首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Thiosulfate metabolism in Rhodopseudomonas palustris   总被引:1,自引:0,他引:1  
The cells of the purple nonsulfur bacterium Rhodopseudomonas palustris, Nakamura strain, are capable of oxidizing thiosulfate and sulfide both under the anaerobic conditions in the light and under the aerobic conditions in the dark. Regardless of the presence of thiosulfate in the medium, the cells contain thiosulfate reductase, rodanase, thiosulfate oxidase, and sulfite oxidase. However, the capability to oxidize thiosulfate and sulfide is induced in Rh. palustris after the cells have been incubated in the presence of thiosulfate for 2--4 hours. The process of induction is related to the synthesis of protein components. Decomposition of thiosulfate in Rh. palustris when its concentration in the medium is low (2--5 mM) is accompanied with the formation of an equimolar quantity of sulfate. When the concentration of thiosulfate is higher (10--20 mM), the products of its oxidation are tetrathionate and sulfate. Therefore, the metabolic pathway of thiosulfate in Rh. palustris depends on its concentration in the medium.  相似文献   

2.
Thermophilic obligately autotrophic H2-oxidizing bacteria from Icelandic hot springs were tested for growth on thiosulfate. Ten strains were tested and all grew on thiosulfate but not on sulfite or sulfur. The product of thiosulfate oxidation was sulfate. The growth rate on thiosulfate was slower (μ=0.12 h-1) than on H2 (μ=0.34 h-1). Washed cells which had been grown on thiosulfate could oxidize thiosulfate rapidly but H2-grown cells oxidized thiosulfate much more slowly and with about a 3 h lag time. The bacteria would not grow on agar medium under H2 but grew on agar medium containing thiosulfate.  相似文献   

3.
Abstract The colorless sulfur bacterium Thiobacillus thioparus T5, isolated from a marine microbial mat, was grown in continuous culture under conditions ranging from sulfide limitation to oxygen limitation. Under sulfide-limiting conditions, sulfide was virtually completely oxidized to sulfate. Under oxygen-limiting conditions, sulfide was partially oxidized to zerovalent sulfur (75%) and thiosulfate (17%). In addition, low concentrations of tetrathionate and polysulfide were detected. The finding of in vivo thiosulfate formation supports the discredited observations of thiosulfate formation in cell free extracts in the early sixties. In a microbial mat most sulfide oxidation was shown to take place under oxygen-limiting conditions. It is suggested that zerovalent sulfur formation by thiobacilli is a major process resulting in polysulfide accumulation. Implications for the competition between colorless sulfur bacteria and purple sulfur bacteria are discussed.  相似文献   

4.
The biomass yield of freshwater filamentous sulfur bacteria of the genus Beggiatoa, when grown lithoheterotrophically or mixotrophically, has been shown to increase 2 to 2.5 times under microaerobic conditions (0.12 mg/l oxygen) as compared to aerobic conditions (9 mg/l oxygen). The activity of the glyoxylate cycle key enzymes have been found to increase two to three times under microaerobic conditions (at an O2 concentration of 2 mg/l), and the activities of the sulfur metabolism enzymes increased three to five times (at an O2 concentration of 0.1-0.5 mg/l). It has also been found that, under microaerobic conditions, thiosulfate was almost completely oxidized to sulfate by the bacteria, without accumulation of intermediate metabolites. At the same time, a 2- to 15-fold decrease in the activities of the tricarboxylic acid cycle enzymes involved in the reduction of NAD and FAD was observed. Reorganization of the respiratory chain after changes in aeration and type of nutrition was also observed. It has been found that, in cells grown heterotrophically, the terminal part of the respiratory chain contained an aa3-type oxidase, whereas, during mixotrophic, lithoheterotrophic, and autotrophic growth, aa3-type oxidase synthesis was inhibited, and the synthesis of a cbb3-type oxidase, which is induced under microaerobic conditions, was activated. The gene of the catalytic subunit CcoN of the cbb3-type oxidase was sequenced and proved to be highly homologous to the corresponding genes of other proteobacteria.  相似文献   

5.
All of fourteen sulfate-reducing bacteria tested were able to carry out aerobic respiration with at least one of the following electron donors: H2, lactate, pyruvate, formate, acetate, butyrate, ethanol, sulfide, thiosulfate, sulfite. Generally, we did not obtain growth with O2 as electron acceptor. The bacteria were microaerophilic, since the respiration rates increased with decreasing O2 concentrations or ceased after repeated O2 additions. The amounts of O2 consumed indicated that the organic substrates were oxidized incompletely to acetate; only Desulfobacter postgatei oxidized acetate with O2 completely to CO2. Many of the strains oxidized sulfite (completely to sulfate) or sulfide (incompletely, except Desulfobulbus propionicus); thiosulfate was oxidized only by strains of Desulfovibrio desulfuricans; trithionate and tetrathionate were not oxidized by any of the strains. With Desulfovibrio desulfuricans CSN and Desulfobulbus propionicus the oxidation of inorganic sulfur compounds was characterized in detail. D. desulfuricans formed sulfate during oxidation of sulfite, thiosulfate or elemental sulfur prepared from polysulfide. D. propionicus oxidized sulfite and sulfide to sulfate, and elemental sulfur mainly to thiosulfate. A novel pathway that couples the sulfur and nitrogen cycles was detected: D. desulfuricans and (only with nitrite) D. propionicus were able to completely oxidize sulfide coupled to the reduction of nitrate or nitrite to ammonia. Cell-free extracts of both strains did not oxidize sulfide or thiosulfate, but formed ATP during oxidation of sulfite (37 nmol per 100 nmol sulfite). This, and the effects of AMP, pyrophosphate and molybdate on sulfite oxidation, suggested that sulfate is formed via the (reversed) sulfate activation pathway (involving APS reductase and ATP sulfurylase). Thiosulfate oxidation with O2 probably required a reductive first step, since it was obtained only with energized intact cells.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - APS adenosine phosphosulfate or adenylyl sulfate  相似文献   

6.
The freshwater filamentous bacterium Beggiatoa D-402 was shown to grow lithoautotrophically in a homogeneous culture under microoxic conditions only, the growth yield being the highest at 0.1 mg O(2) l(-1). High activities of the Calvin cycle key enzymes and of the dissimilatory path thiosulfate oxidation enzymes were found in the bacterial cells. The rate of CO(2) fixation above 112 nmol min(-1) (mg protein)(-1), an about 90% increase in the protein carbon at the expense of CO(2) carbon and an increase in the molar yield up to 12 mg dry weight (mmol oxidized thiosulfate)(-1) indicate the bacterial growth was autotrophic. Thiosulfate was oxidized by the strain almost completely into sulfate. The metabolically useful energy was conserved by oxidative phosphorylation that was coupled to oxidation of sulfur compounds. The bacterial membranes were found to contain CO-binding cytochromes b and two cytochromes c with M(r) 23 and 26 kDa, the terminal part of the respiratory chain containing presumably a cbb(3)-type oxidase. A cytochrome c with M(r) 12 kDa was detected in the soluble fraction.  相似文献   

7.
Abstract A thermophilic rod (strain SEBR 5268), isolated from an oil-producing well, was identified as a Thermoanaerobacter strain that was phenotypically related to T. finnii . Both SEBR 5268 and T. finnii oxidized H2 by reducing thiosulfate to sulfide using yeast extract as growth substrate. H2 oxidation in the presence of thiosulfate was significant at the end of the exponential growth of SEBR 5268 and was maintained during the lysis phase. In the absence of thiosulfate, H2 was inhibitory for both strains. The role of H2 consumption by these bacteria is discussed with regard to their metabolism on organic compounds.  相似文献   

8.
The technique of DNA--DNA hybridization was used to study relations offween purple nonsulfur bacteria (the family Rhodospirillaceae). The level of homologies with Rhodopseudomonas sphaeroides 8259 was nearly the same for different species (8-17%) in the genus Rhodopseudomonas under the conditions optimal for hybridization. The same level of homologies was found for the DNA of Rhodospirillum rubrum, a species belonging to another genus of purple nonsulfur bacteria (13%). Rhodomicrobium vannielli was most remote from R. sphaeroides 8259 (3%). Similar results were obtained under other conditions of hybridization. The intraspecial heterogeneity of R. sphaeroides was studied in this work. The thermal stability of hybrid duplexes was analysed. The results are indicative of a considerable divergence of different R. sphaeroides strains (delta T50 = 2.1-11.6).  相似文献   

9.
A variety of autotrophic, sulfur- and hydrogen-oxidizing thermophilic bacteria were isolated from thermogenic composts at temperatures of 60–80° C. All were penicillin G sensitive, which proves that they belong to the Bacteria domain. The obligately autotrophic, non-spore-forming strains were gram-negative rods growing at 60–80°C, with an optimum at 70–75°C, but only under microaerophilic conditions (5 kPa oxygen). These strains had similar DNA G+C content (34.7–37.6 mol%) and showed a high DNA:DNA homology (70–87%) with Hydrogenobacter strains isolated from geothermal areas. The facultatively autotrophic strains isolated from hot composts were gram-variable rods that formed spherical and terminal endospores, except for one strain. The strains grew at 55–75° C, with an optimum at 65–70° C. These bacteria were able to grow heterotrophically, or autotrophically with hydrogen; however, they oxidized thiosulfate under mixotrophic growth conditions (e.g. pyruvate or hydrogen plus thiosulfate). These strains had similar DNA G+C content (60–64 mol%) to and high DNA:DNA homology (> 75%) with the reference strain of Bacillus schlegelii. This is the first report of thermogenic composts as habitats of thermophilic sulfur- and hydrogen-oxidizing bacteria, which to date have been known only from geothermal manifestations. This contrasts with the generally held belief that thermogenic composts at temperatures above 60° C support only a very low diversity of obligatory heterotrophic thermophiles related to Bacillus stearothermophilus. Received: 20 July 1995 / Accepted: 25 September 1995  相似文献   

10.
The freshwater colorless sulfur bacterium Beggiatoa "leptomitiformis" D-402 was shown to be capable of lithoautotrophic growth in a batch culture under microaerobic conditions at O2 concentrations in the medium of no higher than 0.5 mg/l. The cell yield was maximum at a dissolved oxygen concentration of 0.15 mg/l. A high activity level of key enzymes of the Calvin cycle and of enzymes involved in dissimilatory oxidation of thiosulfate was recorded in the cells. The high rate of CO2 assimilation (112-139 nmol/(min mg protein)) and the cell yield (12 mg dry cells/mmol thiosulfate oxidized), 91-92% of which was accounted for by CO2 carbon, were close to those typical of autotrophic bacteria. Thiosulfate was oxidized almost completely to sulfate, and the fraction of elemental sulfur in the final products did not exceed 0.2-1.7% of the thiosulfate sulfur. The cell membrane fraction contained cytochromes (b + o) and two cytochromes c with M(r) of 23 and 26 kDa; the soluble fraction contained cytochrome c with M(r) of 12 kDa.  相似文献   

11.
Antigenic affinities of the root-nodule bacteria of legumes   总被引:9,自引:0,他引:9  
Antisera prepared against 58 strains of root-nodule bacteria and against 16 strains belonging to the genusAgrobacterium were tested against 113 strains ofRhizobium, 20 strains ofAgrobacterium and 20 strains of other, possibly related, bacteria.Three serologically distinct groups of root-nodule bacteria were noted: (1)Rh. trifolii, Rh. leguminosarum andRh. phaseoli; (2)Rh. lupini, Rh. japonicum andRhizobium spp.; (3)Rh. meliloti. Strains ofRh. meliloti showed serological affinities withA. radiobacter andA. tumefaciens. All groups showed wider flagellar than somatic agglutination, and many different serotypes were apparent.The groupings obtained from this investigation are compared with those derived from other taxonomic studies, and the use of serological methods in rhizobial classification is discussed.  相似文献   

12.
Three strains (2ac9, 3ac10 and 4ac11) of oval to rodshaped, Gram negative, nonsporing sulfate-reducing bacteria were isolated from brackish water and marine mud samples with acetate as sole electron donor. All three strains grew in simple defined media supplemented with biotin and 4-aminobenzoic acid as growth factors. Acetate was the only electron donor utilized by strain 2ac9, while the other two strains used in addition ethanol and/or lactate. Sulfate served as electron acceptor and was reduced to H2S. Complete oxidation of acetate to CO2 was shown by stoichiometric measurements with strain 2ac9 in batch cultures using sulfate, sulfite or thiosulfate as electron acceptors. With sulfate an average growth yield of 4.8 g cell dry weight was obtained per mol of acetate oxidized; with sulfite or thiosulfate the growth yield on acetate was about twice as high. None of the strains contained desulfoviridin. In strain 2ac9 cytochromes of the b- and c-type were detected. Strain 2ac9 is described as type strain of the new species and genus, Desulfobacter postgatei.  相似文献   

13.
The biomass yield of freshwater filamentous sulfur bacteria of the genus Beggiatoa, when grown lithoheterotrophically or mixotrophically, has been shown to increase 2 to 2.5 times under microaerobic conditions (0.12 mg/l oxygen) as compared to aerobic conditions (9 mg/l oxygen). The activity of the glyoxylate cycle key enzymes have been found to increase two to three times under microaerobic conditions (at an O2 concentration of 2 mg/l), and the activities of the sulfur metabolism enzymes increased three to five times (at an O2 concentration of 0.1–0.5 mg/l). It has also been found that, under microaerobic conditions, thiosulfate was almost completely oxidized to sulfate by the bacteria, without accumulation of intermediate metabolites. At the same time, a 2- to 15-fold decrease in the activities of the tricarboxylic acid cycle enzymes involved in the reduction of NAD and FAD was observed. Reorganization of the respiratory chain after changes in aeration and type of nutrition was also observed. It has been found that, in cells grown heterotrophically, the terminal part of the respiratory chain contained an aa 3-type oxidase, whereas, during mixotrophic, lithoheterotrophic, and autotrophic growth, aa 3-type oxidase synthesis was inhibited, and the synthesis of a cbb 3-type oxidase, which is induced under microaerobic conditions, was activated. The gene of the catalytic subunit CcoN of the cbb 3-type oxidase was sequenced and proved to be highly homologous to the corresponding genes of other proteobacteria.__________Translated from Mikrobiologiya, Vol. 74, No. 4, 2005, pp. 452–459.Original Russian Text Copyright © 2005 by Muntyan, Grabovich, Patritskaya, Dubinina.  相似文献   

14.
From various oxic or anoxic habitats several strains of bacteria were isolated which in the absence of molecular oxygen oxidized phenol to CO2 with nitrate as the terminal electron acceptor. All strains grew in defined mineral salts medium; two of them were further characterized. The bacteria were facultatively anaerobic Gramnegative rods; metabolism was strictly oxidative with molecular oxygen, nitrate, or nitrite as electron acceptor. The isolates were tentatively identified as pseudomonads. Besides phenol many other benzene derivatives like cresols or aromatic acids were anaerobically oxidized in the presence of nitrate. While benzoate or 4-hydroxybenzoate was degraded both anaerobically and aerobically, phenol was oxidized under anaerobic conditions only. Reduced alicyclic compounds were not degraded. Preliminary evidence is presented that the first reaction in anaerobic phenol oxidation is phenol carboxylation to 4-hydroxybenzoate.  相似文献   

15.
The capacity for chemoautotrophic, mixotrophic and organotrophic growth in the dark was tested with 45 strains of 17 species (11 genera) of the Chromatiaceae. The auxanographic deep agar shake culture method was used; the gas phase contained 5% O2 and 1% CO2 in N2. All strains tested of Chromatium vinosum, C. minus, C. violascens, C. gracile, Thiocystis violacea, Amoebobacter roseus, Thiocapsa roseopersicina gave positive growth responses under chemoautotrophic and mixotrophic conditions (extra carbon source acetate); one strain of Thiocapsa roseopersicina grew also organotrophically on acetate alone. No growth was obtained with the remaining 17 strains of ten species. None of the five type species (three genera) of the Chlorobiaceae grew under chemotrophic conditions. With Thiocystis violacea 2311 a growth yield of 11.3g dry weight per mol thiosulfate consumed was obtained under chemoautotrophic conditions; under mixotrophic conditions with acetate the yield increased to 69g dry weight per mol thiosulfate consumed. With Thiocystis violacea 2311 maximal specific respiration rates were obtained with thiosulfate as electron donor irrespective of the presence or absence of sulfur globules in the cells; organic substrates served as carbon sources only and did not support respiration. With Chromatium vinosum D utilization of thiosulfate was not constitutive; maximal respiration rates on thiosulfate were obtained only with thiosulfate grown cells containing sulfur globules. Respiration rates were further increased by malate, fumarate or propionate; these substrates also served as sole electron donors for respiration. Acetate and pyruvate were used as carbon sources only. The ecological significance of the chemotrophic metabolism is discussed.  相似文献   

16.
Thiosulfate oxidation and mixotrophic growth with succinate or methanol plus thiosulfate was examined in nutrient-limited mixotrophic condition for Methylobacterium oryzae CBMB20, which was recently characterized and reported as a novel species isolated from rice. Methylobacterium oryzae was able to utilize thiosulfate in the presence of sulfate. Thiosulfate oxidation increased the protein yield by 25% in mixotrophic medium containing 18.5 mmol.L-1 of sodium succinate and 20 mmol.L-1 of sodium thiosulfate on day 5. The respirometric study revealed that thiosulfate was the most preferable reduced inorganic sulfur source, followed by sulfur and sulfite. Thiosulfate was predominantly oxidized to sulfate and intermediate products of thiosulfate oxidation, such as tetrathionate, trithionate, polythionate, and sulfur, were not detected in spent medium. It indicated that bacterium use the non-S4 intermediate sulfur oxidation pathway for thiosulfate oxidation. Thiosulfate oxidation enzymes, such as rhodanese and sulfite oxidase activities appeared to be constitutively expressed, but activity increased during growth on thiosulfate. No thiosulfate oxidase (tetrathionate synthase) activity was detected.  相似文献   

17.
Seventeen strains of filamentous sulfur bacteria were isolated in axenic culture from activated sludge mixed liquor samples and sulfide-gradient enrichment cultures. Isolation procedures involved plating a concentrated inoculum of washed filaments onto media containing sulfide or thiosulfate. The isolates were identified as Thiothrix spp., Beggiatoa spp., and an organism of uncertain taxonomic status, designated type 021N. All bacteria were gram negative, reduced nitrate, and formed long, multicellular trichomes with internal reserves of sulfur, volutin, and sudanophilic material. Thiothrix spp. formed rosettes and gonidia, and four of six strains were ensheathed. Type 021N organisms utilized glucose, lacked a sheath, and differed from Thiothrix spp. in several aspects of cellular and cultural morphology. Beggiatoa spp. lacked catalase and oxidase, and filaments were motile. Biochemical and physiological characterization of the isolates revealed important distinguishing features between the three groups of bacteria. Strain differences were most evident among the Thiothrix cultures. A comparison of the filamentous sulfur bacteria with freshwater strains of Leucothrix was made also.  相似文献   

18.
Seventeen strains of filamentous sulfur bacteria were isolated in axenic culture from activated sludge mixed liquor samples and sulfide-gradient enrichment cultures. Isolation procedures involved plating a concentrated inoculum of washed filaments onto media containing sulfide or thiosulfate. The isolates were identified as Thiothrix spp., Beggiatoa spp., and an organism of uncertain taxonomic status, designated type 021N. All bacteria were gram negative, reduced nitrate, and formed long, multicellular trichomes with internal reserves of sulfur, volutin, and sudanophilic material. Thiothrix spp. formed rosettes and gonidia, and four of six strains were ensheathed. Type 021N organisms utilized glucose, lacked a sheath, and differed from Thiothrix spp. in several aspects of cellular and cultural morphology. Beggiatoa spp. lacked catalase and oxidase, and filaments were motile. Biochemical and physiological characterization of the isolates revealed important distinguishing features between the three groups of bacteria. Strain differences were most evident among the Thiothrix cultures. A comparison of the filamentous sulfur bacteria with freshwater strains of Leucothrix was made also.  相似文献   

19.
Distribution of membrane-bound monoamine oxidase in bacteria.   总被引:6,自引:1,他引:5       下载免费PDF全文
Y Murooka  N Doi    T Harada 《Applied microbiology》1979,38(4):565-569
The distribution of membrane-bound monoamine oxidase in 30 strains of various bacteria was studied. Monoamine oxidase was determined by using an ammonia-selective electrode; analyses were sensitive and easy to perform. The enzyme was found in some strains of the family Enterobacteriaceae, such as Klebsiella, Enterobacter, Escherichia, Salmonella, Serratia, and Proteus. Among strains of other families of bacteria tested, only Pseudomonas aeruginosa IFO 3901, Micrococcus luteus IFO 12708, and Brevibacterium ammoniagenes IAM 1641 had monoamine oxidase activity. In all of these bacteria except B. ammoniagenes, monoamine oxidase was induced by tyramine and was highly specific for tyramine, octopamine, dopamine, and norepinephrine. The enzyme in two strains oxidized histamine or benzylamine. Correlations between the distributions of membrane-bound monoamine oxidase and arylsulfatase synthesized in the presence of tyramine were discussed.  相似文献   

20.
The distribution of membrane-bound monoamine oxidase in 30 strains of various bacteria was studied. Monoamine oxidase was determined by using an ammonia-selective electrode; analyses were sensitive and easy to perform. The enzyme was found in some strains of the family Enterobacteriaceae, such as Klebsiella, Enterobacter, Escherichia, Salmonella, Serratia, and Proteus. Among strains of other families of bacteria tested, only Pseudomonas aeruginosa IFO 3901, Micrococcus luteus IFO 12708, and Brevibacterium ammoniagenes IAM 1641 had monoamine oxidase activity. In all of these bacteria except B. ammoniagenes, monoamine oxidase was induced by tyramine and was highly specific for tyramine, octopamine, dopamine, and norepinephrine. The enzyme in two strains oxidized histamine or benzylamine. Correlations between the distributions of membrane-bound monoamine oxidase and arylsulfatase synthesized in the presence of tyramine were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号