首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Environmental conditions may affect invasibility and potentially prevent successful invasions of the freshwater bivalve Limnoperna fortunei Dunker, 1857. However, even though the larval stage may be considered an important species’ characteristic, the invasion processes of L. fortunei are mainly evaluated using only the adult stage. Therefore, the aim of this study was to identify what, and how, environmental filters might predict the likelihood of occurrence of each of the L. fortunei larval stages. Logistic regressions were applied using the larval stages of L. fortunei as a surrogate of population age structure and the environmental variables as the main filters that potentially predicted the likelihood of the occurrence of each larval stage of L. fortunei. The turbidity predicted the occurrence of the D-shaped larvae and straight-hinged veliger stages, while the umbonated-veliger and pediveliger stages were predicted by the pH and conductivity. Finally, the phytoplankton density (diatoms) predicted the occurrence of the umbonated-veliger, pediveliger and mainly the plantigrade stages. Our findings suggested that, during larvae development, from younger to older stages, the main environmental predictor of larvae occurrence shifted from abiotic to biotic variables, indicating that larval stages are indeed an important factor that helps in the evaluation of freshwater invasibility. These findings are particularly important for floodplain systems, where flood pulse dynamics may increase propagule pressure, leading to a successful spread among habitats. Then, even though environmental filters were important to predict successful invasions, we highlight that a successful invasion might depend on the population age structure of the invading species arriving in the new habitat. Thus, successful L. fortunei invasions in floodplain systems may depend on the interaction between invasiveness, invasibility and propagule pressure.  相似文献   

2.
Forecasting the spatial spread of invasive species is important to inform management planning. Niche-based species distribution models offer a well-developed framework for assessing the potential range of species. However, these models assume equilibrium between the species’ distribution and its ecological requirements. During range expansion, invasive species are not in such equilibrium due to both dispersal limitation and frequent casual occurrence in sites unsuitable to persistent populations. In this article we use the example of the invasive annual plant Ambrosia artemisiifolia in Austria to evaluate if model accuracy can be enhanced in such non-equilibrium situations by taking account of propagule pressure and by restricting model calibration to naturalized populations. Moreover, we test if model accuracy increases during invasion history using distribution data from 1984 to 2005. The results suggest that models calibrated with naturalized populations are much more accurate than those based on the total set of records. Proxies of propagule pressure slightly but significantly improve goodness of fit, accuracy, and Type I and II error rates of models calibrated with all available records but have less consistent effects on models of naturalized populations. Model accuracy did not increase during the recent invasion history, probably because the species is still far from an equilibrium distribution. We conclude that even a coarse assessment of population status with records of invasive species delivers important information for predictive modelling and that proxies of propagule pressure should be included into such models at least during early to intermediate stages of the invasion history.  相似文献   

3.
Biological invasions are a growing threat to biodiversity. The control and eradication of exotic species established in earnest are of limited success despite high financial investments. Anticipating biological invasions based on species’ suitabilities is a cost-effective strategy given it helps identifying areas where exotic species can prosper, which can then translate in improving management and conservation efforts. Based on information from 191 invasive angiosperm species worldwide, we used ecological niche models to identify areas at high risk of invasion (cumulative predicted distribution of invasive species) in Mexico. Further, we explored the importance of bioclimatic and human influence variables as drivers of the distribution of invasive species and analyzed the status of the currently recognized priority conservation sites in Mexico. We found that areas with intermediate human activity scores had a high risk of invasion. Additionally, we found that many of the current priority conservation sites in Mexico had a high risk of invasion. Our findings contribute to disentangling the factors that drive environment susceptibility to invasions and urge management strategies to minimize the impacts of biological invasions in priority conservation sites.  相似文献   

4.
Modelling and predicting the potential habitat and future range expansion of invasive species can help managers to mitigate the impact of such species. Because habitat suitability and the colonization process are key determinants of range expansion, inferences drawn from invasion patterns should be based on both attributes. To predict the potential habitat and expansion rate of the invasive tree Bischofia javanica on Hahajima Island, we used simultaneous models of habitat and dispersal to estimate the effect of environment and dispersal from the source population on the current distribution. We compared the fit and the estimated magnitudes of the environment and dispersal effects in the simultaneous models with those in habitat suitability and colonization kernel models. The values of Akaike’s information criterion for the simultaneous models were better than those of the habitat suitability and colonization kernel models, indicating that the current distribution of Bischofia was determined by both environment and dispersal. The simultaneous models predicted that the potential habitat of Bischofia would be larger than that predicted by the habitat suitability model. The potential habitat distribution and future invasion predicted by the simultaneous models will contribute to the development of specific landscape-scale management plans to control this invasive species.  相似文献   

5.
Nonnative species that harm or have the potential to cause harm to the environment, economy, or human health are known as invasive species. Propagule pressure may be the most important factor in establishment success of nonnative species of various taxa in a variety of ecosystems worldwide, and strong evidence is emerging that propagule pressure determines both the scale of invasion extent and impact. In a limited way, the US government is applying a “propagule pressure approach” in a variety of prevention policy contexts aimed at minimizing the impact of harmful organisms. However, there are also readily apparent opportunities for enacting propagule pressure-based measures to fill current gaps in invasive species prevention and control at national, state, and local levels. An explicit focus on propagule pressure-based policies could substantially increase the effectiveness of US efforts to prevent the introduction of invasive species through by intentional and unintentional introductions. The views expressed in this paper are solely those of the authors and do not necessarily reflect those of the US government. “As the last straw breaks the laden camel’s back...” -Charles Dickens, Dombey and Son  相似文献   

6.
Paradox lost: genetic diversity and the success of aquatic invasions   总被引:9,自引:0,他引:9  
There is mounting evidence that reduced genetic diversity in invasive populations is not as commonplace as expected. Recent studies indicate that high propagule vectors, such as ballast water and shellfish transplantations, and multiple introductions contribute to the elimination of founder effects in the majority of successful aquatic invasions. Multiple introductions, in particular, can promote range expansion of introduced populations through both genetic and demographic mechanisms. Closely related to vectors and corridors of introduction, propagule pressure can play an important role in determining the genetic outcome of introduction events. Even low-diversity introductions have numerous means of avoiding the negative impact of diversity loss. The interaction of high propagule vectors and multiple introductions reveal important patterns associated with invasion success and deserve closer scrutiny.  相似文献   

7.
Invasive species are capable of causing change in native plant communities, but invasion is often associated with other anthropogenic impacts on natural areas, such as habitat fragmentation and associated dispersal limitation for native species. Consequently, invasive species removal alone may not always be sufficient to meet restoration objectives. We tested if invasion and dispersal limitation interact to limit plant community restoration within a forest fragment invaded by Euonymus fortunei. Removal of Euonymus alone did not lead to the recolonization of native plant species. However, planting seedlings increased total native cover in invaded, Euonymus removal, and uninvaded control treatments. The consistent establishment of native plant seedlings across all treatments indicates that Euonymus invasion may have limited ability to displace established plants. In contrast, plant species that we added as seed were unable to establish in invaded plots, indicating that Euonymus invasion limits recruitment of native plant species from seed. Over the course of our experiment, a number of setbacks and surprises occurred, including high levels of herbivory, a windstorm, and extreme drought, all of which likely limited restoration success. Overall, our results indicate that Euonymus may contribute to native species declines, but other factors are important. Thus, invasive species removal alone may not be sufficient to reestablish a diverse native plant community. Instead, impacts on natural areas may need to be mitigated along with invasive species removal for restoration to be successful.  相似文献   

8.
1. The global spread of non‐native species is a major concern for ecologists, particularly in regards to aquatic systems. Predicting the characteristics of successful invaders has been a goal of invasion biology for decades. Quantitative analysis of species characteristics may allow invasive species profiling and assist the development of risk assessment strategies. 2. In the current analysis we developed a data base on fish invasions in catchments throughout California that distinguishes among the establishment, spread and integration stages of the invasion process, and separates social and biological factors related to invasion success. 3. Using Akaike's information criteria (AIC), logistic and multiple regression models, we show suites of biological variables, which are important in predicting establishment (parental care and physiological tolerance), spread (life span, distance from nearest native source and trophic status) and abundance (maximum size, physiological tolerance and distance from nearest native source). Two variables indicating human interest in a species (propagule pressure and prior invasion success) are predictors of successful establishment and prior invasion success is a predictor of spread and integration. 4. Despite the idiosyncratic nature of the invasion process, our results suggest some assistance in the search for characteristics of fish species that successfully transition between invasion stages.  相似文献   

9.
Understanding the mechanisms behind the successful colonization and establishment of introduced species is important for both preventing the invasion of unwanted species and improving release programs for biological control agents. However, it is often not possible to determine important introduction details, such as date, number of organisms, and introduction location when examining factors affecting invasion success. Here we use biological control introduction data to assess the role of propagule pressure, disturbance, and residence time on invasion success of four herbivorous insect species introduced for the control of the invasive wetland plant, Lythrum salicaria, in the Columbia River Estuary. Two sets of field surveys determined persistence at prior release sites, colonization of new sites, and abundance within colonized sites. We quantified propagule pressure in four ways to examine the effect of different measurements. These included three measurements of introduction size (proximity to introduction site, introduction size at a local scale, and introduction size at a regional scale) and one measure of introduction number (number of introduction events in a region). Disturbance was examined along a tidal inundation gradient (distance from river mouth) and as habitat (island or mainland). Statistical models and model averaging were used to determine which factors were driving invasion success. In this study we found: (1) sparse evidence for the positive influence of propagule pressure on invasion success; (2) disturbance can negatively affect the invasion success of herbivorous insects; (3) the effects of disturbance and propagule pressure are species specific and vary among invasion stages, and (4) not all measures of propagule pressure show the same results, therefore single measures and proxies should be used cautiously.  相似文献   

10.
Reconstructing the invasion history of aquatic invasive species can enhance understanding of invasion risks by recognizing areas most susceptible to invasion and forecasting future spread based on past patterns of population expansion. Here we reconstruct the invasion history of the Japanese amphipod Grandidierella japonica Stephensen 1938 combining information from historical collection data with molecular genetic data to better understand post-invasion range expansion and anthropogenic connectivity across the Pacific coast of North America. Compilation of collection data from bays and estuaries of the Pacific North American coast show many new localities have been colonized in the last two decades, moving outward from harbors and bays with high commercial traffic into smaller coastal locations dominated by local recreational traffic. DNA barcode sequence data for G. japonica reveals two distinct clades: one found in San Francisco Bay and sites to the north, and one also found in San Francisco Bay and sites to the south. The two clades differ by an average 7.28 % genetic distance, large enough to consider these invasive amphipods two separate species. Both northern and southern clades exhibit low levels of genetic diversity, suggesting a single introduction event for each. The presence of cryptic diversity within this invasive amphipod highlights the need for more extensive study of the invasive and native populations of aquatic invasive invertebrates to address questions of taxonomy, diversity, and invasion history.  相似文献   

11.
12.
We characterized patterns of genetic variation in populations of the fire ant Solenopsis invicta in China using mitochondrial DNA sequences and nuclear microsatellite loci to test predictions as to how propagule pressure and subsequent dispersal following establishment jointly shape the invasion success of this ant in this recently invaded area. Fire ants in Wuchuan (Guangdong Province) are genetically differentiated from those found in other large infested areas of China. The immediate source of ants in Wuchuan appears to be somewhere near Texas, which ranks first among the southern USA infested states in the exportation of goods to China. Most colonies from spatially distant, outlying areas in China are genetically similar to one another and appear to share a common source (Wuchuan, Guangdong Province), suggesting that long‐distance jump dispersal has been a prevalent means of recent spread of fire ants in China. Furthermore, most colonies at outlier sites are of the polygyne social form (featuring multiple egg‐laying queens per nest), reinforcing the important role of this social form in the successful invasion of new areas and subsequent range expansion following invasion. Several analyses consistently revealed characteristic signatures of genetic bottlenecks for S. invicta populations in China. The results of this study highlight the invasive potential of this pest ant, suggest that the magnitude of international trade may serve as a predictor of propagule pressure and indicate that rates and patterns of subsequent range expansion are partly determined by the interplay between species traits and the trade and transportation networks.  相似文献   

13.
A neutral terminology to define 'invasive' species   总被引:8,自引:0,他引:8  
The use of simple terms to articulate ecological concepts can confuse ideological debates and undermine management efforts. This problem is particularly acute in studies of nonindigenous species, which alternatively have been called ‘exotic’, ‘introduced’, ‘invasive’ and ‘naturalised’, among others. Attempts to redefine commonly used terminology have proven difficult because authors are often partial to particular definitions. In an attempt to form a consensus on invasion terminology, we synthesize an invasional framework based on current models that break the invasion process into a series of consecutive, obligatory stages. Unlike previous efforts, we propose a neutral terminology based on this framework. This ‘stage‐based’ terminology can be used to supplement terms with ambiguous meanings (e.g. invasive, introduced, naturalized, weedy, etc.), and thereby improve clarity of future studies. This approach is based on the concept of ‘propagule pressure’ and has the additional benefit of identifying factors affecting the success of species at each stage. Under this framework, invasions can be more objectively understood as biogeographical, rather than taxonomic, phenomena; and author preferences in the use of existing terminology can be addressed. An example of this recommended protocol might be: ‘We examined distribution data to contrast the characteristics of invasive species (stages IVa and V) and noninvasive species (stages III and IVb)’.  相似文献   

14.
  1. Patterns of genetic diversity in invasive populations can be modulated by a range of factors acting at different stages of the invasion process, including the genetic composition of the source population(s), the introduction history (e.g. propagule pressure), the environmental suitability of recipient areas, and the features of secondary introductions.
  2. The North American red swamp crayfish, Procambarus clarkii, is one of the most widely introduced freshwater species worldwide. It was legally introduced into Spain twice, near the city of Badajoz in 1973 and in the Guadalquivir marshes in 1974. Thereafter the species rapidly colonised almost the entire Iberian Peninsula.
  3. We used seven nuclear microsatellites to describe the genetic diversity and structure of 28 locations distributed across the Iberian Peninsula and to explain the expansion process of the red swamp crayfish. Additionally, we analysed the relationship between environmental suitability and genetic diversity of the studied locations.
  4. The red swamp crayfish had a clear spatial genetic structure in the Iberian Peninsula, probably determined by the two independent introduction events in the 1970s, which produced two main clusters separated spatially, one of which was dominant in Portugal and the other in Spain.
  5. The human-mediated dispersal process seemed to have involved invasion hubs, hosting highly genetically diverse areas and acting as sources for subsequent introductions. Genetic diversity also tended to be higher in more suitable environments across the Iberian Peninsula .
  6. Our results showed that the complex and human-mediated expansion of the red swamp crayfish in the Iberian Peninsula has involved several long- and short-distance movements and that both ecological and anthropogenic factors have shaped the genetic diversity patterns resulting from this invasion process. Early detection of potential invasion hubs may help to halt multiple short-distance translocations and thus the rapid expansion of highly prolific invasive species over non-native areas.
  相似文献   

15.
Historically described as cosmopolitan but rare, the benthic diatom Didymosphenia geminata is now considered a nuisance, bloom-forming and invasive species. In New Zealand, D. geminata was first recorded in 2004 in the lower Waiau River. By winter 2008 it had been identified in 26 major catchments. To investigate invasion success of D. geminata in relation to succession and biomass accumulation of native periphyton communities, we conducted a two-factorial field experiment. Seven successional stages of a native periphyton community (substrate exposure time: 0–49 days) were exposed to two D. geminata propagule concentrations (low and high) for 25 days. D. geminata propagule concentration and successional stage of the native periphyton community significantly affected the invasion success of D. geminata. While D. geminata invasion was low on all substrates that had been exposed to the low D. geminata propagule concentration, there was a unimodal relationship between invasion success and substrate exposure time at the high propagule concentration. D. geminata abundance was low on uncolonised substrates, increased when the native communities were 1- or 2-week-old, and low when the age of the native communities was 4 or more weeks. These results imply that D. geminata is a late successional species that needs some existing structure to anchor to a substrate. Although late successional stages of the native periphyton community displayed partial resistance to D. geminata invasion, trying to keep D. geminata abundances as low as possible appears to be the only way to manage this species at this time.  相似文献   

16.
  1. Environmental DNA (eDNA) is becoming an essential tool for detecting aquatic invasive species and investigating their spread. Surprisingly, this technique has been very rarely used to investigate habitat selection, site occupancy, and colonisation despite its higher capacity to detect many species.
  2. The African clawed frog (Xenopus laevis) is a principally aquatic amphibian introduced in several continents from South Africa. In western France, no recent systematic survey of the invasion range has been attempted, mainly because of the elusive nature of the species. Furthermore, the influence of landscape features on invasion has never been investigated, even if adults and juveniles are known to disperse overland and along river networks.
  3. Using presence–absence data generated by an eDNA survey conducted across the known invasion front of X. laevis in western France, we aimed to determine whether and how the landscape features surrounding a pond influence the probability that a pond is colonised.
  4. Xenopus laevis was detected well beyond the formerly known invasive distribution and at the outward end of some transects, suggesting that we did not reach the actual invasion front in these parts of the range. The landscape variables that best predicted the presence of X. laevis in a pond were topographic wetness index and grass cover within a buffer of 250 m.
  5. Higher values of both topographic wetness index and grass cover were negatively related to the occurrence probability. The effects of these two variables more likely to reflect dispersal behaviour than habitat preferences at the pond scale.
  6. By combining the high detection probability of eDNA survey techniques and a landscape ecology approach, we may gain valuable insight into the colonisation process of water bodies by elusive invasive species. Such information is crucial to prevent access to specific sites and locate invasion front areas where connectivity can be disrupted, thus increasing the effectiveness of management countermeasures.
  相似文献   

17.
Invasive species can alter patterns of biodiversity by displacing closely related native species that occupy similar habitats. We used multivariate ecological niche modeling to determine the potential spread and displacement of native congeners by the invasive aquatic plant, variable-leaf milfoil (VLM, Myriophyllum heterophyllum) in New Hampshire, USA. We show that VLM occurs almost exclusively in “higher order” lakes characterized as large, low elevation systems with relatively high pH, alkalinity and conductivity. In contrast, native milfoils occur across a broad range of lake orders. The strong association between lake order and VLM invasions suggests that VLM is most likely to displace native milfoils in higher order lakes. However, the mechanism by which VLM occurs in higher order lakes—higher propagule pressure versus higher growth and survivorship—is unclear. We therefore caution that native species may ultimately be susceptible to displacement from lower order lakes if the current distribution of VLM reflects higher propagule pressures. Our model provides a valuable tool for the prioritization of monitoring efforts.  相似文献   

18.
Determining the potential range of invasive alien species under current conditions is important. However, we also need to consider future distributions under scenarios of climate change and different management interventions when formulating effective long‐term intervention strategies. This paper combines niche modelling and fine‐scale process‐based modelling to define regions at high risk of invasion and simulate likely dynamics at the landscape scale. Our study species is Schinus molle (Peruvian pepper tree; Anacardiaceae), a native of central South America, introduced to South Africa in about 1850 where it was widely planted along roads. Localities of planted and naturalized trees were mapped along 5380 km of roads – a transect that effectively samples a large part of western South Africa. Correlative modelling was used to produce profiles of present and future environmental conditions characterizing its planted and naturalized ranges. A cellular‐automata simulation model was used to estimate the dynamics of S. molle under future climates and different management scenarios. The overall potential range of S. molle in the region is predicted to shrink progressively with predicted climate change. Some of the potential range of S. molle defined based on current conditions (including areas where it is currently highly invasive) is likely to become less favourable. The species could persist where it is well established long after conditions for recruitment have deteriorated. Some areas where the species is not widely naturalized now (notably the fynbos biome) are likely to become more favourable. Our modelling approach allows for the delineation of areas likely to be invaded in future by considering a range of factors at different scales that mediate the interplay of climatic variables and other drivers that define the dimensions of human intervention such as distance from planted trees and the density of planted plants, both of which affect propagule pressure.  相似文献   

19.
Climate change has been conclusively linked to species extinctions, and to expansion and contractions and shifts of species ranges. Climate change is exerting similarly profound pressures on the individual stages of biological invasion which can significantly impact the biodiversity and ecology of invaded areas. Propagule pressure is perhaps the single most important determinant of invasion success, but the effects of climate change on propagule pressure are still largely uncertain because we have few observations of introduction events (or their size) that can be analyzed together with climate records. The common surrogate variables for propagule pressure do not logically respond to climate. Here I use a process-based simulation model to examine the potential effects of climate change (specifically temperature) on propagule size of a common invading insect species by estimating in-transit survivorship rate of propagules using historical and future (projected) temperatures and two common trade routes between a donor and a recipient location (Yokohama, Japan and Sydney, Australia). Propagule size (=the number of individuals in an introduction event) was lower under climate change temperatures than under historical temperatures in both routes. The route had significant effects on propagule size through its influence on the duration (and also the timing) of exposure to temperature conditions that are of time-sensitive importance to the development of the invasive species. Under historical temperatures propagule size was higher and less variable in the direct than the indirect route in 20 independent iterations. Under the future temperatures propagule size was also higher in the direct route but it was more variable than in the indirect route. Increased trade is increasing the opportunities for introductions, but the results reported here suggest that climate change will have inconsistent effects on biological invasion because of the complex relationship between temperature and insect ontogeny.  相似文献   

20.
沼蛤是一种典型的淡水入侵贝类,能够利用其分泌的足丝牢固黏附在多种水下基质表面,引起严重的生物污损问题。沼蛤污损不但影响水生态系统健康,也给水利工程、交通运输、水产养殖等行业带来经济损失,已成为全球水生态系统安全和国民经济重要行业的潜在威胁,相关防污工作亟待开展。欲从根本上解决沼蛤污损问题,一方面需要加强对其基础生物学特性和污损机制的深入解析,另一方面也需要在此基础上研发更加经济、高效、环境友好的防污措施。本文综述了近年来国内外关于沼蛤污损生物学特性、污损机制和防污措施方面的研究进展,尤其是对沼蛤生物污损发生的主要机制如足探测识别、足丝黏附和环境影响等方面进行了总结,也从物理、化学、生物和防污材料等角度阐述了现有的沼蛤污损控制措施并对未来发展方向进行了展望,以期更加深入地理解沼蛤生物污损现象,为揭示其作用机制、制定科学有效的防污措施、维护水生态系统安全提供数据支撑,综述内容对于水下仿生材料研发也具有重要的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号