首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Transfection of a mouse dihydrofolate reductase (DHFR) cDNA contained in a plasmid expression vector into DHFR deficient Chinese hamster cells, followed by progressive selection of cells in increasing concentrations of methotrexate (MTX), leads to marked amplification of the exogenous DHFR sequences in the recipient hamster cells. The gene amplification is evident at the cytological level, in the form of homogeneously staining chromosomal regions (HRSs), at a gene expression level, in the form of fluorescein-methotrexate binding, and at the DNA level. Flow sorting, based on variable fluorescein-MTX binding, or direct cellular cloning, followed by chromosome analysis, revealed intercellular heterogeneity of HSRs in size and distribution.This suggested that there was a rapid evolution of HSRs an MTX-resistant transfectants. Chromosomal analysis of HSR evolution in situ, by examining individual colonies presumably derived from one or a few cells, underscored this impression of chromosome structural fluidity. Rates of HSR change in excess of 0.01 per cell division, increased by low doses of the recombinogen, mitomycin C were detected. The Chinese hamster DHFR transfectants described should be amenable to detailed, coordinate cytological and molecular characterization. Such an analysis should contribute to an understanding of processes such as homologous recombination in mediating HSR evolution in mammalian chromosomes.  相似文献   

2.
We carried out cytogenetic studies of four Chinese hamster, mouse, and human cell lines selected for high levels of resistance (500- to 4,000-fold) to vincristine (VCR) by a multistep selection procedure. All cells examined contained gene amplification-associated metaphase chromosome abnormalities, either homogeneously staining regions (HSRs), abnormally banding regions (ABRs), or double-minute chromosomes (DMs); control actinomycin D- and daunorubicin-resistant hamster lines did not exhibit this type of chromosomal abnormality. VCR-resistant Chinese hamster sublines exhibited both increased synthesis of the protein V19 (Mr 19,000; pl = 5.7) and increased concentrations of V19 polysomal mRNA. When VCR-resistant cells were grown in drug-free medium, level of resistance, synthesis of V19, and amount of V19 mRNA declined in parallel with mean length of the HSR or mean number of DMs per cell. Cross-resistance studies indicate that VCR-resistant cells have increased resistance both to antimitotic agents and to a wide variety of agents unrelated to VCR in chemical structure and/or mechanism of action. Our studies of tubulin synthesis in Chinese hamster cells indicate no overproduction of tubulin or presence of a mutant tubulin species. Comparison with antifolate-resistant Chinese hamster cells known to contain amplified dihydrofolate reductase genes localized to HSRs or ABRs strongly suggests that the HSRs, ABRs, or DMs of the Vinca alkaloid-resistant sublines likewise represent cytological manifestations of specifically amplified genes, possibly encoding V19, involved in development of resistance to VCR.  相似文献   

3.
Unusual chromosome architecture and behaviour at an HSR   总被引:2,自引:0,他引:2  
Sullivan BA  Bickmore WA 《Chromosoma》2000,109(3):181-189
Amplification of sequences within mammalian chromosomes is often accompanied by the formation of homogeneously staining regions (HSRs). The arrangement of DNA sequences within such amplicons has been investigated, but little is known about the chromosome structure or behaviour of these unusual regions. We have analysed the metaphase chromosome structure of the dihydrofolate reductase (DHFR) amplicon of CHOC400 cells. The chromatin in this region contains hyperacetylated nucleosomes yet, at the same time, appears to be densely packed like heterochromatin. The region does not bind heterochromatin proteins. We show that the dense packing of the region is restricted to DNA located close to the chromosome core/scaffold. In contrast, levels of the chromosome scaffold protein topoisomerase II at HSRs are the same as those found at other euchromatic locations. Metaphase chromosome condensation of the HSR is shown to be sensitive to topoisomerase II inhibitors, and sister chromatids often appear to remain attached within the HSRs at metaphase. We suggest that these features underlie anaphase bridging and the aberrant interphase structure of the HSR. The DHFR amplicon is widely used as a model system to study mammalian DNA replication. We conclude that the higher-order chromosome structure of this amplicon is unusual and suggest that caution needs to be exercised in extrapolating data from HSRs to normal chromosomal loci. Received: 19 October 1999; in revised form: 13 December 1999 / Accepted: 27 December 1999  相似文献   

4.
Three independently-derived, antifolate-resistant Chinese hamster lung cell lines that exhibit low level increases in dihydrofolate reductase (DHFR) activity, i.e., three- to fivefold vs. controls, have been compared with drug-sensitive cells to determine relative DHFR gene content. With a solution hybridization technique that makes use of genomic DNA and a cloned double-stranded Chinese hamster DHFR cDNA probe, it has been found that the enzyme activity increases are associated with an approximately proportionate amplification of DHFR genes. Trypsin-Giemsa staining techniques and hybridizations in situ further show that the amplified DHFR genes are located within abnormally banding regions along chromosome 2q and also suggest that, in each subline, only one chromosome 2 homolog is initially involved in the amplification process.  相似文献   

5.
Chromosomes with homogeneously staining regions (HSR) were analysed in a subclone of the H4 rat hepatoma cell line, where they represent amplification of the ribosomal RNA (rRNA) genes. Detailed G-band analysis of the subclone revealed that an HSR on the short arm of chromosome 3 became unstable and changed its position within the chromosome. The evolution of this marker chromosome was associated with the terminal deletion of the normal long arm of the HSR-bearing chromosome 3 and may have involved ring formation as a result of fusion between the HSR on the short arm and the broken end of the long arm. Evidence was obtained for breakage at different sites within the ring, producing chromosomes with HSRs located terminally on either the long arms or both arms. The terminally located HSR underwent elongation in some cells presumably as a result of a breakage-fusion-bridge cycle characteristic of instability due to telomeric loss. It is suggested that terminally located HSRs may generally occur this way.  相似文献   

6.
Kopnin  B. P.  Massino  J. S.  Gudkov  A. V. 《Chromosoma》1985,92(1):25-36
Chromosomal analysis of 26 Djungarian hamster cell lines obtained from 11 independent clones and possessing different levels of resistance to colchicine or adriablastin as a consequence of gene amplification revealed regular patterns in the karyotypic changes that accompanied the development of drug resistance. Usually the sequence of karyotypic changes was as follows: first an additional chromosome 4 appeared; then single unpaired small chromatin bodies (SCBs) arose; later in the middle part of the long arm of one of three chromosomes 4 long homogeneously staining regions (HSRs) and double minute chromosomes (DMs) were formed; and finally in the most resistant variants large clusters of SCBs appeared. The emergence of the clusters of the SCBs correlated well with the occurrence of autonomously replicating, amplified DNA sequences. In contrast to DNA of the HSRs the DNA of the SCBs could replicate outside the S-phase of the cell cycle. When kept in a non-selective medium, the cells gradually lost their resistance to colchicine: 1%–4% of the cells lost the capacity to form colonies in the selective medium independently of the pattern of location in them of amplified genes (in chromosomal HSRs, SCBs, or DMs). Loss of drug resistance was accompanied by disappearance of the chromosomal HSRs, SCBs, and DMs. Chromosomal analysis of the set of methotrexate-resistant Djungarian hamster cell lines indicated the following karyotypic evolution: first the additional material on the distal part of one of two chromosomes 3 appeared; then the light HSRs were formed on the distal part of one of two chromosomes 4; later clusters of SCBs and HSRs arose on the distal part of the short arm of chromosome 3. Probably the amplification of different genes is characterized by specific patterns of karyotypic alterations.  相似文献   

7.
HSRs (homogeneously staining regions) are the cytological correlates of DNA amplification. In the house mouse, Mus musculus, many populations are polymorphic for the presence or absence of HSRs on chromosome 1. In the semispecies M. m. domesticus the amplified DNA is present within one HSR, whereas in M. m. musculus chromosomes 1 with two HSRs are found. Hybridization of HSR-specific probes to Southern blots of HSR-carrying genomic DNAs from different localities and semispecies revealed similar complex band patterns. the remaining variation is restricted to sequences with a low degree of amplification. Variation is higher between semispecies than within one semispecies. It is assumed that HSRs are derived from one original amplification event and that unequal recombination is the mechanism underlying the length variation of HSRs present today in both semispecies. Evidence from G-banding and in situ hybridization shows that the two HSRs of M. m. musculus originated from a single HSR by means of a paracentric inversion, where one break-point was located within the single HSR and the second outside the HSR. As a consequence of the paracentric inversion the two HSRs of M. m. musculus are permanently linked together. Since exchange of genes between the two semispecies is restricted to a narrow hybrid zone the amplification that gave rise to the HSR most probably occurred prior to the divergence into the semispecies M. m. domesticus and M. m. musculus about 1 million years ago.by D. Schweizer  相似文献   

8.
9.
Mouse L-cell lines (B-82, tk-) were obtained using the stepwise selection method, their aminopterin (AP) resistance being 10(3)-5 X 10(4) times higher than that of parental cells. This resistance increase results from dihydrofolate reductase (DHFR) gene amplification which was determined from the 15-120-fold rise of the enzyme activity and with the cytogenetical techniques. The development and loss of AP resistance have been studied and karyological analysis of the lines obtained carried out. Two types of karyological changes were found in stable DM and HSR cells which correspond to extrachromosomal and intrachromosomal forms of the amplified material organization. Localization of the DHFR gene in HSR was proved using the in situ hybridization technique. Extrachromosomal localization of the amplified genes in DM providing unstable AP resistance is dominant at the early stages of the development of resistance and for a long time. It was demonstrated that DM and HSR can exist in one cell during the prolonged period. DHFR gene copy number in such cells is regulated by a change in the DM number, whereas the HSR size and localization are highly stable. HSR covers 1.7-1.9% of the genome length and 38-40% of the marker chromosome length. The genes localized in HSR provide stable AP resistance. Evidence on some intermediate, relative stabilization of the resistance has been obtained. This stabilization is mediated by temporary integration of DHFR copies into other chromosomal sites, in addition to HSR.  相似文献   

10.
B P Kopnin  A V Godkov 《Genetika》1982,18(9):1513-1523
The series of sublines 170-750 times more resistant to colchicine were obtained from 10 independent clones of Djungarian hamster cells possessing 16-22-fold resistance to the drug. From each clone, several sublines with different levels of colchicine-resistance were developed. The drug resistance was unstable. 2,7-4,0% of cells per population doubling lost resistance to selective dosages of colchicine. The loss of resistance was stepwise. The chromosomes stained by trypsin G-banding technique were studied in 17 sublines. 15 sublines derived from 9 independent clones contained chromosomes with long homogeneously staining regions (HSRs). These were, as a rule, primarily localized in the long arm of chromosome 4. During cultivation, HSRs were transferred from chromosome 4 into other chromosomes. Evidently, transposition of HSRs was due to translocations of different chromosomes of HSRs in the chromosome 4 and to subsequent breakages of the resulting dicentrics within HSRs. A great number of different chromosomal rearrangements was also found in the cells containing HSRs. Possibly, formation of HSR leads to destabilization of the karyotype and to the variability of the genome. The length of HSRs varied in different cells of each subline. The levels of colchicine-resistance in different sublines did not correlate with the average length of HSRs in their cells. The lack of connection between the lengths of HSRs and the levels of drug resistance as well as the existence of highly resistant sublines with gene amplification, but without HSRs, suggest that amplified genes are localized in Djungarian hamster colchicine-resistant cells both in chromosomes and extrachromosomally.  相似文献   

11.
4beta-Phorbol 12-myristate 13-acetate (TPA) increases the number of colonies resistant to methotrexate (MTX), mainly by amplification of the dihydrofolate reductase (dhfr) locus. We showed previously that inhibition of protein kinase C (PKC) prevents this resistance. Here, we studied the molecular changes involved in the development of TPA-mediated MTX resistance in Chinese hamster ovary (CHO) cells. TPA incubation increased the expression and activity of DHFR. Because Sp1 controls the dhfr promoter, we determined the effect of TPA on the expression of Sp1 and its binding to DNA. TPA incubation increased Sp1 binding and the levels of Sp1 protein. The latter effect was due to an increase in Sp1 mRNA. Dephosphorylation of nuclear extracts from control or TPA-treated cells reduced the binding of Sp1. Stable transfectants of PKCalpha showed increased Sp1 binding, and when treated with MTX, developed a greater number of resistant colonies than control cells. Seventy-five percent of the isolated colonies showed increased copy number for the dhfr gene. Transient expression of PKCalpha increased DHFR activity. Over-expression of Sp1 increased resistance to MTX, and inhibition of Sp1 binding by mithramycin decreased this resistance. We conclude that one mechanism by which TPA enhances MTX resistance, mainly by gene amplification, is through an increase in Sp1 expression which leads to DHFR activation.  相似文献   

12.
We constructed mouse dihydrofolate reductase (DHFR) minigenes (dhfr) that had 1.5 kilobases of 5' flanking sequences and contained either none or only one of the intervening sequences that are normally present in the coding region. They were greater than or equal to 3.2 kilobase long, about one-tenth the size of the corresponding chromosomal gene. Both of these minigenes complemented the DHFR deficiency in Chinese hamster ovary dhfr-1-cells at a high frequency after DNA-mediated gene transfer. The level of DHFR enzyme in various transfected clones varied over a 10-fold range but never was as high as in wild-type Chinese hamster ovary cells. In addition, the level of DHFR in primary transfectants did not vary directly with the copy number of the minigene, which ranged from fewer than five to several hundred per genome. The minigenes could be amplified to a level of over 2,000 copies per genome upon selection in methotrexate, a specific inhibitor of DHFR. In one case, the amplified minigenes were present in a tandem array; in two other cases, a rearranged minigene plasmid and its flanking chromosomal DNA sequence were amplified. Thus, the mouse dhfr minigenes could be transcribed, expressed, and amplified in Chinese hamster ovary cells, although the efficiency of expression was generally low. The key step in the construction of these minigenes was the generation in vivo of lambda phage recombinants by overlapping regions of homology between genomic and cDNA clones. The techniques used here for dhfr should be generally applicable to any gene, however large, and could be used to generate novel genes from members of multigene families.  相似文献   

13.
将人淋巴毒素(HuLT)基因插入哺乳动物细胞表达载体质粒p91023,经磷酸钙-DNA共沉淀法转入中国仓鼠二氢叶酸还原酶缺陷型(CHO-DHFRˉ)细胞,获得了DIIFR 细胞克隆。RNA点渍杂交分析和MTT染料还原测定淋巴毒素的生物活性,均证明HuLT基因在DHFR 细胞里巳被转录和转译,并被分泌到细胞外。其杀伤靶细胞——L929细胞的生物活性不低于每毫升培养液200单位。  相似文献   

14.
《The Journal of cell biology》1996,135(6):1685-1700
We report a new method for in situ localization of DNA sequences that allows excellent preservation of nuclear and chromosomal ultrastructure and direct, in vivo observations. 256 direct repeats of the lac operator were added to vector constructs used for transfection and served as a tag for labeling by lac repressor. This system was first characterized by visualization of chromosome homogeneously staining regions (HSRs) produced by gene amplification using a dihydrofolate reductase (DHFR) expression vector with methotrexate selection. Using electron microscopy, most HSRs showed approximately 100-nm fibers, as described previously for the bulk, large-scale chromatin organization in these cells, and by light microscopy, distinct, large-scale chromatin fibers could be traced in vivo up to 5 microns in length. Subsequent experiments demonstrated the potential for more general applications of this labeling technology. Single and multiple copies of the integrated vector could be detected in living CHO cells before gene amplification, and detection of a single 256 lac operator repeat and its stability during mitosis was demonstrated by its targeted insertion into budding yeast cells by homologous recombination. In both CHO cells and yeast, use of the green fluorescent protein-lac repressor protein allowed extended, in vivo observations of the operator-tagged chromosomal DNA. Future applications of this technology should facilitate structural, functional, and genetic analysis of chromatin organization, chromosome dynamics, and nuclear architecture.  相似文献   

15.
16.
The development of adriablastin resistance in Djungarian hamster DM-15 cells is accompanied by the appearance of small chromatin bodies (SCB) and long homogeneously staining regions (HSRs) in the chromosomes--the structures that contained amplified genes. The pattern of karyotypic alterations (the appearance of additional chromosome 4, and emergence of SCB, formation of the HSRs in one of three of chromosome 4, transposition of the HSRs from chromosome 4 to other chromosomes) during the development of adriablastin resistance is identical to that found in these cells before, namely during the development of colchicine resistance. Adriablastin- and colchicine-resistant cells have similar changes in plasma membrane permeability for 3H-colchicine, 3H-actinomycin D, 3H-puromycin, 3H-cytochalasin B, and 3H-vinblastine. Apparently, adriablastin resistance has the same mechanism as colchicine resistance, being connected with gene amplification and decreased plasma membrane permeability for these drugs.  相似文献   

17.
Cells from a dihydrofolate reductase-deficient Chinese hamster ovary cell line were hybridized to human fetal skin fibroblast cells. Nineteen dihydrofolate reductase-positive hybrid clones were isolated and characterized. Cytogenetic and biochemical analyses of these clones have shown that the human dihydrofolate reductase (DHFR) gene is located on chromosome 5. Three of these hybrid cell lines contained different terminal deletions of chromosome 5. An analysis of the breakpoints of these deletions has demonstrated that the DHFR gene resides in the q11----q22 region.  相似文献   

18.
H Niwa  K Yamamura  J Miyazaki 《Gene》1991,108(2):193-199
We have developed a new expression vector which allows efficient selection for transfectants that express foreign genes at high levels. The vector is composed of a ubiquitously strong promoter based on the beta-actin promoter, a 69% subregion of the bovine papilloma virus genome, and a mutant neomycin phosphotransferase II-encoding gene driven by a weak promoter, which confers only marginal resistance to G418. Thus, high concentrations of G418 (approx. 800 micrograms/ml) effectively select for transfectants containing a high vector copy number (greater than 300). We tested this system by producing human interleukin-2 (IL-2) in L cells and Chinese hamster ovary (CHO) cells, and the results showed that high concentrations of G418 efficiently yielded L cell and CHO cell transfectants stably producing IL-2 at levels comparable with those previously attained using gene amplification. The vector sequences were found to have integrated into the host chromosome, and were stably maintained in the transfectants for several months.  相似文献   

19.
20.
Rat hepatoma cells amplified for adenosine deaminase (ADA) gene sequences show the amplified DNA on large, homogeneously staining regions (HSRs). The amplified cells are stable in the absence of selection for 12 mo without loss of ADA activity or gene sequences. However, in hybrids formed between an amplified cell line with a prominent HSR and a nonamplified cell line, rapid loss of ADA activity, as well as gene sequences, occurs. Karyotype analyses of the hybrids indicate that the HSR structures are no longer visible in a large percentage of the hybrid metaphase spreads and appear to have been replaced by DNA structures that resemble double minutes. Our data provide evidence that the extent of the breakdown of the HSR in the hybrids may be affected by the presence of an active adenosine kinase or the level of ATP in the cells and additional unidentified factors are present in the hybrids that affect the integrity of the HSR structure. There is no evidence for a specific trans-acting factor in nonamplified cells that regulates gene amplification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号