首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
  相似文献   

2.
    
As climate changes, tree decline in Mediterranean‐type ecosystems is increasing worldwide, often due to decreased effective precipitation and increased drought and heat stress, and has recently been observed in coastal species of the iconic Eucalyptus (Myrtaceae) genus in the biodiversity hotspot of south‐west Western Australia. To investigate how this drought‐related decline is likely to continue in the future, we used species distribution modelling techniques to generate broad‐scale predictions of future distribution patterns under three distinct projected climate change scenarios. In a moderate climate change scenario, suitable habitat for all species was predicted to decrease by, on average, 73% by the year 2100, with most receding into southern areas of their current distribution. Although the most severe Eucalyptus declines in south‐west Western Australia have been observed in near‐coastal regions, our predictions suggest that inland species are at greater risk from climate change, with six inland species predicted to lose 95% of their suitable habitat in a moderate change scenario. This is due to the shallow environmental gradients of inland regions causing larger spatial shifts of environmental envelopes, which is likely to be relevant in many regions of the world. The knowledge gained suggests that future research and conservation efforts in south‐west Western Australia and elsewhere should avoid focussing disproportionately on coastal regions for reasons of convenience and proximity to population centres, and properly address the inland region where the biggest future impacts may occur.  相似文献   

3.
    
Climate forecasts agree that increased variability and extremes will tend to reduce the availability of water in many terrestrial ecosystems. Increasingly severe droughts may be exacerbated both by warmer temperatures and by the relative unavailability of water that arrives in more sporadic and intense rainfall events. Using long‐term data and an experimental water manipulation, we examined the resilience of a heterogeneous annual grassland community to a prolonged series of dry winters that led to a decline in plant species richness (2000–2014), followed by a near‐record wet winter (2016–2017), a climatic sequence that broadly resembles the predicted future in its high variability. In our 80, 5‐m2 observational plots, species richness did not recover in response to the wet winter, and the positive relationship of richness to annual winter rainfall thus showed a significant weakening trend over the 18‐year time period. In experiments on 100, 1‐m2 plots, wintertime water supplementation increased and drought shelters decreased the seedling survival and final individual biomass of native annual forbs, the main functional group contributing to the observed long‐term decline in richness. Water supplementation also increased the total cover of native annual forbs, but only increased richness within nested subplots to which seeds were also added. We conclude that prolonged dry winters, by increasing seedling mortality and reducing growth of native forbs, may have diminished the seedbank and thus the recovery potential of diversity in this community. However, the wet winter and the watering treatment did cause recovery of the community mean values of a key functional trait (specific leaf area, an indicator of drought intolerance), suggesting that some aggregate community properties may be stabilized by functional redundancy among species.  相似文献   

4.
5.
    
Traditionally, geographical distribution of biodiversity is assumed to be codetermined by multiple factors, for example, temperature, precipitation, environmental heterogeneity, and biotic interactions. However, few studies have simultaneously compared the relative roles of these factors in shaping the mammal diversity patterns for different feeding groups, that is, herbivores, insectivores, and carnivores. In this study, we assessed the relations between mammal diversity and current climate (mean annual temperature and precipitation), altitudinal range as well as mammal's food diversity in Inner Mongolia. Our results showed that the species richness for the three feeding guilds of mammals consistently increased with their food diversity, that is, species richness of plants, insects, and rodents. Mammal diversity also significantly decreased with mean annual temperature and precipitation. Random Forest models indicated that climate and food diversity were always included in the combinations of variables most associated with mammal diversity. Our findings suggest that while climate is an important predictor of large scale distribution of mammal diversity, biotic interactions, that is, food diversity, could also play important roles.  相似文献   

6.
    
Human activity and climate change affect biodiversity and cause species range shifts, contractions, and expansions. Globally, human activities and climate change have emerged as persistent threats to biodiversity, leading to approximately 68% of the ~522 primate species being threatened with extinction. Here, we used habitat suitability models and integrated data on human population density, gross domestic product (GDP), road construction, the normalized difference vegetation index (NDVI), the location of protected areas (PAs), and climate change to predict potential changes in the distributional range and richness of 26 China's primate species. Our results indicate that both PAs and NDVI have a positive impact on primate distributions. With increasing anthropogenic pressure, species' ranges were restricted to areas of high vegetation cover and in PAs surrounded by buffer zones of 2.7–4.5 km and a core area of PAs at least 0.1–0.5 km from the closest edge of the PA. Areas with a GDP below the Chinese national average of 100,000 yuan were found to be ecologically vulnerable, and this had a negative impact on primate distributions. Changes in temperature and precipitation were also significant contributors to a reduction in the range of primate species. Under the expected influence of climate change over the next 30–50 years, we found that highly suitable habitat for primates will continue to decrease and species will be restricted to smaller and more peripheral parts of their current range. Areas of high primate diversity are expected to lose from 3 to 7 species. We recommend that immediate action be taken, including expanding China's National Park Program, the Ecological Conservation Redline Program, and the Natural Forest Protection Program, along with a stronger national policy promoting alternative/sustainable livelihoods for people in the local communities adjacent to primate ranges, to offset the detrimental effects of anthropogenic activities and climate change on primate survivorship.  相似文献   

7.
Mountain ecosystems will likely be affected by global warming during the 21st century, with substantial biodiversity loss predicted by species distribution models (SDMs). Depending on the geographic extent, elevation range, and spatial resolution of data used in making these models, different rates of habitat loss have been predicted, with associated risk of species extinction. Few coordinated across-scale comparisons have been made using data of different resolutions and geographic extents. Here, we assess whether climate change-induced habitat losses predicted at the European scale (10 × 10' grid cells) are also predicted from local-scale data and modeling (25 m × 25 m grid cells) in two regions of the Swiss Alps. We show that local-scale models predict persistence of suitable habitats in up to 100% of species that were predicted by a European-scale model to lose all their suitable habitats in the area. Proportion of habitat loss depends on climate change scenario and study area. We find good agreement between the mismatch in predictions between scales and the fine-grain elevation range within 10 × 10' cells. The greatest prediction discrepancy for alpine species occurs in the area with the largest nival zone. Our results suggest elevation range as the main driver for the observed prediction discrepancies. Local-scale projections may better reflect the possibility for species to track their climatic requirement toward higher elevations.  相似文献   

8.
郑智  龚大洁  张乾  赵海斌 《生态学杂志》2014,25(12):3390-3398
采用线性回归模型和方差分离方法,分析面积、气候、边界限制对白水江自然保护区植物物种垂直分布格局的相对作用和独立作用.结果表明:白水江自然保护区植物物种及不同类群的物种多样性随海拔的升高呈单峰分布格局,峰值分布偏向低海拔段.白水江自然保护区植物物种的垂直分布格局是由各种因素协同作用的结果.水分能量动态假设对白水江自然保护区植物物种多样性垂直格局的解释力最强,面积是影响物种多样性格局的第二重要因子.边界限制效应可作为对白水江自然保护区植物物种多样性垂直格局解释的补充机制.边界限制对不同种域的物种解释力存在较大差异,随着物种分布宽度的增加,边界限制的解释力逐渐增加.  相似文献   

9.

Aim

To demonstrate a new and more general model of the species–area relationship that builds on traditional models, but includes the provision that richness may vary independently of island area on relatively small islands (the small island effect).

Location

We analysed species–area patterns for a broad diversity of insular biotas from aquatic and terrestrial archipelagoes.

Methods

We used breakpoint or piecewise regression methods by adding an additional term (the breakpoint transformation) to traditional species–area models. The resultant, more general, species–area model has three readily interpretable, biologically relevant parameters: (1) the upper limit of the small island effect (SIE), (2) an estimate of richness for relatively small islands and (3) the slope of the species–area relationship (in semi‐log or log–log space) for relatively large islands.

Results

The SIE, albeit of varying magnitude depending on the biotas in question, appeared to be a relatively common feature of the data sets we studied. The upper limit of the SIE tended to be highest for species groups with relatively high resource requirements and low dispersal abilities, and for biotas of more isolated archipelagoes.

Main conclusions

The breakpoint species–area model can be used to test for the significance, and to explore patterns of variation in small island effects, and to estimate slopes of the species–area (semi‐log or log–log) relationship after adjusting for SIE. Moreover, the breakpoint species–area model can be expanded to investigate three fundamentally different realms of the species–area relationship: (1) small islands where species richness varies independent of area, but with idiosyncratic differences among islands and with catastrophic events such as hurricanes, (2) islands beyond the upper limit of SIE where richness varies in a more deterministic and predictable manner with island area and associated, ecological factors and (3) islands large enough to provide the internal geographical isolation (large rivers, mountains and other barriers within islands) necessary for in situ speciation.
  相似文献   

10.
    
Ecologists have historically quantified fundamental biodiversity patterns, including species-area relationships (SARs) and beta diversity, using observed species counts. However, imperfect detection may often bias derived community metrics and subsequent community models. Although several statistical methods claim to correct for imperfect detection, their performance in species-area and β-diversity research remains unproven. We examine inaccuracies in the estimation of SARs and β-diversity parameters that emerge from imperfect detection, and whether such errors can be mitigated using a non-parametric diversity estimator (iNEXT.3D) and Multi-Species Occupancy Models (MSOMs). We simulated 28,350 sampling regimes of 2835 fragmented communities, varying the mean and standard deviation of species detection probabilities, and the number of sampling repetitions. We then quantified the bias, accuracy, and precision of derived estimates of model coefficients for SARs and the effects of patch area on β-diversity (pairwise Sørensen similarity). Imperfect detection biased estimates of all evaluated parameters, particularly when mean detection probabilities were low, and there were few sampling repetitions. Observed counts consistently underestimated species richness and SAR z-values, and overestimated SAR c-values; iNEXT.3D and MSOMs only partially resolved these biases. iNEXT.3D provided the best estimates of SAR z-values, although MSOM estimates were generally comparable. All three methods accurately estimated pairwise Sørensen similarity in most circumstances, but only MSOMs provided unbiased estimates of the coefficients of models examining covariate effects on β-diversity. Even when using iNEXT.3D or MSOMs, imperfect detection consistently caused biases in SAR coefficient estimates, calling into question the robustness of previous SAR studies. Furthermore, the inability of observed counts and iNEXT.3D to estimate β-diversity model coefficients resulted from a systematic, area-related bias in Sørensen similarity estimates. Importantly, MSOMs corrected for these biases in β-diversity assessments, even in suboptimal scenarios. Nonetheless, as estimator performance consistently improved with increasing sampling repetitions, the importance of appropriate sampling effort cannot be understated.  相似文献   

11.
12.
    
Acidification has harmed freshwater ecosystems in Northern Europe since the early 1900s. Stricter regulations aimed at decreasing acidic emissions have improved surface-water chemistry since the late 1980s but the recovery of biotic communities has not been consistent. Generally, the recovery of flora and fauna has been documented only for a few lakes or regions and large-scale assessments of long-term dynamics of biotic communities due to improved water quality are still lacking. This study investigates a large biomonitoring dataset of pelagic and littoral crustacean zooplankton (Cladocera and Copepoda) from 142 acid-sensitive lakes in Norway spanning 24 years (1997–2020). The aims were to assess the changes in zooplankton communities through time, compare patterns of changes across lake types (defined based on calcium and humic content), and identify correlations between abiotic and biological variables. Our results indicate chemical and biological recovery after acidification, as shown by a general increase in pH, acid neutralizing capacity, changes in community composition and increases in the total number of species, number of acid-sensitive species and functional richness through time. However, the zooplankton responses differ across lake types. This indicates that the concentration of calcium (or alkalinity) and total organic carbon (or humic substances) are important factors for the recovery. Therefore, assessment methods and management tools should be adapted to the diverse lake types. Long-term monitoring of freshwater ecosystems is needed to fully comprehend the recovery dynamics of biotic communities from acidification.  相似文献   

13.
    
Forest ecosystems across western North America will likely see shifts in both tree species dominance and composition over the rest of this century in response to climate change. Our objective in this study was to identify which ecological regions might expect the greatest changes to occur. We used the process‐based growth model 3‐PG, to provide estimates of tree species responses to changes in environmental conditions and to evaluate the extent that species are resilient to shifts in climate over the rest of this century. We assessed the vulnerability of 20 tree species in western North America using the Canadian global circulation model under three different emission scenarios. We provided detailed projections of species shifts by including soil maps that account for the spatial variation in soil water availability and soil fertility as well as by utilizing annual climate projections of monthly changes in air temperature, precipitation, solar radiation, vapor pressure deficit and frost at a spatial resolution of one km. Projected suitable areas for tree species were compared to their current ranges based on observations at >40 000 field survey plots. Tree species were classified as vulnerable if environmental conditions projected in the future appear outside that of their current distribution ≥70% of the time. We added a migration constraint that limits species dispersal to <200 m yr?1 to provide more realistic projections on species distributions. Based on these combinations of constraints, we predicted the greatest changes in the distribution of dominant tree species to occur within the Northwest Forested Mountains and the highest number of tree species stressed will likely be in the North American Deserts. Projected climatic changes appear especially unfavorable for species in the subalpine zone, where major shifts in composition may lead to the emergence of new forest types.  相似文献   

14.
    
Several factors describe the broad pattern of diversity in plant species distribution. We explore these determinants of species richness in Western Himalayas using high‐resolution species data available for the area to energy, water, physiography and anthropogenic disturbance. The floral data involves 1279 species from 1178 spatial locations and 738 sample plots of a national database. We evaluated their correlation with 8‐environmental variables, selected on the basis of correlation coefficients and principal component loadings, using both linear (structural equation model) and nonlinear (generalised additive model) techniques. There were 645 genera and 176 families including 815 herbs, 213 shrubs, 190 trees, and 61 lianas. The nonlinear model explained the maximum deviance of 67.4% and showed the dominant contribution of climate on species richness with a 59% share. Energy variables (potential evapotranspiration and temperature seasonality) explained the deviance better than did water variables (aridity index and precipitation of the driest quarter). Temperature seasonality had the maximum impact on the species richness. The structural equation model confirmed the results of the nonlinear model but less efficiently. The mutual influences of the climatic variables were found to affect the predictions of the model significantly. To our knowledge, the 67.4% deviance found in the species richness pattern is one of the highest values reported in mountain studies. Broadly, climate described by water–energy dynamics provides the best explanation for the species richness pattern. Both modeling approaches supported the same conclusion that energy is the best predictor of species richness. The dry and cold conditions of the region account for the dominant contribution of energy on species richness.  相似文献   

15.
    
Arctic plant communities are altered by climate changes. The magnitude of these alterations depends on whether species distributions are determined by macroclimatic conditions, by factors related to local topography, or by biotic interactions. Our current understanding of the relative importance of these conditions is limited due to the scarcity of studies, especially in the High Arctic. We investigated variations in vascular plant community composition and species richness based on 288 plots distributed on three sites along a coast‐inland gradient in Northeast Greenland using a stratified random design. We used an information theoretic approach to determine whether variations in species richness were best explained by macroclimate, by factors related to local topography (including soil water) or by plant‐plant interactions. Latent variable models were used to explain patterns in plant community composition. Species richness was mainly determined by variations in soil water content, which explained 35% of the variation, and to a minor degree by other variables related to topography. Species richness was not directly related to macroclimate. Latent variable models showed that 23.0% of the variation in community composition was explained by variables related to topography, while distance to the inland ice explained an additional 6.4 %. This indicates that some species are associated with environmental conditions found in only some parts of the coast–inland gradient. Inclusion of macroclimatic variation increased the model's explanatory power by 4.2%. Our results suggest that the main impact of climate changes in the High Arctic will be mediated by their influence on local soil water conditions. Increasing temperatures are likely to cause higher evaporation rates and alter the distribution of late‐melting snow patches. This will have little impact on landscape‐scale diversity if plants are able to redistribute locally to remain in areas with sufficient soil water.  相似文献   

16.
    
Despite centuries of interest in species range limits, few studies have taken a whole community into consideration. Actually, multiple species may simultaneously respond to environmental changes, for example, global warming, leading a series of dynamical communities toward the advancing front. We investigated multiple species range expansions through the analysis of a two‐species dispersion model and simulations of multiple species assemblages regulated by neutral and fecundity–survival trade‐offs (FSTs), respectively, and found that species assemblages regulated by different mechanisms would initiate different expanding patterns in geographic ranges in response to environmental changes. The neutral model generally predicts a higher biodiversity near the core of an expanding range, and a lower community similarity compared with a FST model. Without considering the evolution of life history traits, an assortment of the reproduction ability happens at the advancing front under FSTs at the expense of a higher death rate or lower competitive ability. These results emphasize the importance of community assembly rules to the biodiversity maintenance of range expanding communities.  相似文献   

17.
Aims We present an analysis of grid‐based species‐richness data for European plants, mammals, birds, amphibians and reptiles, designed to test the proposition of Hawkins et al. (2003a ) that the single best factor describing richness variation switches from the water regime to the energy regime in the mid‐latitudes and that the ‘breakpoint’ is related to the physiological character of the taxa. We go on to develop subregional models showing the extent to which regional model fits vary as a function of the extent of the study system, and compare the relative performance of ‘water’, ‘energy’ and ‘water–energy’ models of richness for southern, northern and pan‐European models. Location Western Europe. Methods We use atlas data comprising species range data for 187 species of mammals, 445 species of breeding birds, 58 amphibians, 91 reptiles and 2362 plant species, inserted into a c. 50 × 50 km grid cell system. We used 11 modelled climate variables, averaged for the period 1961–90. Statistical analyses were carried out using generalized additive models (GAMs), with splines simplified to a maximum of four degrees of freedom, and we tested for spatial autocorrelation using Moran's I values obtained at 10 different distance intervals. We selected favoured models on the grounds of deviance explained combined with a simple parsimony criterion, such that we selected either: (1) the best two‐variable energy, water or water–energy model, or (2) a four‐variable water–energy model, where the latter improved on the best two‐variable model by a minimum of 5% deviance explained. Results Threshold energy values, at which richness shows a transition from an increasing to a decreasing function of annual solar radiation, were identified for all taxa apart from reptiles. We found conditional support for the switch from dominance of water variables (southern models) to energy variables (northern models). Our favoured models switched between ‘water’ and ‘energy’ for mammals, and between ‘energy’ and ‘water–energy’ for birds, depending on whether we used data of pan‐European extent, southern or northern subsets. Deviance explained in our favoured models varied from 15% (birds, southern Europe) to 72% (amphibians, northern Europe), i.e. ranging from very poor to good fits with the data. Comparison with previous work indicates that our models are generally consistent with (if sometimes weaker than) previous findings. Main conclusions Our models are incomplete representations of factors influencing macro‐scale richness patterns across Europe, taking no explicit account of, for example, topographic variation, human influences or long‐term climatic variation. However, with the exception of birds, for which only the northern model attains over one‐third deviance explained, the models show that climate can account for meaningful proportions of the deviance. We find general support for considering water and energy regimes together in modelling species richness, and for the proposition that water is more limiting in southern Europe and energy in the north. Our analyses demonstrate the sensitivity of model outcomes to the geographical location and extent of the study system, illustrating that simple curve‐fitting exercises like these, particularly if based on regions with the complex history and geography characteristic of Europe, are unlikely to provide the basis for global, predictive models. However, such exercises may be of value in detecting which aspects of water and energy regimes may be of most importance in refining independently generated global models for regional application.  相似文献   

18.
    
Climate change may drastically alter patterns of species distributions and richness, but predicting future species patterns in occurrence is challenging. Significant shifts in distributions have already been observed, and understanding these recent changes can improve our understanding of potential future changes. We assessed how past climate change affected potential breeding distributions for landbird species in the conterminous United States. We quantified the bioclimatic velocity of potential breeding distributions, that is, the pace and direction of change for each species’ suitable climate space over the past 60 years. We found that potential breeding distributions for landbirds have shifted substantially with an average velocity of 1.27 km yr?1, about double the pace of prior distribution shift estimates across terrestrial systems globally (0.61 km yr?1). The direction of shifts was not uniform. The majority of species’ distributions shifted west, northwest, and north. Multidirectional shifts suggest that changes in climate conditions beyond mean temperature were influencing distributional changes. Indeed, precipitation variables that were proxies for extreme conditions were important variables across all models. There were winners and losers in terms of the area of distributions; many species experienced contractions along west and east distribution edges, and expansions along northern distribution edges. Changes were also reflected in the potential species richness, with some regions potentially gaining species (Midwest, East) and other areas potentially losing species (Southwest). However, the degree to which changes in potential breeding distributions are manifested in actual species richness depends on landcover. Areas that have become increasingly suitable for breeding birds due to changing climate are often those attractive to humans for agriculture and development. This suggests that many areas might have supported more breeding bird species had the landscape not been altered. Our study illustrates that climate change is not only a future threat, but something birds are already experiencing.  相似文献   

19.
Potential changes in tree species richness and forest community types were evaluated for the eastern United States according to five scenarios of future climate change resulting from a doubling of atmospheric carbon dioxide (CO2). DISTRIB, an empirical model that uses a regression tree analysis approach, was used to generate suitable habitat, or potential future distributions, of 80 common tree species for each scenario. The model assumes that the vegetation and climate are in equilibrium with no barriers to species migration. Combinations of the individual species model outcomes allowed estimates of species richness (from among the 80 species) and forest type (from simple rules) for each of 2100 counties in the eastern United States. Average species richness across all counties may increase slightly with climatic change. This increase tends to be larger as the average temperature of the climate change scenario increases. Dramatic changes in the distribution of potential forest types were modeled. All five scenarios project the extirpation of the spruce–fir forest types from New England. Outputs from only the two least severe scenarios retain aspen–birch, and they are largely reduced. Maple–beech–birch also shows a large reduction in area under all scenarios. By contrast, oak–hickory and oak–pine types were modeled to increase by 34% and 290%, respectively, averaged over the five scenarios. Although many assumptions are made, these modeled outcomes substantially agree with a limited number of predictions from researchers using paleoecological data or other models. Received 12 May 2000; accepted 20 October 2000.  相似文献   

20.
    
In this study, we test for the key bioclimatic variables that significantly explain the current distribution of plant species richness in a southern African ecosystem as a preamble to predicting plant species richness under a changed climate. We used 54,000 records of georeferenced plant species data to calculate species richness and spatially interpolated climate data to derive nineteen bioclimatic variables. Next, we determined the key bioclimatic variables explaining variation in species richness across Zimbabwe using regression analysis. Our results show that two bioclimatic variables, that is, precipitation of the warmest quarter (R2 = 0.92, P < 0.001) and temperature of the warmest month (R2 = 0.67, P < 0.001) significantly explain variation in plant species richness. In addition, results of bioclimatic modelling using future climate change projections show a reduction in the current bio‐climatically suitable area that supports high plant species richness. However, in high‐altitude areas, plant richness is less sensitive to climate change while low‐altitude areas show high sensitivity. Our results have important implications to biodiversity conservation in areas sensitive to climate change; for example, high‐altitude areas are likely to continue being biodiversity hotspots, as such future conservation efforts should be concentrated in these areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号