where no choice was given between the two phytoseiid species, they are difficult to link to previous studies conducted on the intraguild predation of the Phytoseiidae. The greater voracity and prolificacy of T. exhilaratus could partially explain the poor settlement of T. phialatus in vineyards and the predominance of T. exhilaratus. However, a full understanding of this phenomenon will require the study of other factors, such as susceptibility to pesticides and micro-climatic conditions, as well as the ability to cope with different food sources and host plants.  相似文献   

19.
20.
Intra- and interspecific resource competition are potentially important factors affecting host plant use by phytophagous insects. In particular, escape from competitors could mediate a successful host shift by compensating for decreased feeding performance on a new plant. Here, we examine the question of host plant-dependent competition for apple (Malus pumila)- and hawthorn (Crataegus mollis)-infesting larvae of the apple maggot fly, Rhagoletis pomonella (Diptera: Tephritidae) at a field site near Grant, Michigan, USA. Interspecific competition from tortricid (Cydia pomonella, Grapholita prunivora, and Grapholita packardi) and agonoxenid (subfamily Blastodacninae) caterpillars and a curculionid weevil (Conotrachelus crataegi) was much stronger for R. pomonella larvae infesting the ancestral host hawthorn than the derived host apple. Egg to pupal survivorship was estimated as 52.8% for fly larvae infesting hawthorn fruit without caterpillars and weevils compared to only 27.3% for larvae in harthorns with interspecific insects. Survivorship was essentially the same between fly larvae infesting apples in the presence (44.8%) or absence (42.6%) of interspecific insects. Intraspecific competition among maggots was also stronger in hawthorns than apples. The order or time that a larva exited a hawthorn fruit was a significant determinant of its pupal mass, with earlier emerging larvae being heavier than later emerging larvae. This was not the case for larvae in apples, as the order or time that a larva exited an apple fruit had relatively little influence on its pupal mass. Our findings suggest that decreased performance related to host plant chemistry/nutrition may restrict host range expansion and race formation in R. pomonella to those plants where biotic/ecological factors (i.e. escape from competitors and parasitoids) adequately balance the survivorship equation. This balance permits stable fly populations to persist on novel plants, setting the stage for the evolution of host specialization under certain mitigating conditions (e.g. when mating is host specific and host-associated fitness trade-offs exist).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号