首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a method to observe the motions and configurations of large DNA molecules undergoing capillary electrophoresis (CE). A simple device to perform CE horizontally under microscopic observation is designed and images of single DNA molecules inside the capillary are obtained using an epi-fluorescence microscope. DNA molecules moved towards the negative electrode when an electric field was applied. The mobilities of three types of DNA (T4 and lambda bacteriophage DNA and PBR322 plasmid DNA) were measured at different electric field strength. The mobility vs. electric field strength curves of these three large DNAs showed that the mobility remained constant at high electric field strength (200-600 Volt/cm) and increased significantly at low electric field strength (less than or equal to 50 Volt/cm.). The apparent mobilities of the large DNA molecules were independent of molecular weight. At electric field strengths greater than or equal to 400 Volt/cm., big aggregates (snowballs) of DNA molecules formed and moved upstream towards the positive electrode. When the field was turned off, the aggregates dissociated into a cloud of single DNA molecules, and diffused into the solution.  相似文献   

2.
Excellent resolution of chromosomal DNA molecules from Saccharomyces cerevisiae, Candida albicans and Schizosaccharomyces pombe has been obtained using alternating contour-clamped homogeneous electric field (CHEF) gel electrophoresis. The largest of these molecules is greater than 5 Mb in size and is resolved after 130 hours in a 0.6% agarose gel at a field strength of 1.3 V/cm and a switching interval of 1 hour. Separation of concatamers of phage lambda DNA reveals four regions of resolution in alternating CHEF gel electrophoresis. There are two regions of good resolution in which mobility approximates a linear function of molecular weight. These are separated by a region of lower resolution and bounded at high molecular weights by a region of little or no resolution. The four regions are of practical and possibly theoretical importance.  相似文献   

3.
Effects of nonlinear dependence drift velocity of (double-stranded) DNA vs. electric field strength were investigated. In comparatively weak fields, the molecular drift velocity is proportional to the external electric field, while in strong fields there is additional nonlinear component. This effect offers possibilities to manipulate the total drift velocity at will-the macromolecules of different size can be made to move in opposite directions in pulsed field gel electrophoresis.A new approach for focusing DNA molecules based on nonlinear electrophoresis and geometric trapping in electric fields is proposed. The focusing is carried out in an alternating nonuniform electric field, created by using a wedge gel with hyperbolic boundaries. It is shown that the fractions separated in such wedge retain their rectilinear shape.Gel electrophoresis experiments supported the possibility of a pronounced nonlinear focusing of DNA molecules. This nonlinear separation technique presents encouraging prospects for micromanipulating systems and also for preparative isolation of long DNA fragments and development of new separation methods for bacterial fingerprinting.  相似文献   

4.
Structural DNA nanotechnology, in which Watson-Crick base pairing drives the formation of self-assembling nanostructures, has rapidly expanded in complexity and functionality since its inception in 1981. DNA nanostructures can now be made in arbitrary three-dimensional shapes and used to scaffold many other functional molecules such as proteins, metallic nanoparticles, polymers, fluorescent dyes and small molecules. In parallel, the field of dynamic DNA nanotechnology has built DNA circuits, motors and switches. More recently, these two areas have begun to merge—to produce switchable DNA nanostructures, which change state in response to their environment. In this review, we summarise switchable DNA nanostructures into two major classes based on response type: molecular actuation triggered by local chemical changes such as pH or concentration and external actuation driven by light, electric or magnetic fields. While molecular actuation has been well explored, external actuation of DNA nanostructures is a relatively new area that allows for the remote control of nanoscale devices. We discuss recent applications for DNA nanostructures where switching is used to perform specific functions—such as opening a capsule to deliver a molecular payload to a target cell. We then discuss challenges and future directions towards achieving synthetic nanomachines with complexity on the level of the protein machinery in living cells.  相似文献   

5.
We demonstrate a novel method for stretching a long DNA molecule in agarose gel with alternating current (AC) electric fields. The molecular motion of a long DNA (T4 DNA; 165.6 kb) in agarose gel was studied using fluorescence microscopy. The effects of a wide range of field frequencies, field strengths, and gel concentrations were investigated. Stretching was only observed in the AC field when a frequency of ∼10 Hz was used. The maximal length of the stretched DNA had the longest value when a field strength of 200 to 400 V/cm was used. Stretching was not sensitive to a range of agarose gel concentrations from 0.5 to 3%. Together, these experiments indicate that the optimal conditions for stretching long DNA in an AC electric field are a frequency of 10 Hz with a field strength of 200 V/cm and a gel concentration of 1% agarose. Using these conditions, we were able to successfully stretch Saccharomyces cerevisiae chromosomal DNA molecules (225-2,200 kb). These results may aid in the development of a novel method to stretch much longer DNA, such as human chromosomal DNA, and may contribute to the analysis of a single chromosomal DNA from a single cell.  相似文献   

6.
F Sor 《Nucleic acids research》1988,16(11):4853-4863
The introduction of Pulsed Field Gel Electrophoresis techniques, which allow the separation of DNA molecules of molecular weights as high as chromosomes of lower eukaryotes, has given a powerful tool to geneticists. The resolution expected from these techniques is dependent on numerous parameters, among them pulse time and field strength. A given set of these parameters allows only a limited range of molecular weights to be resolved. To allow the separation of a broader molecular weight range on a single gel, we designed a computer program, driving a simple switching device, to take care of switching electrodes and power supplies in OFAGE migrations. This program has been designed to be used with any technique calling for periodic switching or inversion of the electric field, and/or variation of the electric field applied during electrophoresis. As an example, we show the results obtained with yeast genera in which chromosome sizes range from 260 to 9,000 kilobase pairs.  相似文献   

7.
The effect of avidin-biotin interactions in several detection systems for the non-radioactive in situ hybridization (ISH) technique was studied in a model system using a transitional cell carcinoma line and a biotinylated DNA probe. We performed fluorescence ISH to unravel the individual steps in a sensitive and frequently used amplification method which makes use of the alternating cytochemical detection layers of fluorescein isothiocyanate-conjugated avidin (AvFITC) and biotinylated goat anti-avidin (BioGAA) antibodies to detect the hybridized and biotinylated probe. Our experiments revealed that BioGAA antibodies bind with their antigen binding sites and not with their biotin moieties to avidin molecules that have already interacted with the DNA probe. The probable working mechanism of this amplification method is presented in a model. Furthermore, we used a peroxidase staining technique to compare with each other the sensitivity of several other detection systems in which avidin-biotin interactions play an important role, e.g., the avidin-biotinylated peroxidase complex (ABC) system. The experiments show that avidin molecules can not be efficiently used to interconnect two biotinylated molecular layers, since their introduction leads to firmly closed cytochemical networks. Such a closed network is already formed between the hybridized and biotinylated DNA probe and a first detection layer of avidin molecules, as appears from the finding that biotinylated molecules could hardly be coupled to these avidin molecules in a following detection layer. Therefore, the results presented here provide us with new insight into the molecular basis of cytochemical network formation. This will enable us to choose the proper procedures for increasing the sensitivity of ISH detection systems.  相似文献   

8.
A polymer (PDMS: poly(dimethylsiloxane)) microchip for capillary gel electrophoresis that can separate different sizes of DNA molecules in a small experimental scale is presented. This microchip can be easily produced by a simple PDMS molding method against a microfabricated master without the use of elaborate bonding processes. This PDMS microchip could be used as a single use device unlike conventional microchips made of glass, quartz or silicon. The capillary channel on the chip was partially filled with agarose gel that can enhance separation resolution of different sizes of DNA molecules and can shorten the channel length required for the separation of the sample compared to capillary electrophoresis in free-flow or polymer solution format. We discuss the optimal conditions for the gel preparation that could be used in the microchannel. DNA molecules were successfully driven by an electric field and separated to form bands in the range of 100 bp to 1 kbp in a 2.0% agarose-filled microchannel with 8 mm of effective separation length.  相似文献   

9.
A device for separating large DNA molecules by pulsed field electrophoresis is described. Based on the principles of contour-clamped homogeneous electric fields (CHEF), it uses feedback to clamp voltages in a square electrode array, which is compact and inexpensive to construct, adaptable to computer control, and reorients the electric field by arbitrary angles. To illustrate its capabilities, pulsed fields with reorientation angles ranging from 90 to 140 degrees were used to separate DNAs of 4.7 and 5.7 megabases by up to four band-widths in 20 h. The combination of accessible technology and complete control of the electric field should facilitate the search for ways to resolve even larger DNA.  相似文献   

10.
We present modern conceptions concerning movement of biopolymer molecules in a gel under the action of static and pulsed electric fields, and we basically analyse some mostly used techniques of pulsed electrophoresis and the results yielded by using them. Pulsed procedures are shown to essentially widen the possibilities of analytical electrophoresis and electrophoretic transblotting are elaborated. Cameras and buffer systems used are the same as in classical methods involving the constant electric field. Promising results were collected while using sine-mode voltage in the constant and pulsed variants of electrophoresis. It is stated that the exceptionally wide application of pulsed methods in laboratory practice requires development of adequate theoretical conceptions concerning the movement of linear and globular polymers in gel under alternating field. In this connection the investigation of potentials of pulsed electrophoresis with inversions of field direction as the most simple and universal process of DNA division in a wide range of molecular masses and the use in electrophoretic techniques of sine-mode voltage obtained directly from the industrial circuit are most significant.  相似文献   

11.
N C Stellwagen 《Biochemistry》1988,27(17):6417-6424
When linear or supercoiled DNA molecules are imbedded in agarose gels and subjected to electric fields, they become oriented in the gel matrix and give rise to an electric birefringence signal. The sign of the birefringence is negative, indicating that the DNA molecules are oriented parallel to the electric field lines. If the DNA molecules are larger than about 1.5 kilobase pairs, a delay is observed before the birefringence signal appears. This time lag, which is roughly independent of DNA molecular weight, decreases with increasing electric field strength. The field-free decay of the birefringence is much slower for the DNA molecules imbedded in agarose gels than observed in free solution, indicating that orientation in the gel is accompanied by stretching. Both linear and supercoiled molecules become stretched, although the apparent change in conformation is much less pronounced for supercoiled molecules. When the electric field is rapidly reversed in polarity, very little change in the birefringence signal is observed for linear or supercoiled DNAs if the equilibrium orientation (i.e., birefringence) had been reached before field reversal. Apparently, completely stretched, oriented DNA molecules are able to reverse their direction of migration with little or no loss of orientation. If the steady-state birefringence had not been reached before the field reversal, complicated orientation patterns are observed after field reversal. Very large, partially stretched DNA molecules exhibit a rapid decrease in orientation at field reversal. The rate of decrease of the birefringence signal in the reversing field is faster than the field-free decay of the birefringence and is approximately equal to the rate of orientation in the field (after the lag period).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Pulsed-field capillary electrophoresis represents a new tool for rapid and highly efficient separations of large biopolymers. The method has been utilized here to study dependencies of the electrophoretic mobility upon the frequency and pulse shape of applied voltage for large, double-stranded DNA molecules (5-100 kb) migrating in neutral polymer solutions. Two different shapes of alternating electric field (sine- and square-wave impulses) were examined with the frequency values ranging from 1 to 30 Hz. The linear dependence between duration of the forward pulse (at which the DNA molecule experiences a minimum mobility) and the product N.In(N) (where N is the number of base pairs) was experienced in field-inversion gel electrophoresis, while exponential dependence was found with the sinusoidal electric field. The mobility minima were lower in field-inversion electrophoresis than with the biased sinusoidal-field technique. The DNA (5 kb concatamers) was adequately separated using a ramp of frequency in the square-wave electric field, in approximately 1 h. The migration order of DNA fragments was referenced through adding a monodisperse DNA (48.5 kb) into the sample. The band inversion phenomena were not observed under any experimental conditions used in this work.  相似文献   

13.
The analysis and fractionation of large DNA molecules plays a key role in many genome projects. The standard method, pulsed-field gel electrophoresis (PFGE), is slow, with running times ranging from 10 hours to more than 200 hours. In this report, we describe a thumbnail-sized device that sorts large DNA fragments (61-209 kilobases (kb)) in 15 seconds, with a resolution of approximately 13%. An array of micron-scale posts serves as the sieving matrix, and integrated microfluidic channels spatially shape the electric fields over the matrix. Asymmetric pulsed fields are applied for continuous-flow operation, which sorts DNA molecules in different directions according to their molecular masses, much as a prism deflects light of different wavelengths at different angles. We demonstrate the robustness of the device by using it to separate large DNA inserts prepared from bacterial artificial chromosomes, a widely used DNA source for most genomics projects.  相似文献   

14.
Electro-conductive anisotropy of DNA solution caused by the molecular orientation in the external electric field was investigated. The dependence of a relative change of the conductivity of aqueous-salt DNA solution on the electric field in the amplitude range 0-700 V/cm and in the frequency range 100 Hz-10 kHz was studied. It was pointed out that the field thermal effect is an overcoming factor when the orientation of DNA molecules is investigated by field-free relaxation.  相似文献   

15.
An electrophoretic karyotype of Neurospora crassa.   总被引:41,自引:5,他引:36       下载免费PDF全文
A molecular karyotype of Neurospora crassa was obtained by using an alternating-field gel electrophoresis system which employs contour-clamped homogeneous electric fields. The migration of all seven N. crassa chromosomal DNAs was defined, and five of the seven molecules were separated from one another. The estimated sizes of these molecules, based on their migration relative to Schizosaccharomyces pombe chromosomal DNA molecules, are 4 to 12.6 megabases. The seven linkage groups were correlated with specific chromosomal DNA bands by hybridizing transfers of contour-clamped homogeneous electric field gels with radioactive probes specific to each linkage group. The mobilities of minichromosomal DNAs generated from translocation strains were also examined. The methods used for preparation of chromosomal DNA molecules and the conditions for their separation should be applicable to other filamentous fungi.  相似文献   

16.
Gel electrophoresis allows one to separate knotted DNA (nicked circular) of equal length according to the knot type. At low electric fields, complex knots, being more compact, drift faster than simpler knots. Recent experiments have shown that the drift velocity dependence on the knot type is inverted when changing from low to high electric fields. We present a computer simulation on a lattice of a closed, knotted, charged DNA chain drifting in an external electric field in a topologically restricted medium. Using a Monte Carlo algorithm, the dependence of the electrophoretic migration of the DNA molecules on the knot type and on the electric field intensity is investigated. The results are in qualitative and quantitative agreement with electrophoretic experiments done under conditions of low and high electric fields.  相似文献   

17.
We have used the interface between a nanochannel and a microchannel as a tool for applying controlled forces on a DNA molecule. A molecule, with a radius of gyration larger than the nanochannel width, that straddles such an interface is subject to an essentially constant entropic force, which can be balanced against other forces such as the electrophoretic force from an applied electric field. By controlling the applied field we can position the molecule as desired and observe the conformation of the molecule as it stretches, relaxes, and recoils from the nanochannel. We quantify and present models for the molecular motion in response to the entropic, electrophoretic, and frictional forces acting on it. By determining the magnitude of the drag coefficients for DNA molecules in the nanostructure, we are able to estimate the confinement-induced recoil force. Finally, we demonstrate that we can use a controlled applied field and the entropic interfacial forces to unfold molecules, which can then be manipulated and positioned in their simple extended morphology.  相似文献   

18.
The electric field strength gradients generated in isotachophoresis (ITP) may be used for the separation of biomolecules. Poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (polyAMPS) polymers of a uniform distribution of molecular mass were synthesized and used as novel spacers in ITP. Since these polymeric spacers are strongly acidic species, their ionic charges remain constant over a wide pH range, so that their ionic mobilities are governed solely by their molecular masses and not by the pH of the milieu. A modification of ITP known as telescope electrophoresis was used to separate a number of acidic dyes of varying ionic mobility, using polyAMPS polymers as spacers. The resolution obtained was superior to that obtained by polyacrylamide gel electrophoresis (PAGE), due to the focusing effect of the electric field strength gradient. Since these novel polymeric spacers are designed to operate within sieving medium, it was decided to test their suitability for the separation of DNA molecules. DNA molecules up to 1000 bp long were successfully resolved, with a similar resolution to that obtained with conventional PAGE.  相似文献   

19.
We have previously demonstrated the ability of electric fields to dissociate ascorbate and catecholamines and shown that the electric field generated by cell membranes is sufficient to produce dissociation of these complexes up to 8 nm from the cell membrane. We show here that this process is applicable to a wide range of biological complexes including small molecules (norepinephrine-morphine sulfate), protein-protein complexes (insulin-glucagon), and small molecule-protein complexes (epinephrine-bovine serum albumin). The extrapolation of the slope of the electric field dependence to zero electric field can be used to estimate the log of the dissociation constant (K(D)) of a complex and, by multiplying the log(K(D)) by -2.303RT, the association energy (E) of the complex. The slope of the electric field dependence is inversely related to the molecular radii, with the best fit of the slope related to E*(1/r1 + 1/r2), where r is the estimated radius of each molecule in the complementary pair. This indicates that the binding site of the pair is shielded by the remaining parts of the molecules, and the larger the molecule the greater the shielding. When the slope of the electric field dependence goes to 0 as r goes to infinity and 1/r goes to 0, the molecular shielding constant is 7.04 x 10(-8) cm2/V. Very large complexes will be minimally affected by the electric field due to molecular shielding and reduced electric field as their radius restricts approach to the membrane. Large protein receptors will deflect the membrane electric field and allow agonist binding.  相似文献   

20.
So much of molecular genetics involves invisible samples at the bottom of minuscule tubes, that the attraction of something you can actually see is virtually irresistible. Recent developments in high-resolution fluorescent in situ hybridization (FISH) are both visually appealing and a valuable addition to the repertoire of gene-mapping and diagnostic techniques. The latest of these, dubbed dynamic molecular combing allows precise, high-resolution mapping of markers on cloned or total genomic DNA. In this technique, a coverslip coated with silane is dipped into a DNA solution. After a few minutes' incubation, during which the ends of the DNA molecules bind to the coverslip, a small motorized device is used to withdraw the coverslip vertically, by its edge, at a constant rate of 300 microseconds−1. The force exerted on the DNA molecules by the meniscus stretches all the molecules uniformly in the same direction, and they dry instantly onto the silanized surface as it is exposed to air. The result is a surface covered with a high density of parallel DNA molecules, which can then be probed with fluorescent-labelled markers and visualized under a miscroscope. Because of the constant stretching factor of 2 kb per micrometer of fibre length, no internal control is needed for calibration, unlike other recent fibre-FISH methods. In pilot experiments, the technique has been used successfully to measure microdeletions involving the tuberous sclerosis 2 gene, for fine-mapping and orienting of sets of contiguous cosmid clones (contigs) on a yeast artificial chromosome within its yeast genome, and to measure gaps in a cosmid contig by hybridizing pairs of cosmid probes to combed total human genomic DNA. Dynamic molecular combing will also be useful for a variety of applications in genetic diagnosis, such as mapping the breakpoints where segments of different chromosomes have been interchanged, and analysing sequence rearrangements within genes. Probes as small as 3 kb can be used when mapping cloned DNA; when total genomic DNA is the template, however, the probe needs to be at least 5 kb to enable the signal to be distinguished from background. The length of DNA that can be visualized in any one field of view, approximately 400-600 kb, is determined by the characteristics of the camera used to record the image and the objective on the microscope. The new equipment needed is simple and the protocol very straightforward, which should put it within the reach of most genetics laboratories. The motorized device used to withdraw the coverslip from the DNA solution at the required speed of 300 micrometer s−1 will be available commercially from early 1998 (contact the authors of the Science paper for details). Alternatively, such a device could be readily constructed by most departmental workshops. The silane-coated coverslips are best prepared in the gaseous phase, especially for combing total genomic DNA, when a homogeneous surface is essential. The researchers in Paris and London who developed the technique are, therefore, also considering making the coverslips commercially available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号