首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wet wheat distillers' grain (WWDG), a residue from ethanol fermentation, was examined from a microbiological perspective. After storage, WWDG was characterized by a high content of lactobacilli, nondetectable levels of other bacteria, occasional occurrence of yeasts, and a pH of about 3.6 and contained a mixture of lactic acid, acetic acid, and ethanol. The composition of lactobacilli in WWDG was simple, including primarily the species Lactobacillus amylolyticus, Lactobacillus panis, and Lactobacillus pontis, as determined by 16S rRNA gene sequencing. Since the use of WWDG as pig feed has indicated a health-promoting function, some relevant characteristics of three strains of each of these species were examined together with basal physiological parameters, such as carbohydrate utilization and growth temperature. Seven of the strains were isolated from WWDG, and two strains from pig feces were included for comparison. It was clear that all three species could grow at temperatures of 45 to 50°C, with L. amylolyticus being able to grow at temperatures as high as 54°C. This finding could be the explanation for the simple microflora of WWDG, where a low pH together with a high temperature during storage would select for these organisms. Some strains of L. panis and L. pontis showed prolonged survival at pH 2.5 in synthetic stomach juice and good growth in the presence of porcine bile salt. In addition, members of all three species were able to bind to immobilized mucus material in vitro. Especially the isolates from pig feces but, interestingly, some isolates from WWDG as well possessed properties that might be of importance for colonization of the gastrointestinal tracts of pigs.  相似文献   

2.
A total of 77 tannase producing lactobacilli strains isolated from human feces or fermented foods were examined for their genotypic profiles and intensities of tannase production. With a PCR-based assay targeting recA gene, all strains except one isolate were assigned to either Lactobacillus plantarum, L. paraplantarum, or L. pentosus whereas a 16/23S rDNA targeted PCR-based assay identified all except 6 isolates (inclusive of the above one isolate) as one of the closely related species. Subsequent DNA/DNA hybridization assays revealed that these 6 exceptional isolates showed low homology (between 1.2% and 55.8% relative DNA binding) against type strains of the three species. Supplemental carbohydrate fermentation profiles on the 6 isolates indicated that two of them were identified as L. acidophilus, one as Pediococcus acidilactici, one as P. pentosaceus, and two remained unidentifiable. The evidence suggests that the 16/23S rDNA targeted PCR assay can be used as a reliable identification tool for the closely related lactobacilli, and that the tannase gene is widely distributed within members of the Lactobacillaceae family. Meanwhile, a randomly amplified polymorphism DNA (RAPD) analysis revealed that all except 8 isolates were well allocated in 4 major RAPD clusters, though not species specific, consisting of two L. plantarum predominant clusters, one L. paraplantarum predominant, and one L. pentosus predominant. The RAPD patterns of the 8 non-clustered isolates, which consisted of the 6 unidentifiable isolates and 2 isolates identified as L. pentosus, were <40% similarity to those belonging to the 4 clusters. A quantitative assay of the tannase activities showed that there was a marked variation in the activities among the strains, which did not correlate with either species identification or clustering by RAPD.  相似文献   

3.
The aim of this study was to identify numerically dominant cultivable lactobacilli species in the feces of healthy adults. Ten individuals from Asturias, northern Spain, were chosen. Bacterial colonies grown under anoxic conditions on MRS with cysteine were microscopically examined for lactobacilli. Isolates were subsequently grouped based on the analysis of their carbohydrate fermentation profiles and then identified by partial amplification, sequencing, and comparison of their 16S rRNA gene sequences. Lactobacilli varied from undetectable levels in three subjects (10(5) CFU/g feces) to around 10(9) CFU/g feces. Among the 71 isolates obtained from seven individuals, 12 Lactobacillus species were identified. High interindividual variation was observed in terms of total numbers, number of species, and dominant species. Lactobacillus paracasei was found in four of the seven individuals; L. gasseri, L. delbrueckii, and L. plantarum in three. Phenotyping showed that only one strain per species was in the majority in each individual.  相似文献   

4.
The diversity of populations of yeast and lactic acid bacteria (LAB) in pig feeds fermented at 10, 15, or 20 degrees C was characterized by rRNA gene sequencing of isolates. The feeds consisted of a cereal grain mix blended with wet wheat distillers' grains (WWDG feed), whey (W feed), or tap water (WAT feed). Fermentation proceeded for 5 days without disturbance, followed by 14 days of daily simulated feed outtakes, in which 80% of the contents were replaced with fresh feed mixtures. In WWDG feed, Pichia galeiformis became the dominant yeast species, independent of the fermentation temperature and feed change. The LAB population was dominated by Pediococcus pentosaceus at the start of the fermentation period. After 3 days, the Lactobacillus plantarum population started to increase in feeds at all temperatures. The diversity of LAB increased after the addition of fresh feed components. In W feed, Kluyveromyces marxianus dominated, but after the feed change, the population diversity increased. With increasing fermentation temperatures, there was a shift toward Pichia membranifaciens as the dominant species. L. plantarum was the most prevalent LAB in W feed. The WAT feed had a diverse microbial flora, and the yeast population changed throughout the whole fermentation period. Pichia anomala was the most prevalent yeast species, with increasing occurrence at higher fermentation temperatures. Pediococcus pentosaceus was the most prevalent LAB, but after the feed change, L. plantarum started to proliferate. The present study demonstrates that the species composition in fermented pig feed may vary considerably, even if viable cell counts indicate stable microbial populations.  相似文献   

5.
AIMS: To characterize lactobacilli isolated from the intestines of ducks or pigs with respect to the production of extracellular homopolysaccharides (HoPS) and oligosaccharides. METHODS AND RESULTS: Lactobacillus strains of duck or pig origin were screened for HoPS synthesis and >25% of the isolates produced fructans or glucans from sucrose. Glucan-forming strains were found within the species Lactobacillus reuteri and Lactobacillus animalis and fructan-forming strains were found within Lactobacillus mucosae, Lactobacillus crispatus and Lactobacillus acidophilus. The glucan-forming strains of L. reuteri but not L. animalis produced glucose-oligosaccharides in additon to the respective polymers, and two fructan-forming strains of L. acidophilus produced kestose. Genes coding for glycosyltransferases were detected by PCR and partially characterized by sequence analysis. CONCLUSIONS: A large proportion of lactobacilli from intestinal habitats produce HoPS from sucrose and polysaccharide formation is generally associated with the formation of glucose- and fructose oligosaccharides. SIGNIFICANCE AND IMPACT OF THE STUDY: The characterization of the metabolic potential of intestinal lactobacilli contributes to the understanding of the molecular basis of autochthony in intestinal habitats. Moreover, this is the first report of glucose-oligosaccharide production during growth of lactobacilli, and one novel fructosyltransferase and one novel glucansucrase were partially characterized on the genetic level.  相似文献   

6.
A specific multiplex PCR assay based on the amplification of parts of the 16S rRNA molecule was designed. Primers derived from variable regions of the 16S rRNA provided a means of easily differentiating the species Lactobacillus pontis and Lactobacillus panis. They could be clearly discriminated from the phylogenetically related species Lactobacillus vaginalis, Lactobacillus oris, and Lactobacillus reuteri and from other lactobacilli commonly known to be present in sourdough. Other strains isolated together with L. pontis from an industrial sourdough fermentation could be clearly separated from these species by comparative sequence analysis and construction of a specific PCR primer. For a fast identification a DNA isolation protocol based on the ultrasonic lysis of cells from single colonies was developed. To demonstrate the potential of such techniques for tracking these organisms in a laboratory-scale fermentation, we combined the specific PCR assay with direct DNA extraction from the organisms in the sourdough without previous cultivation.  相似文献   

7.
Lactic acid bacteria (LAB) were isolated from Greek traditional wheat sourdoughs manufactured without the addition of baker's yeast. Application of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total cell protein, randomly amplified polymorphic DNA-PCR, DNA-DNA hybridization, and 16S ribosomal DNA sequence analysis, in combination with physiological traits such as fructose fermentation and mannitol production, allowed us to classify the isolated bacteria into the species Lactobacillus sanfranciscensis, Lactobacillus brevis, Lactobacillus paralimentarius, and Weissella cibaria. This consortium seems to be unique for the Greek traditional wheat sourdoughs studied. Strains of the species W. cibaria have not been isolated from sourdoughs previously. No Lactobacillus pontis or Lactobacillus panis strains were found. An L. brevis-like isolate (ACA-DC 3411 t1) could not be identified properly and might be a new sourdough LAB species. In addition, fermentation capabilities associated with the LAB detected have been studied. During laboratory fermentations, all heterofermentative sourdough LAB strains produced lactic acid, acetic acid, and ethanol. Mannitol was produced from fructose that served as an additional electron acceptor. In addition to glucose, almost all of the LAB isolates fermented maltose, while fructose as the sole carbohydrate source was fermented by all sourdough LAB tested except L. sanfranciscensis. Two of the L. paralimentarius isolates tested did not ferment maltose; all strains were homofermentative. In the presence of both maltose and fructose in the medium, induction of hexokinase activity occurred in all sourdough LAB species mentioned above, explaining why no glucose accumulation was found extracellularly. No maltose phosphorylase activity was found either. These data produced a variable fermentation coefficient and a unique sourdough metabolite composition.  相似文献   

8.
Aims:  Species-specific primers targeting the 16S–23S ribosomal DNA (rDNA) intergenic spacer region (ISR) were designed to rapidly discriminate between Lactobacillus mindensis , Lactobacillus panis , Lactobacillus paralimentarius , Lactobacillus pontis and Lactobacillus frumenti species recently isolated from French sourdough.
Methods and Results:  The 16S–23S ISRs were amplified using primers 16S/p2 and 23S/p7, which anneal to positions 1388–1406 of the 16S rRNA gene and to positions 207–189 of the 23S rRNA gene respectively, Escherichia coli numbering (GenBank accession number V00331 ). Clone libraries of the resulting amplicons were constructed using a pCR2·1 TA cloning kit and sequenced. Species-specific primers were designed based on the sequences obtained and were used to amplify the 16S–23S ISR in the Lactobacillus species considered. For all of them, two PCR amplicons, designated as small ISR (S-ISR) and large ISR (L-ISR), were obtained. The L-ISR is composed of the corresponding S-ISR, interrupted by a sequence containing tRNAIle and tRNAAla genes. Based on these sequences, species-specific primers were designed and proved to identify accurately the species considered among 30 reference Lactobacillus species tested.
Conclusions:  Designed species-specific primers enable a rapid and accurate identification of L. mindensis , L. paralimentarius , L. panis , L. pontis and L. frumenti species among other lactobacilli.
Significance and Impact of the Study:  The proposed method provides a powerful and convenient means of rapidly identifying some sourdough lactobacilli, which could be of help in large starter culture surveys.  相似文献   

9.
Wang CY  Lin PR  Ng CC  Shyu YT 《Anaerobe》2010,16(6):578-585
This study assessed potential probiotic Lactobacillus strains isolated from the feces of breast-fed infants and from Taiwanese pickled cabbage for their possible use in probiotic fermented foods by evaluating their (i) in vitro adhesive ability, resistance to biotic stress, resistance to pathogenic bacteria, and production of β-galactosidase; (ii) milk technological properties; and (iii) in vivo adhesive ability, intestinal survival and microbial changes during and after treatment. Five Lactobacillus isolates identified as Lactobacillus reuteri F03, Lactobacillus paracasei F08, Lactobacillus rhamnosus F14, Lactobacillus plantarum C06, and Lactobacillus acidophilus C11 that showed resistance to gastric juice and bile salts were selected for further evaluation of their probiotic properties. All the strains demonstrated the ability to adhere to Caco-2 cells, particularly, strain L. plantarum C06 and L. reuteri F03 showed satisfactory abilities, which were similar to that of the reference strain L. rhamnosus GG. The strains L. paracasei F08 and L. acidophilus C11 had the highest β-galactosidase activity. Most of the strains were resistant to aminoglycosides and vancomycin but sensitive to ampicillin, erythromycin, and penicillin. All the 5 strains elicited antibacterial activity against both Gram-positive (Bacillus cereus, Listeria monocytogenes and Staphylococcus aureus) and -negative (Escherichia coli and Salmonella enterica) pathogens. Moreover, the strains L. reuteri F03, L. paracasei F08, and L. plantarum C06 could grow rapidly in milk without nutrient supplementation and reached 10? cfu/mL after 24 h of fermentation at 37 °C. The viable cell counts of the 3 strains remained above 10? cfu/mL after 21 d of storage at 4 °C. In the animal feeding trial, the number of intestinal lactobacilli increased significantly after administration of milk fermented with the 3 strains, and the counts of fecal coliforms and Clostridium perfringens were markedly reduced. Lactobacillus strains could also survive in the ileal intestinal tissue of the treated rats. Technologically interesting Lactobacillus isolates may be used in the future as probiotic starter cultures for manufacturing novel fermented foods.  相似文献   

10.
To learn the biochemical mechanisms controlling the distribution of indigenous lactobacilli in the gastrointestinal tracts of rats, the effect of pH and stomach and cecal contents on lactobacillus distribution was investigated in vitro with a mixed culture of three lactobacillus strains isolated from the rat intestine. The pH of the growth medium affected the growth of lactobacilli strongly, irrespective of the lumenal contents. Lactobacillus fermentum outnumbered L. acidophilus and L. murini at low pH (PH 4.5; average pH of stomach contents of conventional rats) but at near neutral pH (pH 6.5; average pH of cecal contents of conventional rats), the growth of L. murini was predominant with all strains. More lactic acid was formed by lactobacilli in medium consisting of stomach contents than in cecal contents medium. L. murini grew in the nondialyzable fraction of the stomach contents and L. fermentum grew in the dialyzable fraction, but L. acidophilus did not grow in either fraction. L. murini grew in the nondialyzable fraction treated with hyaluronidase. In contrast, the nondialyzable fraction treated with pronase or chondroitinase did not allow L. murini to grow at all.  相似文献   

11.
Deconjugation of bile acids by intestinal lactobacilli.   总被引:2,自引:0,他引:2  
Lactobacillus species normally found in the intestinal tract of humans varied in the ability to deconjugate bile acids, whereas laboratory strains of Lactobacillus acidophilus deconjugated both glycocholate and taurocholate. All isolates of L. acidophilus from human feces deconjugated taurocholate, whereas only one of six deconjugated glycocholate. None of 13 isolates identified as L. casei deconjugated taurocholate, whereas 9 deconjugated glycocholate. The deconjugating system of L. acidophilus appeared to be constitutive, required low oxidation-reduction potential, and was most active at pH 6. No degradation beyond deconjugation was detected.  相似文献   

12.
Deconjugation of bile acids by intestinal lactobacilli.   总被引:11,自引:7,他引:4       下载免费PDF全文
Lactobacillus species normally found in the intestinal tract of humans varied in the ability to deconjugate bile acids, whereas laboratory strains of Lactobacillus acidophilus deconjugated both glycocholate and taurocholate. All isolates of L. acidophilus from human feces deconjugated taurocholate, whereas only one of six deconjugated glycocholate. None of 13 isolates identified as L. casei deconjugated taurocholate, whereas 9 deconjugated glycocholate. The deconjugating system of L. acidophilus appeared to be constitutive, required low oxidation-reduction potential, and was most active at pH 6. No degradation beyond deconjugation was detected.  相似文献   

13.
AIMS: To examine the lactic acid bacteria flora of weaning piglets, to define the distribution of different lactobacilli species in piglet faecal samples, and to determine the susceptibility phenotype to 11 antibiotic of different families. METHODS AND RESULTS: The faecal samples were taken from piglets with good herd status at 11 and 28 days after weaning. The Lactobacillus isolates (n = 129) from 78 animals housed in pairs in 39 pens were preliminarily identified by their morphology and biochemical characteristics. Partial 16S ribosomal DNA (16S rDNA) was used to identify the isolates to the species level, and RAPD (randomly amplified polymorphism DNA) profiles to differentiate Lactobacillus isolates to the strain level. Based on these studies, 67 strains were selected for antibiotic resistant tests. The most numerous Lactobacillus species found in the piglets was Lactobacillus reuteri (n = 43). Other lactobacilli were L. salivarius (n = 15), L. agilis (n = 4), L. johnsonii (n = 2), L. vaginalis (n = 1), L. mucosae (n = 1) and L. gallinarum (n = 1). All the strains were susceptible to chloramphenicol, ampicillin and gentamicin. Two L. salivarius isolates and two L. reuteri isolates were found to be multiresistant. CONCLUSIONS: This study indicates that the faecal Lactobacillus flora in piglets consists mainly of L. reuteri, L. salivarius and L. acidophilus group lactobacilli, and the distribution of lactobacilli is similar between individuals of the same age and with the same diet. Most of the Lactobacillus isolates tested were sensitive to the antibiotics used in this study. SIGNIFICANCE AND IMPACT OF THE STUDY: Valuable information on Lactobacillus species distribution and their antibiotic resistance profiles in piglets is obtained.  相似文献   

14.
Utilisation of maltose and glucose by lactobacilli isolated from sourdough   总被引:4,自引:0,他引:4  
Abstract The utilisation of glucose and maltose was investigated with Lactobacillus strains isolated from sourdough starters. These preparations have been in continuous use for a long period to produce sourdough from rye, wheat and sorghum. The major metabolic products formed by resting cells from glucose or maltose were lactate, ethanol and acetate. Upon fermentation of maltose, resting cells of Lactobacillus sanfrancisco, L. reuteri, L. fermentum and Lactobacillus ep. released up to 13.8 mM glucose after 8 h. The ratio of released glucose per mol of utilised maltose was up to 1:1. Glucose formation was high when starved cells of L. sanfrancisco and Lactobacillus sp. were used. This is consistent with maltose utilisation via maltose phosphorylase which phosphorylates maltose without the expenditure of ATP and thus allows the cell to waste glucose in the presence of abundant maltose. The glucose formed may be utilised by the lactobacilli or other microorganisms, e.g. yeasts. However, the release of glucose into the medium by sourdough lactobacilli prevents competitors from utilising the abundant maltose by glucose repression. In strains of L. sanfrancisco , maltose utilisation was very effective and not subject to glucose repression. Therefore, they overgrow other microorganisms sharing this habitat. Wild isolates of L. sanfrancisco were initially unable to grow on glucose. Upon growth on maltose such strains required adaptation times of up to 150 h to grow on glucose. After subsequent transfer of glucose-grown cells to fresh medium the strains resumed growth both on glucose or maltose. They readily lost their ability to grow on glucose upon exposure to maltose. L. sanfrancisco exhibited biphasic growth characteristics on media containing glucose, maltose or both carbon sources. Evidence is provided that biphasic growth and metabolite formation are dependent on the redox potential.  相似文献   

15.
Antigenic analyses of Lactobacillus fermenti were carried out by double immunodiffusion in agar using extracts prepared with cold trichloroacetic acid (TCA) or hot dilute hydrochloric acid (HCL). A common antigen of L. fermenti, designated as antigen f by the author, was extracted from whole cells with dilute HCL, but not with TCA. The antigen f was also observed in Lactobacillus casei. In addition, all strains isolated from human saliva contained antigen 6 in their cell walls, while the antigen was not observed in most of the isolates from human feces. Therefore, L. fermenti could be divided into two subgroups based upon the existence of antigen 6. Antigen 7 which was demonstrated in some strains of L. fementi was shared by other species of lactobacilli belonging to the serological groups D and E. The common antigen 3 found in lactobacilli was extracted from all strains of L. fermenti Sugar components of cell walls were mainly galactose, glucose and glucosamine (including N-acetylglucosamine), but a small amount of rhamnose was present in the cell wall of only one strain. Inhibition tests with various sugars showed that the serologically active sugars were galactose for antigen f and glucose for antigen 6.  相似文献   

16.
Four strains of facultatively heterofermentative lactobacilli isolated from beer and human feces have physiological characteristics similar to those of Lactobacillus plantarum. Unlike 66% of the L. plantarum strains tested (F. Bringel, M.-C. Curk, and J.-C. Hubert, Int. J. Syst. Bacteriol. 46:588-594, 1996), these strains do not catabolize alpha-methyl-D-mannoside. However, because they exhibit little DNA relatedness to L. plantarum and Lactobacillus pentosus, these four strains were classified as members of a new species, Lactobacillus paraplantarum; strain CNRZ 1885 (= CIP 104668) is the type strain.  相似文献   

17.
Relationships between 5 Lactobacillus manufacturing strains, 458 cultures of indigenous lactobacilli isolated from the human digestive and vaginal tracts and 98 isolates from the feces of white rats and mice were under study. The study demonstrated that under the conditions of mixed in vitro cultivation of paired cultures, probiotic strains inhibited more than 60% of the indigenous lactobacilli isolates. L. acidophilus strain K3 III 24 had the widest spectrum of antagonistic activity. Antagonistic relationships between indigenous lactobacilli depended on the origin, individual features and the anatomical sites of the culture isolation. Based on these results it has to be suggested that probiotic lactobacilli are capable of inducing disbalance in the host indigenous lactoflora. While choosing probiotics the character of relationships between probiotic microorganisms and the indigenous lactobacilli of the future recipient is recommended to be preliminarily tested in vitro.  相似文献   

18.
AIMS: Lactobacilli are widely distributed in food and the environment, and some colonize the human body as commensal bacteria. The aim of this study was to determine the species of lactobacilli that colonize the vagina and compare them with those found in food and the environment. METHODS AND RESULTS: Thirty-five Lactobacillus strains from women from seven countries were isolated, and sequences from 16S rRNA genes were determined and compared with existing data in GenBank. A phylogenetic tree was achieved using the Neighbour-Joining method based on the analysis of 1465 nucleotides. The results showed that most vaginal isolates were L. crispatus, L. jensenii and L. gasseri. Some were L. vaginalis, L. fermentum, L. mucosae, L. paracasei and L. rhamnosus. Two isolates from a native American woman displayed distinct branches, indicating novel phylotypes. Few vaginal isolates matched food or environmental Lactobacillus species. CONCLUSIONS: Most women worldwide were colonized by three common Lactobacillus species: L. crispatus, L. jensenii and L. gasseri. SIGNIFICANCE AND IMPACT OF THE STUDY: Knowledge of vaginal Lactobacillus species richness and distribution in women worldwide may lead to the design of better probiotic products as bacterial replacement therapy.  相似文献   

19.
Comparative analysis of partial tuf sequences was evaluated for the identification and differentiation of lactobacilli. Comparison of the amino acid sequences allowed differentiation between species and also between the subspecies of Lactobacillus delbrueckii. The nucleotide sequence comparison allowed differentiation between other subspecies and between some strains. Lactobacilli from several collections and isolates from dairy samples were clearly identified by comparison of short tuf sequences with those of the type strains. In evaluating the taxonomy of the Lactobacillus casei-related taxa, different tuf amino acid signatures are in favour of a classification into three distinct species. The type strain designation for the L. casei species is discussed.  相似文献   

20.
Some characteristics of the association between lactic acid bacteria and pig squamous epithelial cells were studied. Strains from several sources were tested for adhesion in vitro but only those from pigs and chickens attached. The adhesion rate of pig isolates was very variable and, of the isolates tested, strains of Lactobacillus fermentum and Streptococcus salivarius attached in largest numbers. These strains were selected for further study. They did not attach to columnar epithelial cells from the small and large intestine. Adhesion was reduced by sodium periodate or protease. Both strains had a microcapsule with fibrils which stained with ruthenium red. The adhesive bond between lactobacilli and squamous tissue was strong enough to resist washing 50 times but there was a persistent release of bacteria during the washing process. When the strains of both species or of L. fermentum alone were fed to artificially reared pigs there was a statistically significant reduction in the numbers of Escherichia coli in the stomach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号