首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of mirror image (ent) forms of prostaglandins F2 and E2 have been compared for potency in a hamster antifertility test. In the PGF2 series, ent-compounds surveyed had less potency than corresponding natural structures. For the PGE2 series, 11α-(15S)-ent-PGE2 methyl ester was 10-fold more potent than PGE2. Altering the C-9 hydroxy configuration in the PGF2 series from the natural α to β decreased potency dramatically for compounds tested.  相似文献   

2.
Evidence is presented which shows that 1-(2-chloroethyl) -3-cyclohexyl-1-nitrosourea (CCNU) upon degradation provides a 2-chloroethyl alkylating intermediate, possibly 2-chloroethyl carbonium ion, and 2-chloroethanol. Thiol alkylation occurs in vivo and a major urinary metabolite of CCNU is thiodiacetic acid. A rapid microsomal hydroxylation of the cyclohexyl ring occurs which yields varying ratios of at least five metabolites: cis or trans 2-hydroxy, trans- 3-hydroxy, cis-3-hydroxy, cis-4-hydroxy and trans-4- hydroxy-CCNU. In vivo carbamoylation appears to not be due to cyclohexylisocyanate but to the various hydroxy-cyclohexylisocyanates which are formed from hydroxy CCNU metabolites.  相似文献   

3.
[3H]Flunitrazepam was used to characterize benzodiazepine binding sites in human brain. The benzodiazepine binding sites exhibited high affinity, pharmacological specificity and saturability in their binding of [3H]flunitrazepam. The dissociation constant (KD) of [3H]flunitrazepam binding was determined by three different methods and found to be in the range of 2–3 nM. The potency of several benzodiazepine analogs to inhibit specific [3H]-flunitrazepam binding invitro correlated well with their potency in several invivo human and animal tests. The density of [3H]-flunitrazepam binding sites was highest in the cerebrocortical and rhinencephalic areas, intermediate in the cerebellum, and lowest in the brain stem and commissural tracts.  相似文献   

4.
Binding characteristics of benzodiazepine receptors were studied with synaptosomal and microsomal membranes from rabbit brain invitro utilizing [methyl-3H]diazepam. In synaptosomal membranes, both high and low affinity binding sites were identified with the dissociation constants (Kd) of 4.92 nM and 83.8 nM, respectively. However, only the high affinity site was identified with Kd of 3.96 nM with microsomal membranes. Benzodiazepine binding sites appear to include at least two subpopulations of receptors, one with high affinity and another with low affinity binding site.  相似文献   

5.
The structure activity relationship of nine compounds were studied and compared to lidocaine. The extent of local anesthetic activity was ascertained by the tail pinch method in mice, and by the isolated frog sciatic nerve method. The effective and lethal dose in 50% of the animals was also determined. Three of the nine compounds appeared to possess significant local anesthetic activity in the in vivo studies and thus were selected for further investigation in vitro. The in vivo studies also indicated that two of the three were more toxic than lidocaine. The in vitro results demonstrated that methyl substitution at positions 2,3 and 5 on the benzene ring produced a compound of slightly more anesthetic potency in an acid medium. At pH 7.8 all three compounds approached the potency of lidocaine. These data indicate that methyl substitution at other than the ortho position of the benzene ring generally results in compounds of lesser local anesthetic activity while tending to increase the toxicity.  相似文献   

6.
The antiinflammatory activity of a homologous series of α-alkyl substituted [4-(1-oxo-2-iso-indolinyl)-phenyl]-acetic acid has been assayed by some invitro and invivo tests.These compounds were shown to be particularly active in inhibiting prostaglandin biosynthesis from bovine seminal vesicles, and their potency was seen to increase as the size of the substituents in the side chain increased.The antiinflammatory activity invivo is not correlated with invitro inhibition of PG-synthetase. Discussion of the data takes into account the plasma protein binding and pharmacokinetics of these compounds.  相似文献   

7.
A. Bobik 《Life sciences》1982,30(3):219-228
Binding of the alpha adrenergic antagonists (3H) prazosin and (3H) yohimbine to membranes of dog arteries exhibit the characteristics expected of alpha adrenoceptors. Binding of both ligands is saturable with dissociation constants of 0.19nM and 1.15nM for (3H) prazosin and (3H) yohimbine respectively. A series of catecholamines inhibit binding of both ligands with a potency in the order epinephrine > norepinephrinea?isoproterenol, corresponding with the activity of these agents at alpha adrenoceptors in blood vessels. Competition for binding in both instances is stereoselective. ?-Phenylephrine has similar potencies in inhibiting (3H) prazosin and (3H) yohimbine specific binding whilst the imidazoline related partial alpha adrenergic agonists clonidine and guanfacine are more potent in inhibiting (3H) yohimbine specific binding. The affinity of prazosin for the (3H) yohimbine binding site is approximately 2500 times less than for the (3H) prazosin site whilst yohimbine is approximately 150 times more potent in inhibiting (3H) yohimbine than (3H) prazosin specific binding. Non-selective alpha adrenergic antagonists have similar affinities for both binding sites. The concentrations of (3H) yohimbine binding sites in different arteries vary about two fold whilst for (3H) prazosin the variation was about three fold. These results indicate that there are two discrete noradrenergic binding sites in the major arteries of dog which have binding properties expected of alpha1 and alpha2 adrenoceptors.  相似文献   

8.
The soluble, cytochrome P-450 dependent fatty acid (ω-2) hydroxylase from Bacillus megaterium catalyzes the hydroxylation of both n-saturated and n-monohydroxyfatty acids. Continued hydroxylation of hydroxyfatty acids is dependent upon the position of the hydroxyl group since the ω-1, ω-2 and ω-3 monohydroxy products of the unsubstituted, saturated fatty acid series are not substrates. Utilizing a series of monohydroxystearate positional isomers this study demonstrates that there exists an optimal hydroxy position on the substrate's carbon chain. Competitive inhibition of palmitate hydroxylation by monohydroxystearates indicates that 6-hydroxystearate is a better substrate than palmitate, one of the more active substrates for hydroxylation. This suggests that substrate-binding at the active site is strongly influenced by a “non-hydrophobic” binding region on the enzyme.  相似文献   

9.
We have investigated the interaction of VIP and secretin with two human lung carcinoma cell lines in cultures, SW-900 and Calu-1. 125I-labeled VIP binds to and is inactivated by SW-900 and Calu-1 cells in a time- and temperature-dependent manner. The rates of binding and of inactivation were higher at 30°C than at 15°C. At equilibrium, native VIP competitively inhibited the binding of 125I-VIP in the 10?10?10?7M range, half-maximal inhibition being observed at 1.2 nM in SW-900 cells and at 1.1 nM VIP in Calu-1 cells. Scatchard analysis indicated two classes of binding sites with similar characteristics in both cell lines. SW-900 cells have 27 600 sites with a high affinity (Kd = 0.34 nM) and 1062 000 sites with a low affinity (Kd = 61.4 nM). Calu-1 cells have 36 300 sites with a high affinity (Kd = 0.33 nM) and 1148 000 sites with a low affinity (Kd = 78.6 nM). Secretin inhibited tracer binding but with a 5000 times lower potency than native VIP in both cell lines.  相似文献   

10.
Sodium-independent binding of gamma aminobutyric acid (GABA) to receptor-like sites in mammalian brain homogenates was much greater in membrane fractions which had been thoroughly washed with buffer, or detergent, and frozen and thawed several times, than in fresh unwashed membranes. As previously shown (Greenlee, Van Ness, & Olsen, Life Sciences 22, 1653 (1978), the washing procedure removed endogenous inhibitors of GABA binding which led to an apparent improvement in GABA binding affinity to a low affinity class of sites (KD ? 170 nM), and, additionally, the appearance of a high affinity (KD ? 10 nM) class of sites. This endogenous inhibitory material was found to inhibit both classes of GABA binding sites, but with greater potency towards the high affinity sites for GABA. Biochemical characterization of the inhibitor fraction revealed that the activity was heat-stable, insensitive to trypsin and disulfide reducing compounds, dialyzeable through membrane sieves which would retain molecules with a molecular weight of 5000, and eluted 100% from a molecular sieve column in the position of small molecules (salt volume), clearly separated from a 16,000 molecular weight marker. The inhibitor was over 80% inactivated by the enzyme GABAse, indicating that most, and perhaps all of the endogenous inhibitor of GABA binding was indeed GABA itself. The difficulty in removing endogenous GABA from brain membranes must be considered in studies on benzodiazepine receptors (since they are affected in vitro by GABA) and in any comparison of GABA or benzodiazepine receptors in human neuropsychiatric disorders, drug treatment or lesion studies.  相似文献   

11.
3H-Labelled opiate and enkephalin ligands appear to bind with highest affinity to a single site responsible for their analgesic properties. Administered in vivo, naloxazone, an irreversible opiate, selectively inhibits for over 24 hours the high affinity binding of 3H-labelled mu, and kappa opiates and enkephalins. This inhibition of binding gradually resolves over 3 days, perhaps correlating with receptor turnover. Naloxazone treatment also abolishes morphine, D-ala2-met5-enkephalinamide and betah-endorphin analgesia. Although morphine and D-ala2-met5-enkephalinamide bind with similar potencies to the high affinity site, morphine's potency for the low affinity D-ala2-met5-enkephalinamide site is far less than the enkephalin analog. These results imply that all 3H-ligands examined bind with highest affinity to a mu-like receptor while low affinity D-ala2-met5-enkephalinamide binding, with a KD of 6 nM, represents a delta-like receptor.  相似文献   

12.
D. discoideum contains kinetically distinguishable cell surface cAMP binding sites. One class, S, is slowly dissociating and has high affinity for cAMP (Kd = 15 nM, t12 = 15 s). A second class is fast dissociating (t12 about 1 s) and is composed of high affinity binding sites H (Kd ≈ 60 nM), and low affinity binding sites L (Kd = ≈ 450 nM) which interconvert during the binding reaction. Guanine nucleotides affect these three binding types in membranes prepared by shearing D.discoideum cells through Nucleopore filters. The affinity of S for cAMP is reduced by guanine nucleotides from 13 nM to 25 nM, and the number of S-sites is reduced about 50%. The number of fast dissociating sites is not altered by guanine nucleotides, but these sites are mainly in the low affinity state. Half-maximal effects are obtained at about 1 μM GTP, 2 μM GDP and 10 μM Gpp(NH)p(guanyl-5′-yl-imidodiphosphate); ATP and ADP are without effect up to 1 mM. These results indicate that D.discoideum cells have a functionally active guanine nucleotide binding protein involved in the transduction of extracellular cAMP signals via cell surface cAMP receptors.  相似文献   

13.
Some opiates with morphinan- and benzomorphan-structures possess affinities for neuroleptic receptors as revealed by their abilities to compete with 3H-spiroperidol for common binding sites in rat striatum in vitro (IC50 in the range between 10?6 and 10?5M). The binding of these opiates to neuroleptic receptors appears to be of pharmacological significance, since in vivo studies in mice revealed a small but significant displacement of spiroperidol by high doses of the opiate antagonist levallorphan from specific binding sites in the striatum. In addition, there exists some correlation between the ability of opiates to bind to neuroleptic receptor sites in vitro and their potency to evoke “bizarre behavior” in rats in vivo. In contrast, a wide variety of other opiates having morphine-, morphinone- or oripavine-structure showed no affinity for neuroleptic binding sites in vitro (IC50 greater than 10?4 M). Of the opioid peptides (methionine-enkephalin, leucine-enkephalin and β-endorphin) none has an affinity for neuroleptic binding sites. A variety of other peptides were also investigated but did not interfere with spiroperidol binding. Only ACTH showed a moderate affinity for neuroleptic binding sites.  相似文献   

14.
Calmodulin exhibits high affinity, calcium-dependent binding of the mastoparans — a group of cytoactive tetradecapeptides. The dissociation constants for the peptide-calmodulin complexes determined in 0.20 N KCl, 1.0 mM CaCl2, pH 7.3 are ~0.3 nM for mastoparan, ~0.9 nM for mastoparan X, and ~3.5 nM for Polistes mastoparan. The dissociation constant for the mastoparan-calmodulin complex is the smallest known for any calmodulin binding protein or peptide, suggesting that some type of peptide-calmodulin interaction could be physiologically significant.  相似文献   

15.
The equilibrium affinity constant for rat prostate androgen receptor and epididymal androgen binding protein (ABP) has been determined for thirty-four potential progestogens. Three A-nor-, four A,19-dinor-, and one A-homo-5α-androstane derivative bind to the androgen receptor (KD<0.5 μM). Five of these compounds also bind to ABP with an affinity of the same order of magnitude. “Anordrin” (compound 24) and “Dinordrins” (compounds 10, 14, 15, 16, 17), which are potential female contraceptives, do not bind with high affinity to the androgen receptor or to ABP. The following modifications in A-nor derivatives favour binding to the receptor as compared to ABP: 19-nor substitution (compound 1), C-18 methyl homologation (compound 5), 2α-ethinylation (compound 22). One 2α-allenyl A-nor derivative (compound 25) and one A-homo derivative (compound 34) bind almost exclusively to ABP. The interaction with either binding protein is decreased by oxidation or esterification of the hydroxyl group at C-17, and by addition of a 17 α-ethinyl group. The latter modifications are likely to increase the specificity of androstane derivatives for receptors other than androgen binding proteins, such as the progesterone receptor.  相似文献   

16.
Ultraviolet difference spectroscopy was used to study the interaction of peanut (Arachis hypogaea) lectin with complementary carbohydrates. A correlation was observed between variations of ultraviolet spectra during the binding of sugars to the lectin and the specificity and the strength of the binding. The association constant, free energy, enthalpy and entropy for peanut lectin-lactose interactions were calculated over the temperature range 10–30°C. The binding constants for 10 mono- and disaccharides containing a D-galactopyranosyl or a D-talopyranosyl residue were calculated. Comparing their effectiveness to interact with peanut lectin, methyl α-D-galactopyranoside appeared to have a more marked affinity than lactose; D-galacturonic acid and methyl 7-deoxy-D-glycero-β-D-galacto-heptopyranoside had no measurable affinity; the other sugars showed a lower affinity than lactose. The correlations between these differences and the conformations of the sugars obtained by X-ray analysis are discussed.  相似文献   

17.
Active in both binding and biological assays, morphiceptin (NH2 Tyr-Pro-Phe-Pro-CONH2), a potent opioid peptide derivative of β-casamorphine, binds specifically and selectively to mu or morphine-type receptors with little affinity for delta sites. Displacement studies of a variety of 3H-labeled opiates and enkephalins show biphasic curves. Naloxazone, which blocks irreversibly and selectively high affinity opiate and enkephalin binding, abolishes morphiceptin's inhibition of binding at low concentrations, suggesting that the high affinity binding of enkephalins and opiates represents a mu or morphine-type receptor. Unlike the reversible antagonist naloxone, naloxazone treatment invivo inhibits for over 24 hours the analgesic activity of morphiceptin like it inhibits morphine, β-endorphin and enkephalin analgesia. Together, these studies imply that opiates and enkephalins bind with highest affinity to a mu receptor which mediates their analgesic activity. The 3H-D-ala2-D-leu5-enkephalin binding remaining after naloxazone treatment, representing a lower affinity site (KD 4 nM), is quite insensitive to morphiceptin inhibition and has the characteristics of a delta receptor. However, the 3H-dihydromorphine binding present after naloxazone treatment, which also represents a lower affinity site (KD 6 nM), is far more sensitive to both morphine and morphiceptin and may represent a second morphine-like, or mu, receptor.  相似文献   

18.
Prostaglandin analogs of the PGF, 15-epi-PGF, and PGE2 type bearing the following methyl substitution patterns — 15-Me, 16, 16-(Me)2, 17, 17-(Me)2, and 18, 18, 20-(Me)3 — and analogs constrained to “hairpin” alignment [via 1, (ω-1)-olide formation] and to “non-hairpin” arrangements [via 1,9- and 1,15-olide formation] are compared in the following biological assays: contraction of uterine and gastro-intestinal smooth muscle strips, luteolytic antifertility potency in the hamster, binding affinity to two different PGF2α-receptor preparations from bovine corpora lutea, binding to the PGE-specific receptors from rat kidney and liver, inhibition of ADP-induced aggregation of human platelet-rich-plasma, and the effect on rat blood blood pressure. The methylated prostaglandins were also converted to the corresponding prostacyclins and examined as to action on the platelet and on rat blood pressure. All evidence points to topographically distinct receptors for F2α-, E- and I2-type prostaglandins. Cross-reactivity is reduced in most of the analogs examined. Independent of the target organ or tissue, the receptors show common features based on the functional class of PG recognized. “Hairpin” alignment improves binding (and potency) only for the PGF2α specific assays. PGE-specific binding and potency is disrupted to an increasing extent as the chain branching point is moved further from the 15-hydroxyl center. In contrast 16, 16-dimethylation is particularly disruptive for the PGI2/E1platelet receptor interaction.  相似文献   

19.
Characterization of temperature-sensitive [3H]serotonin (5-HT) binding sites (1 and 4 nM Kd sites) revealed complex inhibition by neuroleptics and serotonin antagonists. There was no simple correlation with affinities for S1 and S2 receptors. In vivo pretreatment (48 h before) with mianserin did not alter Bmax or Kd for the 1 nM Kd [3H]5-HT site, although [3H]ketanserin (S2) densities were decreased by 50%. This suggested that possible S2 components of [3H]5-HT binding must be negligeable, even though ketanserin competed with high affinity (IC50 = 3 nM) for a portion of the 1 nM Kd [3H]5-HT site. Low concentrations of mianserin inhibited the 1 nM Kd [3H]5-HT site in a non-competitive manner, as shown by a decrease in Bmax with no change in Kd after in vitro incubation. The complex inhibition data may therefore represent indirect interactions through another site.  相似文献   

20.
Studies of the localization of the Na+-dependent sugar transport in monolayers of LLC PK1 cells show that the uptake of a methyl α-d-glucoside, a nonmetabolizable sugar which shares the glucose-galactose transport system, occurs mainly from the apical side of the monolayer. Kinetics of [3H]phlorizin binding to monolayers of LLC PK1 cells were also measured. These studies demonstrate the presence of two distinct classes of receptor sites. The class comprising high affinity binding sites had a dissociation constant (Kd) of 1.2 μM and a concentration of high affinity receptors of 0.30 μmol binding sites per g DNA. The other class involving low affinity sites had a Kd of 240 μM with the number of binding sites equal to 12 μmol/g DNA. Phlorizin binding at high affinity binding sites is a Na+-dependent process. Binding at the low affinity sites on the contrary is Na+-independent. The mode of action of Na+ on the high affinity binding sites was to increase the dissociation constant without modifying the number of binding sites. The Na+ dependence and the matching of Kd for high affinity binding sites with the Ki of phlorizin for the inhibition of methyl α-d-glucoside strongly suggest that the high affinity phlorizin binding site is, or is part of the methyl α-d-glucoside transport system. Binding studies from either side of the monolayer also show that the binding of phlorizin at the Na+ dependent high affinity binding sites occurs mainly from the apical rather than the basolateral side. The specific location of the Na+-dependent sugar transport system in the apical membrane of LLC PK1 cells is, therefore, another expression of the functional polarization of epithelial cells that is retained under tissue culture condition. In addition, since this sugar transport almost disappears after the cells are brought into suspension, it can be used as a marker to study the development of the apical membrane in this cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号