首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inside-out configuration of the patch-clamp technique was used to study the effect of glibenclamide on the ATP-sensitive K+ channel current in isolated guinea-pig ventricular myocytes. The inhibitory effect of glibenclamide was tested in the bath solution containing two different concentrations of ATP (100 M and 200 M). It was found that the effect of the drug on the KATP current was stronger in the presence of the higher concentration of ATP. The blocking effect of glibenclamide on the channels was weaker if, in addition to ATP, ADP was applied in the intracellular solution. Similarly, the inhibitory effect of the drug was not pronounced for the channels reactivated by ADP after run-down. As application of the drug in the presence and absence of Mg2+ did not show different effects on the channel inhibition, we concluded that the effect of glibenclamide may not depend on the phosphorylation of the channel protein. These results suggest that in addition of the previously described effect of ADP, ATP also has some modulatory effect on inhibition of the KATP channel by glibenclamide.  相似文献   

2.
Summary We studied the mechanism of K++ channel activation by minoxidil-sulfate (MxSO4) in fused Madin-Darby canine kidney (MDCK) cells. Patch-clamp techniques were used to assess single channel activity, and fluorescent dye techniques to monitor cell calcium. A Ca+2+-dependent inward-rectifying K++ channel with slope conductances of 53±3 (negative potential range) and 20±3 pS (positive potential range) was identified. Channel activity is minimal in cell-attached patches. MxSO4 initiated both transient channel activation and an increase of intracellular Ca+2+ (from 94.2±9.1 to 475±12.6 nmol/liter). The observation that K++ channel activity of excised inside-out patches was detected only at Ca+2+ concentrations in excess of 10 mol/liter suggests the involvement of additional mechanisms during channel activation by MxSO4.Transient K++ channel activity was also induced in cell-attached patches by 10 mol/liter of the protein kinase C activator 1-oleoyl-2-acetyl-glycerol (OAG). OAG (10 mol/liter in the presence of 1.6 mmol/liter ATP) increased the Ca+2 sensitivity of the K+ channel in inside-out patches significantly by lowering the K mfor Ca+2 from 100 mol/liter to 100 nmol/liter. The channel activation by OAG was reversed by the protein kinase inhibitor H8. Staurosporine, a PKC inhibitor, blocked the effect of MxSO4 on K+ channel activation. We conclude that MxSO4-induced K+ channel activity is mediated by the synergistic effects of an increase in intracellular Ca+2 and a PKC-mediated enhancement of the K+ channel's sensitivity to Ca+2.A. Schwab was recipient of a Feodor-Lynen-Fellowship from the Alexander von Humboldt-Stiftung. This work was supported by NIH grant DK 17433. The authors thank Nikon Instruments Partners in Research Program for their support and generous use of equipment during the course of this study. Minoxidil-sulfate was kindly provided by Upjohn, Kalamazoo, MI.  相似文献   

3.
(i) Effects of veratridine on ionic conductances of human peripheral blood T lymphocytes have been investigated using the whole-cell patch-clamp technique, (ii) Veratridine reduces the net outward current evoked by membrane depolarizations. The reduction originates from block of a 4-aminopyridine-sensitive, voltage-gated K+ current, (iii) Human T lymphocytes do not appear to express voltage-gated Na+ channels, since inward currents are observed neither in control nor in veratridine- and bretylium-exposed lymphocytes. (iv) The effect of veratridine consists of an increase in the rate of decay of the voltage-gated K+ current and a reduction of the peak current amplitude. Both effects depend on veratridine concentration. Halfmaximum block occurs at 97 m and the time constant of decay is reduced by 50% at 54 m of veratridine. (v) Possible mechanisms of veratridine action are discussed. The increased rate of K+ current decay is most likely due to open channel block. The decrease of current amplitude may involve an additional mechanism. (vi) In cultured mouse neuroblastoma N1E-115 cells, veratridine blocks a component of voltage-gated K+ current, in addition to its effect on voltage-gated Na+ current. This result shows that the novel effect of veratridine is not confined to lymphocytes.We thank Jacobien Künzel of the Wilhelmina Hospital for Children, Utrecht, for providing the blood samples and Aart de Groot for technical assistance. The research was supported by a fellowship of the Royal Netherlands Academy of Arts and Sciences to M. Oortgiesen.  相似文献   

4.
The effect of lipid peroxidation on the affinity of specific active sites of Na+, K+-ATPase for ATP (substrate), K+ and Na+ (activators), and strophanthidin (a specific inhibitor) was investigated. Brain cell membranes were peroxidized in vitro in the presence of 100M ascorbate and 25M FeCl2 at 37°C for time intervals from 0–20 min. The level of thiobarbituric acid reactive substances and the activity of Na+, K+-ATPase were determined. The enzyme activity decreased by 80% in the first min. from 42.0±3.8 to 8.8±0.9 mol Pi/mg protein/hr and remained unchanged thereafter. Lipid peroxidation products increased to a steady state level from 0.2±0.1 to 16.5 ±1.5 nmol malonaldehyde/mg protein by 3 min. In peroxidized membranes, the affinity for ATP and strophanthidin was increased (two and seven fold, respectively), whereas affinity for K+ and Na+ was decreased (to one tenth and one seventh of control values, respectively). Changes in the affinity of active sites will affect the phosphorylation and dephosphorylation mechanisms of Na+, K+-ATPase reaction. The increased affinity for ATP favors the phosphorylation of the enzyme at low ATP concentrations whereas, the decreased affinity for K+ will not favor the dephosphorylation of the enzyme-P complex resulting in unavailability of energy for transmembrane transport processes. The results demonstrate that lipid peroxidation alters Na+, K+-ATPase function by modification at specific active sites in a selective manner, rather than through a non-specific destructive process.  相似文献   

5.
Summary The effects of cAMP, ATP and GTP on the Ca2+-dependent K+ channel of fresh (1–2 days) or cold-stored (28–36 days) human red cells were studied using atomic absorption flame photometry of Ca2+-EGTA loaded ghosts which had been resealed to monovalent cations in dextran solutions. When high-K+ ghosts were incubated in an isotonic Na+ medium, the rate constant of Ca2+-dependent K+ efflux was reduced by a half on increasing the theophylline concentration to 40mm. This effect was observed in ghosts from both fresh and stored cells, but only if they were previously loaded with ATP. The inhibition was more marked when Mg2+ was added together with ATP, and it was abolished by raising free Ca2+ to the micromolar level. Like theophylline, isobutyl methylxanthine (10mm) also affected K+ efflux. cAMP (0.2–0.5mm), added both internally and externally (as free salt, dibutyryl or bromide derivatives), had no significant effect on K+ loss when the ghost free-Ca2+ level was below 1 m, but it was slightly inhibitory at higher concentrations. The combined presence of cAMP (0.2mm) plus either theophylline (10mm), or isobutyl methylxanthine (0.5mm), was more effective than cAMP alone. This inhibition showed a strict requirement for ATP plus Mg2+ and it, was not overcome by raising internal Ca2+. Ghosts from stored cells seemed more sensitive than those from fresh cells, to the combined action of cAMP and methylxanthines. Loading ATP into ghosts from fresh or stored cells markedly decreased K+ loss. Although this effect was observed in the absence of added Mg2+ (0.5mm EDTA present), it was potentiated upon adding 2mm Mg2+. The K+ efflux from ATP-loaded ghosts was not altered by dithio-bis-nitrobenzoic acid (10mm) or acridine orange (100 m), while it was increased two-to fourfold by incubating with MgF2 (10mm), or MgF2 (10mm)+theophylline (40mm), respectively. By contrast, a marked efflux reduction was obtained by incorporating 0.5mm GTP into ATP-containing ghosts. The degree of phosphorylation obtained by incubating membranes with (-32P)ATP under various conditions affecting K+ channel activity, was in direct correspondence to their effect on K+ efflux. The results suggest that the K+ channel of red cells is under complex metabolic control, via cAMP-mediated and nonmediated mechanisms, some which require ATP and presumably, involve phosphorylation of the channel proteins.  相似文献   

6.
Na+, K+-pumps of most eukaryotic animal cells bind ouabain with high affinity, stop pumping, and consequently loose K+, detach from each other and from the substrate, and die. Lack of affinity for the drug results in ouabain resistance. In this work, we report that Ma104 cells (epithelial from Rhesus monkey kidney) have a novel form of ouabain-resistance: they bind the drug with high affinity (Km about 4×10–8 m), they loose their K+ and stop proliferating but, in spite of these, up to 100% of the cells remain attached in 1.0 m ouabain, and 53% in 1.0 mm. When 4 days later ouabain is removed from the culture medium, cells regain K+ and resume proliferation. Strophanthidin, a drug that attaches less firmly than ouabain, produces a similar phenomenon, but allows a considerably faster recovery. This reversal may be associated to the fact that, while in ouabain-sensitive MDCK cells Na+, K+-ATPases blocked by the drug are retrieved from the plasma membrane, those in Ma104 cells remain at the cell-cell border, as if they were cell-cell attaching molecules. Cycloheximide (10 g/ml) and chloroquine (10 m) impair this recovery, suggesting that it also depends on the synthesis and insertion of a crucial protein component, that may be different from the pump itself. Therefore ouabain resistance of Ma104 cells is not due to a lack of affinity for the drug, but to a failure of its Na+, K+-ATPases to detach from the plasma membrane in spite of being blocked by ouabain.We wish to thank Dr. E. Rodríguez-Boulán for the generous supply of Ma104 cells, as well as acknowledge the generous economic support of the National Research Council (CONACYT) of Mexico. Confocal experiments were performed in the Confocal Microscopy Unit of the Physiology Department, CINVESTAV.  相似文献   

7.
Summary The whole-cell voltage-clamp technique was employed to study the -adrenergic modulation of voltage-gated K+ currents in CD8+ human peripheral blood lymphocytes. The -receptor agonist, isoproterenol, decreased the peak current amplitude and increased the rate of inactivation of the delayed rectifier K+ current. In addition, isoproterenol decreased the voltage dependence of steady-state inactivation and shifted the steady-state inactivation curve to the left. Isoproterenol, on the other hand, had no significant effect on the steady-state parameters of current activation. The isoproterenol-induced decrease in peak current amplitude was inhibited by the -blocker propranolol. Bath application of dibutyryl cAMP (1mm) mimicked the effects of isoproterenol on both K+ current amplitude and time course of inactivation. Furthermore, the reduction in the peak current amplitude in response to isoproterenol was attenuated when PKI5–24 (2–5 m), a synthetic peptide inhibitor of cAMP-dependent protein kinase, was present in the pipette solution. The increase in the rate of inactivation of the K+ currents in response to isoproterenol was mimicked by the internal application of GTP--S (300 m) and by exposure of the cell to cholera toxin (1 g/ml), suggesting the involvement of a G protein. These results demonstrate that the voltage-dependent K+ conductance in T lymphocytes can be modulated by -adrenergic stimulation. The effects of -agonists, i.e., isoproterenol, appear to be receptor mediated and could involve cAMP-dependent protein kinase as well as G proteins. Since inhibition of the delayed rectifier K+ current has been found to decrease the proliferative response in T lymphocytes, the -adrenergic modulation of K+ current may well serve as a feedback control mechanism limiting the extent of cellular proliferation.  相似文献   

8.
Summary In this paper we describe current fluctuations in the mammalian epithelium, rabbit descending colon. Pieces of isolated colon epithelium bathed in Na+ or K+ Ringer's solutions were studied under short-circuit conditions with the current noise spectra recorded over the range of 1–200 Hz. When the epithelium was bathed on both sides with Na+ Ringer's solution (the mucosal solution contained 50 m amiloride), no Lorentzian components were found in the power spectrum. After imposition of a potassium gradient across the epithelium by replacement of the mucosal solution by K+ Ringer's (containing 50 m amiloride), a Lorentzian component appeared with an average corner frequency,f c=15.6±0.91 Hz and a mean plateau valueS o=(7.04±2.94)×10–20 A2 sec/cm2. The Lorentzian component was enhanced by voltage clamping the colon in a direction favorable for K+ entry across the apical membrane. Elimination of the K+ gradient by bathing the colon on both sides with K+ Ringer's solutions abolished the noise signal. The Lorentzian component was also depressed by mucosal addition of Cs+ or tetraethylammonium (TEA) and by serosal addition of Ba2+. The one-sided action of these K+ channel blockers suggests a cellular location for the fluctuating channels. Addition of nystatin to the mucosal solution abolished the Lorentzian component. Serosal nystatin did not affect the Lorentzian noise. This finding indicates an apical membrane location for the fluctuating channels. The data were similar in some respects to K+ channel fluctuations recorded from the apical membranes of amphibian epithelia such as the frog skin and toad gallbladder. The results are relevant to recent reports concerning transcellular potassium secretion in the colon and indicate that the colon possesses spontaneously fluctuating potassium channels in its apical membranes in parallel to the Na+ transport pathway.  相似文献   

9.
Using a patch-clamp technique in the whole-cell configuration, we studied the effect of a nitric oxide (NO) donor, nitroglycerin (NG), on outward transmembrane ion current in isolated smooth muscle cells (SMC) of the main pulmonary artery of the rabbit. We also studied the characteristics of unitary high-conductance Ca2+-dependent K+ channels (KCa channels) in the SMC membrane in the cell-attached and outside-out configurations. Nitroglycerin in a 10 M concentration increased the amplitude and intensified oscillations of outward transmembrane current induced by step depolarization. In this case, the threshold of activation of the current (–40 mV) did not change. If the potential was +70 mV, the transmembrane current in the presence of NG increased, as compared with the control, by 32.6 ± 19.4% (n = 6), on average. Simultaneous addition of 10 M NG and 1 mM tetraethylammonium chloride (TEA), a blocker of KCa channels, to the external solution at the potential of +70 mV decreased the amplitude of outward transmembrane current with respect to the control by 25.2 ± 11% (n = 6) and suppressed oscillations of this current. In the series of experiments carried out in the outside-out configuration (concentration of K+ ions in the external solution was 5.9 mM), we calculated the conductance of a single KCa channel, which was approximately 150 pS. In the case where the potential was equal to +40 mV, 1 mM TEA suppressed completely the current through unitary KCa channels. In the series of experiments performed in the cell-attached configuration, 100 M NG to a considerable extent intensified the activity of unitary high-conductance KCa channels by increasing the probability of the channel open state (P 0), on average, by 80 ± 1%, as compared with the control. In this case, NG did not influence the conductance of single KCa channels. We concluded that the NO donor NG increases the amplitude of outward transmembrane current in SMC of the rabbit main pulmonary artery by stimulation of the activity of TEA-sensitive high-conductance KCa channels. Our experiments carried out on single KCa channels demonstrated that the activating effect of NG on KCa channels is realized at the expense of an increase in the P 0 of these channels, but not of a change in the conductance of single channels.  相似文献   

10.
Hyperhomocysteinemia occurs in homocystinuria, an inherited metabolic disease clinically characterized by thromboembolic episodes and a variable degree of neurological dysfunction whose pathophysiology is poorly known. In this study, we induced elevated levels of homocysteine (Hcy) in blood (500 M), comparable to those of human homocystinuria, and in brain (60 nmol/g wet tissue) of young rats by injecting subcutaneously homocysteine (0.3-0.6 mol/g of body weight) twice a day at 8-hr intervals from the 6th to the 28th postpartum day. Controls received saline in the same volumes. Na+,K+-ATPase and Mg2+-ATPase activities were determined in the hippocampus of treated Hcy- and saline-treated rats. Chronic administration of Hcy significantly decreased (40%) Na+,K+-ATPase activity but did not alter Mg2+-ATPase activity. Considering that Na+,K+-ATPase plays a crucial role in the central nervous system, our results suggest that the brain dysfunction found in homocystinuria may be related to the reduction of brain Na+,K+-ATPase activity.  相似文献   

11.
Using the outside-out configuration of the patch-clamp method, we studied the effect of several synthetic peptides corresponding to various segments from the N-terminal region of noxiustoxin (NTX) on single Ca2+-activated K+ (KCa) channels of small conductance obtained from cultured bovine aortic endothelial cells. These peptides induced diverse degrees of fast blockade in the endothelial KCa channel. The most effective blockers were the peptides NTX1–39 (IC50=0.5 m) and NTX1–20 comprising the first 20 amino acids from the native toxin (IC50 5 m), while less effective was the hexapeptide NTX1–6, from the first six amino acid residues of NTX (IC50 = 500 m). This was the minimum sequence required to block the channel.By testing overlapping sequences from the entire molecule, specially those corresponding to the N-terminal region of NTX, we have been able to determine their different apparent affinities for the KCa channel. Synthetic peptides from the C-terminal region produced no effect on the KCa channel at the concentrations tested (up to 1 mm). These results confirm that in the N-terminal region of the NTX is located part of the sequence that may recognize K+ channels, as we have suggested previously from in vivo experiments. The blockade induced by native NTX was poorly affected by changes in membrane potential; however, the blockage induced by synthetic peptides lacking the C-terminal region was partially released by depolarization.This study was supported by grant HL-45880 from the National Institutes of Health, and by grant 900946 from the American Heart Association to D.L.K. and Howard Hughes Medical Institute No. 75191-527104, CONACyT-Mexico No. 0018-N9105, and DGAPA-UNAM No. IN 202689 to L.D.P. This work was partially supported by a Grant-in-aid No. 92014250 from the American Heart Association to L.V.  相似文献   

12.
Summary We have examined the effects of various inositol polyphosphates, alone and in combination, on the Ca2+-activated K+ current in internally perfused, single mouse lacrimal acinar cells. We used the patch-clamp technique for whole-cell current recording with a set-up allowing exchange of the pipette solution during individual experiments so that control and test periods could be directly compared in individual cells. Inositol 1,4,5-trisphosphate (Ins 1,4,5 P3) (10–100 m) evoked a transient increase in the Ca2+-sensitive K+ current that was independent of the presence of Ca2+ in the external solution. The transient nature of the Ins 1,4,5 P3 effect was not due to rapid metabolic breakdown, as similar responses were obtained in the presence of 5mm 2,3-diphosphoglyceric acid, that blocks the hydrolysis of Ins 1,4,5 P3, as well as with the stable analoguedl-inositol 1,4,5-trisphosphorothioate (Ins 1,4,5 P(S)3) (100 m). Ins 1,3,4 P3 (50 m) had no effect, whereas 50 m Ins 2,4,5 P3 evoked responses similar to those obtained by 10 m Ins 1,4,5 P3. A sustained increase in Ca2+-dependent K+ current was only observed when inositol 1,3,4,5-tetrakisphosphate (Ins 1,3,4,5 P4) (10 m) was added to the Ins 1,4,5 P3 (10 m)-containing solution and this effect could be terminated by removal of external Ca2+. The effect of Ins 1,3,4,5 P4 was specifically dependent on the presence of Ins 1,4,5 P3 as it was not found when 10 m concentrations of Ins 1,3,4 P3 or Ins 2,4,5 P3 were used. Ins 2,4,5 P3 (but not Ins 1,3,4 P3) at the higher concentration of 50 m did, however, support the Ins 1,3,4,5 P4-evoked sustained current activation. Ins 1,3,4 P3 could not evoke sustained responses in combination with Ins 1,4,5 P3 excluding the possibility that the action of Ins 1,3,4,5 P4 could be mediated by its breakdown product Ins 1,3,4 P3. Ins 1,3,4,5 P4 also evoked a sustained response when added to an Ins 1,4,5 P(S)3-containing solution. Ins 1,3,4,5,6 P5 (50 m) did not evoke any effect when administered on top of Ins 1,4,5 P3. In the absence of external Ca2+, addition of Ins 1,3,4,5 P4 to an Ins 1,4,5 P3-containing internal solution evoked a second transient K+ current activation. Readmitting external Ca2+ in the continued presence internally of Ins 1,4,5 P3 and Ins 1,3,4,5 P4 made the response reappear. We conclude that both Ins 1,4,5 P3 and Ins 1,3,4,5 P4 play crucial and specific roles in controlling intracellular Ca2+ homeostasis.  相似文献   

13.
Elementary K+ currents were recorded at 19 °C in cell-attached and in inside-out patches excised from neonatal rat heart myocytes. An outwardly rectifying K+ channel which prevented Na+ ions from permeating could be detected in about 10% of the patches attaining (at 5 mmol/l external K+ and between – 20 mV and + 20 mV) a unitary conductance of 66 +- 3.9 pS. K (outw.-rect.) + channels have one open and at least two closed states. Open probability and open rose steeply on shifting the membrane potential in the positive direction, thereby tending to saturate. Open probability (at –7 mV) was as low as 3 ± 1% but increased several-fold on exposing the cytoplasmic surface to Mg-ATP (100 mol/l) without a concomitant change of open. No channel activation occurred in response to ATP in the absence of cytoplasmic Mg–+. The cytoplasmic administration of the catalytic subunit of protein kinase A (120–150 /ml) or GTP--S (100 mol/l) caused a similar channel activation. GDP--S (100 mol/l) was also tested and found to be ineffective in this respect. This suggests that cardiac K (outw.-rect.) + channels are metabolically modulated by both cAMP-dependent phosphorylation and a G-protein. Offprint requests to: M. Kohlhardt  相似文献   

14.
This study reports the analysis of K+ channel activity in bovine periaxolemmal-myelin and white matter-derived clathrin-coated vesicles. Channel activity was evaluated by the fusion of membrane vesicles with phospholipid bilayers formed across a patch-clamp pipette. In periaxolemmal myelin spontaneous K+ channels were observed with amplitudes of 25–30, 45–55, and 80–100 pS, all of which exhibited mean open-times of 1–2 msec. The open state probability of the 50 pS channel in periaxolemmal-myelin was increased by 6-methyldihydro-pyran-2-one. Periaxolemmal-myelin K+ channel activity was regulated by Ca2+. Little or no change in activity was observed when Ca2+ was added to thecis side of the bilayer. Addition of 10 M total Ca2+ also resulted in little change in K+ channel activity. However, at 80 M total Ca2+ all K+ channel activity was suppressed along with the activation of a 100 pS Cl channel. The K+ channel activity in periaxolemmal myelin was also regulated through a G-protein. Addition of GTPS to thetrans side of the bilayer resulted in a restriction of activity to the 45–50 pS channel which was present at all holding potentials. Endocytic coated vesicles, form in part through G-protein mediated events; white matter coated vesicles were analyzed for G proteins and for K+ channel activity. These vesicles, which previous studies had shown are derived from periaxolemmal domains, were found to be enriched in the subunits of G0, Gs, and Gi and the low molecular weight G protein,ras. As with periaxolemmal-myelin treated with GTPS, the vesicle membrane exhibited only the 50 pS channel. The channel was active at all holding potentials and had open times of 1–6 msec. Addition of GTPS to the bilayer fused with vesicle membrane appeared to suppress this channel activity at low voltages yet induced a hyperactive state at holding potentials of 45 mV or greater. The vesicle 50 pS K+ channel was also activated by the 6-methyl-dihydropyron-2-one (20 M).Abbreviations CNPase 2–3 cyclic nucleotide phosphohydrolase - EDTA ethylenediamine N,N,N,N-tetraacetic acid - G-protein GTP(guanosine triphosphate) binding protein - GTPS guanosine 5-O-(3-thiotriphosphate) - MAG myelin associated glycoprotein - Na+ K+ ATPase, Na+ and K+ stimulated adenosine triphosphatase - PLP myelin proteolipid protein Special issue dedicated to Dr. Majorie B. Lees.  相似文献   

15.
Erythrocyte plasma membranes of non-insulin dependent diabetic humans (NIDDM) and healthy humans were prepared by hypotonic lysis. The specific activity of (Na+–K+)-ATPase of NIDDM membranes, both in the absence and presence of digoxin were lower than the specific activity of normal enzymes (83.6 percent and 74.0 percent of the normal enzyme respectively). Addition of digoxin decreased the activity of this enzyme (38.0 percent in NIDDM and 30.0 percent in normal enzyme).Although the affinity of the pump for ATP was similar in both membranes of NIDDM and normal humans (Km for ATP=19.9±0.24M ATP and 20.0±0.21 M ATP respectively), the Vmax of NIDDM membranes was more than 20 percent lower than that of the normal enzyme. The specific activity of Mg2+-dependent Ca2+-pumping ATPase (Ca2+–Mg2+)-ATPase) of NIDDM membrane was lower than 80 percent of the specific activity of the normal enzymes. While the affinity of the pump for ATP was lower in the membranes of NIDDM (Km for ATP=50.0±4.3 M ATP) in comparison to normal membranes (Km for ATP=63.1±38M ATP), the Vmax of NIDDM membranes was similar to the normal enzyme. Altogether, these findings suggest that both the (Na+–K+)-ATPase and Ca2+-pumping ATPase of NIDDM membranes are less functional than the enzymes in normal erythrocytes.  相似文献   

16.
Summary The steady N shapeI/V curves were obtained by applying slow ramp hyper- and depolarization pulses toChara cells under the voltage-clamp condition. Application of calcium channel blocker, 20 m La3+, to theChara membrane caused, in about 30 min, a marked reduction of the transient inward current and later almost complete blocking of the pump current, while the steady outward current remained almost unaffected. Removal of external Ca2+ with 0.5mm EGTA caused similar results. Application of calmodulin antagonists, 10 m TFP or 20 m W-7, also gave very similar results, i.e., the decrease of the transient inward current and of H+-pump activity. These results suggest that not only the excitatory mechanisms but also the H+-pump activity ofChara membrane are regulated by calmodulin within a comparatively narrow range of internal Ca2+ level.  相似文献   

17.
Close coupling between extrusion of H+ and uptake of K+ by barley roots   总被引:1,自引:0,他引:1  
Rudolf Behl  Klaus Raschke 《Planta》1987,172(4):531-538
Extrusion of H+ by intact barley (Hordeum vulgare L.) roots was automatically titrated. Simultaneously, uptake of K+ into the roots, transport of K+ through the roots, and (as a residual term) accumulation of K+ within the root tissue were determined. When no monovalent cation was present in the medium the steady rate of H+ release was close to zero. Addition of K+ stimulated H+ extrusion within less than 1 min. The stimulation of H+ release was apparently limited only by the movement of K+ through the apoplast of the roots. The steady rate of H+ extrusion depended on the availability of external K+ and saturated at a K+ concentration of about 100 mol· dm-3. Half-maximum rates of net K+ uptake and H+ extrusion were reached at a K+ concentration of about 10 mol·dm-3. With (slowly absorbable) sulfate as the only anion present, the stoichoimetry between H+ release and net K+ uptake was one. In conclusion, the uptake of K+ across the plasmalemma of the cells of the root cortex is electrically coupled to H+ extrusion.  相似文献   

18.
Action potential duration (APD) shortening due to opening of sarcolemmal ATP-dependent potassium (KATP) channels has been postulated to protect the myocardium against postischemic damage by reducing Ca2+ influx. This hypothesis was assessed, assuming that increased postischemic stunning due to KATP channel inhibition with glibenclamide could be reverted by the addition of the Ca2+ channel blocker diltiazem. Percent wall thickening fraction (% WTh, conscious sheep) and APD (open-chest sheep) were obtained from the following groups: control: 12 min ischemia by anterior descending coronary artery occlusion followed by 2 h reperfusion; glibenclamide: same as control, with glibenclamide (0.4 mg/kg) infused 30 min before ischemia; diltiazem: same as control, with diltiazem (100 g/kg) administered prior to ischemia; glibenclamide+diltiazem: both drugs infused as in glibenclamide and diltiazem groups. APD was reduced in control ischemia. Conversely, KATP-channel blockade by glibenclamide lengthened APD and increased postischemic stunning (p < 0.01 vs. control); glibenclamide+diltiazem did not shorten APD but enhanced functional recovery (p < 0.01 vs. glibenclamide). Ca2+ channel blockade improvement of increased stunning provoked by KATP channel inhibition supports the hypothesis that APD shortening due to opening of KATP channels protects against postischemic stunning by limiting Ca2+ influx.  相似文献   

19.
Summary A simple procedure was developed for the isolation of a sarcolemma-enriched membrane preparation from homogenates of bullfrog (Rana catesbeiana) heart. Crude microsomes obtained by differential centrifugation were fractionated in Hypaque density gradients. The fraction enriched in surface membrane markers consisted of 87% tightly sealed vesicles. The uptake of86Rb+ by the preparation was measured in the presence of an opposing K+ gradient using a rapid ion exchange technique. At low extravesicular Rb+ concentrations, at least 50% of the uptake was blocked by addition of 1mm ouabain to the assay medium. Orthovanadate (50 m), ADP (2.5mm), or Mg (1mm) were also partial inhibitors of Rb+ uptake under these conditions, and produced a complete block of Rb+ influx in the presence of 1mm ouabain. When86Rb+ was used as a tracer of extravesicular K+ (Rb 0 + 40 m K 0 + =0.1–5mm) a distinct uptake pathway emerged, as detected by its inhibition by 1mm Ba2+ (K 0.5=20 m). At a constant internal K+ concentration (K in + =50mm) the magnitude of the Ba2+-sensitive K+ uptake was found to depend on K 0 + in a manner that closely resembles the K+ concentration dependence of the background K+ conductance (I Kl) observed electrophysiologically in intact cardiac cells. We conclude that K+ permeates passively this preparation through two distinct pathways, the sodium pump and a system identifiable as the background potassium channel.  相似文献   

20.
Summary To study the physiological role of the bidirectionally operating, furosemide-sensitive Na+/K+ transport system of human erythrocytes, the effect of furosemide on red cell cation and hemoglobin content was determined in cells incubated for 24 hr with ouabain in 145mm NaCl media containing 0 to 10mm K+ or Rb+. In pure Na+ media, furosemide accelerated cell Na+ gain and retarded cellular K+ loss. External K+ (5mm) had an effect similar to furosemide and markedly reduced the action of the drug on cellular cation content. External Rb+ accelerated the Na+ gain like K+, but did not affect the K+ retention induced by furosemide. The data are interpreted to indicate that the furosemide-sensitive Na+/K+ transport system of human erythrocytes mediates an equimolar extrusion of Na+ and K+ in Na+ media (Na+/K+ cotransport), a 1:1 K+/K+ (K+/Rb+) and Na+/Na+ exchange progressively appearing upon increasing external K+ (Rb+) concentrations to 5mm. The effect of furosemide (or external K+/Rb+) on cation contents was associated with a prevention of the cell shrinkage seen in pure Na+ media, or with a cell swelling, indicating that the furosemide-sensitive Na+/K+ transport system is involved in the control of cell volume of human erythrocytes. The action of furosemide on cellular volume and cation content tended to disappear at 5mm external K+ or Rb+. Thein vivo red cell K+ content was negatively correlated to the rate of furosemide-sensitive K+ (Rb+) uptake, and a positive correlation was seen between mean cellular hemoglobin content and furosemide-sensitive transport activity. The transport system possibly functions as a K+ and waterextruding mechanism under physiological conditiosin vivo. The red cell Na+ content showed no correlation to the activity of the furosemide-sensitive transport system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号