首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
We tested the hypothesis that slope influences where worker ants deposit excavated soil on piles near the nest entrance. We predicted that ants will deposit their load near the top of a pile where the slope changes from upward to downward, to prevent material rolling back towards the entrance. We tested this hypothesis by studying five natural colonies of Pheidole oxyops ants at a field site at S?o Sim?o, Brazil. At this site, each colony was dumping sandy soil excavated from its underground nest in a crescent-shaped pile c. 13 cm from and perpendicular to the nest entrance. Each nest was given an experimental sand pile of symmetrical curved cross section on a plywood platform that could be tilted 15 degrees up or down. From videos, the locations where individual ants dumped their soil loads were measured in relation to the inner (position = 0) and outer (position = 1) edges of the pile. When the platform was tilted down the ants deposited their loads significantly closer to the inner edge (0.458 ± 0.007) than when not tilted (0.530 ± 0.006). When the platform was tilted up the ants deposited their loads significantly further from the inner edge (0.626 ± 0.006) than when not tilted (0.522 ± 0.006). These results support the hypothesis that ants use pile slope in deciding where to dump their load. A similar rule is probably used in other ant species that place excavated soil in steep piles near the nest entrance. Received 5 February 2007; revised 10 June 2007; accepted 9 October 2007.  相似文献   

2.
This study reports a novel form of interference behaviour between the invasive wasp Vespula vulgaris and the New Zealand native ant Prolasius advenus. By videotaping interactions at bait stations, we found that wasps commonly remove ant competitors from food resources by picking up the workers in their mandibles, flying backward and dropping them unharmed some distance from the food. Both the frequency and the efficiency of the wasp behaviour significantly increased with the abundance of ant competitors. Ant removals were the most common interference events initiated by wasps when ants were numerous, while intraspecific conflicts among wasps were prominent when few ants were present. The 'ant-dropping' behaviour emphasizes how asymmetry in body sizes between competitors can lead to a pronounced form of interference, related to asymmetric locomotion modes.  相似文献   

3.
Abstract. 1. The leaf-cutting ant Atta cephalotes (L.) in a Costa Rican tropical moist forest showed diel changes in foraging activity. In most colonies studied, foraging was primarily nocturnal, although in a few colonies it was primarily diurnal.
2. In all colonies studied, mean forager mass was larger at night than during the day.
3. At night, most foragers carried freshly cut leaf fragments, whereas during the day a large proportion carried dried fragments and other vegetable matter collected from along their trail.
4. Along one trail, where foraging was primarily nocturnal, the match between ant mass and load mass was compared for laden ants at night and during the day. Laden ants at night were larger, carried relatively heavier loads, and showed a higher degree of matching between their mass and load mass than those foraging during the day.
5. A comparison of load masses of ants coming down a local tree and of ants picking up marked fragments from along their trail suggested that the diel difference in load mass and in the match between ant mass and load mass were related to the greater proportion of ants carrying freshly cut leaf fragments at night. Fresh fragments weighed more due to higher water content, and the match between ant mass and load mass was greater for ants cutting fresh fragments than for ants picking up abandoned fragments from along their trail.
6. Possible explanations for the diel changes in forager size and activity are discussed.  相似文献   

4.
Changing climates are predicted to alter the distribution of thermal niches. Small ectotherms such as ants may be particularly vulnerable to heat injury and death. We quantified the critical thermal maxima of 92 ant colonies representing 14 common temperate ant species. The mean CTmax for all measured ants was 47.8 °C (±0.27; range=40.2–51.2 °C), and within-colony variation was lower than among-colony variation. Critical thermal maxima differed among species and were negatively correlated with body size. Results of this study illustrate the importance of accounting for mass, among and within colony variation, and interspecific differences in diel activity patterns, which are often neglected in studies of ant thermal physiology.  相似文献   

5.
Biological invasions can have severe and widespread impacts on ecological communities. A few species of ants have become particularly damaging invaders but quantitative data of their impacts on many taxa is still lacking. We provide experimental evidence using artificial nests baited with quail eggs that the invasive Argentine ant (Linepithema humile) can be a significant avian nest predator – Argentine ants recruited to more nests and in higher abundance than the native ant species they displace. However, at a site invaded by Argentine ants, we monitored over 400 nests of a ground-nesting species, the Dark-eyed Junco (Junco hyemalis), and found that less than 2% of nests failed as a result of Argentine ant predation/infestation. A review of the literature also suggests that Argentine ants may not be a serious threat to bird nests relative to other predators or parasites. However, invasive ants with the capability of overwhelming prey though stinging (specifically the red-imported fire ant, Solenopsis invicta), may have a higher impact on avian nesting success. Received 14 January 2005; revised 28 April 2005; accepted 12 May 2005.  相似文献   

6.
Aggregation is usually studied in functional terms, forgetting mechanisms. In this paper, experimental results on the ant Lasius niger, complemented by a model, allow us to understand the mechanisms responsible for aggregation and to study the influence of the population density on this phenomenon. The results show (1) a high level of aggregation and the emergence of a large cluster; (2) that aggregation results from an amplification mechanism—the greater the number of ants inside a cluster, the greater the time spent by one ant in this cluster; and (3) that population density has only a weak influence on the aggregation process. This method of analysis and these results can certainly be extended not only in social insects but also in other species, like subsocial arthropods.  相似文献   

7.
The little fire ant, Wasmannia auropunctata, probably arrived in Israel in ca. 1998 and was identified in 2005; this is the first record of this species from open areas outside the tropics and subtropics. It survives harsher conditions than in its native habitats, with minimal annual temperatures as low as 6°C, and 5–12 consecutive rainless months (under 15 mm rainfall per month). It is now known from 26 localities in Israel, mostly in irrigated gardens. As in other regions where they have invaded, these ants pose a serious threat to local biodiversity. At high densities they displaced almost all the local ant species sampled, affecting population abundances, species richness, and community structure. W. auropunctata seems to have a detrimental effect also on other ground arthropods, judging from the observed decline in spider and beetle abundances. We show here that this tropical species can pose a critical threat to local arthropods at a wider range of climatic conditions than was previously known.  相似文献   

8.
Takao Itioka  Tamiji Inoue 《Oecologia》1996,106(4):448-454
The intensity of attendance by a honeydew-foraging ant, Lasuis niger, on the red wax scale insect, Ceroplastes rubens, was estimated at different manipulated densities in the field. The time that individual ants were present and the total attendance time (seconds x number of ants) of ants on scale-infested twigs significantly increased as the density of C. rubens increased, i.e. ant attendance was density dependent. To determine the effects of density dependence of ant attendance on parasitism of C. rubens by Anicetus beneficus, we measured parasitism rates in the field at different density levels of C. rubens both with ant attendance and with ants excluded. Parasitism rates were higher when ants were excluded, at each density level. Although the parasitism rate significantly deceased as scale density increased, whether or not ants attended, the difference in parasitism rate between density levels was strikingly less without ant attendance. Therefore, the density-dependent decrease of parasitism rate was more pronounced with ant attendance. Mortality not due to parasitism showed density dependence in both conditions and did not change when ants were excluded. These results indicate that attending ants reduce parasitism and that, as a consequence of the density dependence of ant attendance, the efficiency of reduction of parasitism by ants is enhanced at higher densities of C. rubens.  相似文献   

9.
The last meal of sarcophagous maggots may be useful in identifying the species on whose flesh they have fed (the"host"species). The DNA profile of the host species may indeed be detectable in the"last meal". In this paper, mitochondrial DNA analysis of gut contents was used to identify the prior host of post-feeding larvae of Aldrichina grahami (Aldrich) (Diptera: Calliphoridae). A modified logistic equation was fitted to estimate the probability of identifying the host under five different constant temperatures (16, 20, 24, 28 and 32 ℃). Our results shows that the detected time ranged from a maximum of 24 h at 32℃ to 42 h at 16℃ and a minimum of 12 h at 32~C to 30 h at 16℃. Furthermore, the host detection time was also calculated to give the maximal time after larval hatching from the egg. These results indicate that, in criminal cases where the maggots stray from the corpse, the last meal of the larvae should not be overlooked as potentially critical evidence.  相似文献   

10.
Debris dropping behavior by ants during foraging has been labeled alternately as tool use or a protective behavior. To address this controversy, we investigated the circumstances under which the common forest ant Aphaenogaster rudis drops and retrieves debris in the forests of Vermont, in the U.S.A. We tested the hypotheses, first, that debris dropping functions to protect workers from entanglement or drowning in liquids, and second, that debris dropping functions as part of foraging tool use. To determine how workers are allocated to the debris dropping and retrieval tasks, we studied individually marked foragers in the field and laboratory. Our results provide evidence that the debris dropping behavior of Aphaenogaster rudis deserves to be labeled as foraging tool use; A. rudis ants do not drop debris in non-food substances that present a hazard of entanglement or drowning to workers. We also found that potential tools represent a small, but non-negligible, percentage of the items that A. rudis foragers bring back to their colonies. Furthermore, debris dropping by A. rudis at baits discouraged colonization by other ant species. Finally, we provide the first evidence that tool use is a specialized task performed by a subset of A. rudis foragers within each colony at any given point in time. The execution of this task by a small proportion of workers may enhance the competitive ability of this ecologically dominant forest ant. Received 3 April 2006; revised 13 August 2006; accepted 1 September 2006.  相似文献   

11.
In the sparse larch forests of the upper Kolyma River, hypopi of the mite Anoetus myrmicarum (Scheucher, 1957) were found in several nests of the ant Formica lemani Bondroit, 1917. These mites were not found in hundreds of nests of the other 10 ant species examined in northeastern Asia. A possible ecological and physiological conditionality of the restricted distribution of phoretic mites was analyzed. For this purpose, coldhardiness of mites and their ant hosts, the biotopic distribution and the structure of nests, and the temperature conditions of overwintering were examined. At the stage of hypopus, the mites overwintered on ants in the overcooled stage; their mean supercooling temperatures (SCP) varied from ?25.8 ± 0.3°C to ?27.7 ± 0.4°C (min ?32.2°C, n = 157). These values were by 0.1 to 7.0°C lower than the mean SCP of the ants from 8 tested nests of F. lemani (?20.7 ± 0.5°C to ?25.7 ± 0.8°C). The soil temperatures at the level of winter chambers varied from ?12°C to ?15°C. Scarcity of findings of Anoetus myrmicarum in the Kolyma Highland is not associated with the limited cold-hardiness of the examined stages, but is most probably determined by interrelations between mites and ants.  相似文献   

12.
Summary. Ants have the capacity to reach unusually high densities, mostly in their introduced ranges. Numerical dominance is often cited as key to the ability of exotic ants to displace native ant species, reduce the abundance of invertebrates and negatively impact upon bird, land crab and other vertebrate populations. On Christmas Island, Indian Ocean, the yellow crazy ant, Anoplolepis gracilipes (Jerdon), forms supercolonies, where extremely high densities of foraging ants have contributed to ‘invasional meltdown’ in rainforest areas. Densities of up to 2254 foraging ants per m2 and a biomass of 1.85 g per m2 were recorded, and nest densities reached 10.5 nest entrances per m2. Populations of A. gracilipes can overcome and kill red endemic land crabs (Gecarcoidea natalis) over 100 times their own biomass. This is the highest recorded density of foraging ants, and adds another element to the definition of ‘supercolony’ of unicolonial ants. This paper documents one extreme in a continuum of densities of unicolonial, invasive ant species and highlights the need to incorporate forager densities into invasive ant research.Received 17 November 2004; revised 14 February 2005, accepted 21 February 2005.  相似文献   

13.
《Acta Oecologica》1999,20(5):509-518
In a deciduous forest, foraging ants collect elaiosome-bearing seeds and carry them to their nests. Some of the seeds reach the nest and are concentrated there. Others may be dropped by ants during transport. The dropped seeds enter the soil seed pool. However, they might be repeatedly removed by other ant individuals and carried again in the direction of the nest. Rates of seed dropping and repeated removals must be known to evaluate the effect of ant workers on dispersal distance of seeds. The rate of seed dropping is predicted to depend on size of seeds and of elaiosomes, both of which vary among plant species, and on the size of the ant workers. Mark-recapture experiments were used to evaluate dropping rates of seeds of five myrmecochorous and diplochorous plants (Chelidonium majus L., Asarum europaeum L., Viola matutina Klok., V. mirabilis L., V. hirta L.) during their transport by the ant Formica polyctena Foerst. In the series of species A. europaeumV. hirtaV. mirabilisCh. majusV. matutina, the dropping rate increased. Small workers dropped seeds of A. europaeum more often than did large ones, while seeds of V. hirta were dropped by ants of different size classes with the same frequency. Across species, dropping rates of seeds were negatively correlated with the rate at which ants removed them from the depot. The number of seeds which reach the nests is the other important parameter of seed dispersal. This parameter depends on dropping rates: seeds with lower dropping rates have higher chances of being deposited in nests. Diplochores usually produce many small seeds, which are characterised by low removal rates and high dropping rates during transport by ants. Obligate myrmecochores produce rather few large seeds, which have high removal rates and low dropping rates. To analyse the significance of seed dropping in the dispersal distance of seeds, a computer simulation based on two factors [(i) seed number produced by a plant; (ii) dropping rate of seeds] is proposed.  相似文献   

14.
J. Zee  D. Holway 《Insectes Sociaux》2006,53(2):161-167
Invasive ants often displace native ants, and published studies that focus on these interactions usually emphasize interspecific competition for food resources as a key mechanism responsible for the demise of native ants. Although less well documented, nest raiding by invasive ants may also contribute to the extirpation of native ants. In coastal southern California, for example, invasive Argentine ants (Linepithema humile) commonly raid colonies of the harvester ant, Pogonomyrmex subnitidus. On a seasonal basis the frequency and intensity of raids vary, but raids occur only when abiotic conditions are suitable for both species. In the short term these organized attacks cause harvester ants to cease foraging and to plug their nest entrances. In unstaged, one-on-one interactions between P. subnitidus and L. humile workers, Argentine ants behaved aggressively in over two thirds of all pair-wise interactions, despite the much larger size of P. subnitidus. The short-term introduction of experimental Argentine ant colonies outside of P. subnitidus nest entrances stimulated behaviors similar to those observed in raids: P. subnitidus decreased its foraging activity and increased the number of nest entrance workers (many of which labored to plug their nest entrances). Raids are not likely to be the result of competition for food. As expected, P. subnitidus foraged primarily on plant material (85% of food items obtained from returning foragers), but also collected some dead insects (7% of food items). In buffet-style choice tests in which we offered Argentine ants food items obtained from P. subnitidus, L. humile only showed interest in dead insects. In other feeding trials L. humile consistently moved harvester ant brood into their nests (where they were presumably consumed) but showed little interest in freshly dead workers. The raiding behavior described here obscures the distinction between interspecific competition and predation, and may well play an important role in the displacement of native ants, especially those that are ecologically dissimilar to L. humile with respect to diet. Received 15 July 2005; revised 19 October 2005; accepted 26 October 2005.  相似文献   

15.
Many ant species produce winged reproductive males and females that embark on mating flights. Previous research has shown substantial synchrony in flights between colonies and that weather influences phenology but these studies have been limited by sample size and spatiotemporal scale. Using citizen science, we gathered the largest ever dataset (> 13 000 observations) on the location and timing of winged ant sightings over a three‐year period across a broad spatial scale (the United Kingdom). In total, 88.5% of winged ants sampled were Lasius niger. Observations occurred from June to September with 97% occurring in July/August but exact temporal patterns differed substantially between years. As expected, observations within each year showed a small but significant northward/westward trend as summer progressed. However, the predicted spatiotemporal synchrony was far less apparent; observations were not significantly spatially clustered at national, regional or local scales. Nests in urban (vs rural) areas and those associated with heat‐retaining structures produced winged ants earlier. Local weather conditions rather than broad geographical or seasonal factors were shown to be critical in the timing of winged ant activity, presumably to optimize mate finding and to minimize energy consumption and predation. Temperature and wind speed, but not barometric pressure, were significant predictors of observations (positively and negatively, respectively); winged ants were only observed at temperatures > 13°C and wind‐speeds < 6.3 m–1. All days with a mean daily temperature > 25°C had observations. Intriguingly, changes in temperature and wind speed from the day before flight peaks were also significant. We conclude that: 1) spatiotemporal synchrony in flights is lower than previously thought for L. niger, 2) local temperature and wind are key predictors of flight phenology; and 3) ants appear able to determine, at least in a limited way, if weather is improving or deteriorating and adjust their behaviour accordingly.  相似文献   

16.
Yoshihisa Abe 《Oecologia》1992,89(2):166-167
Summary Gall clusters of Andricus symbioticus secrete a sweet and sticky food attractive to ants. An ant exclusion experiment demonstrated the selective advantage of attending ants and gall aggregation for A. symbioticus. This gall wasp interacts with the gall-attending ants only through the host plant. Evolution of this symbiotic relationship seems to be associated with gall aggregation.Contribution from Laboratory of Entomology Kyoto Prefectural University, No. 249  相似文献   

17.
The success of a biological invasion may depend on the interactions between the invader and the native biota. However, little experimental evidence demonstrates whether local species can successfully compete with exotics. We experimentally determined the existence of competition for food between the exotic wasp Vespula germanica, one of the most recent Patagonian invaders, and the native ant assemblage. Both wasps and ants are generalist predators and scavengers, sharing habitat and food resources. We selected 30 sites within scrubland habitats where both ants and wasps were present. At each site, we placed containers with protein baits under three treatments: wasp exclusion, ant exclusion, and control (i.e., free access for wasps and ants). Ant exclusion increased the number of wasps (with regard to a control), but wasp exclusion did not affect ant abundance. This result suggests that native ants affect the foraging activity of exotic wasps but not vice versa. Aggressive behaviors and worker aggregation may explain the competitive advantage of ants. Ants bite wasp legs and massively aggregate on food sources, physically limiting the landing of wasps on baits. If the outcome of interactions at baits reported here influence wasp population-level parameters, this competitive interaction could be one of the factors explaining the low abundance of this exotic wasp in NW Patagonia in comparison with other invaded regions.  相似文献   

18.
Ant-eating spiders, Zodarion germanicum and Z. rubidum , were found to resemble ants structurally (size, colour, setosity) and behaviourally (ant-like movement, antennal illusion). Zodarion germanicum mimics large dark ants, such as Formica cinerea , whereas Z. rubidum resembles red ants, e.g. Myrmica sabuleti . Thus, these spiders are generalized Batesian mimics. The two spiders use aggressive mimicry during prey capture. When a spider carries a captured ant it will try to pass by approaching ants using special deceiving behaviour, which is based on imitation of ants' nestmate recognition. The spider first taps the antennae of the curious ant with its front legs (transmitting a tactile cue), then exposes its prey (the ant corpse) which the ant antennates (thus the corpse transmits an olfactory cue). The distal part of the front legs of Zodarion are almost without macrosetae similar to the antennae of ants. Additionally, all the other legs are covered with flattened incised setae, which imitate the dense setosity of ants' limbs. These remarkable microstructural imitations are believed to improve imitation of tactile signals by spiders. Moreover, by tapping, zodariids can presumably recognize the approaching intruder and decide whether to undertake the risk of deception or to run away. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 75 , 517–532.  相似文献   

19.
Gove AD  Majer JD  Dunn RR 《Oecologia》2007,153(3):687-697
In order to understand the dynamics of co-evolution it is important to consider spatial variation in interaction dynamics. We examined the relative importance of ant activity, diversity and species identity in an ant seed dispersal mutualism at local, regional and continental scales. We also studied the determinants of seed dispersal rates and dispersal distances at eight sites in the Eneabba sandplain (29.63 S, 115.22 E), western Australia to understand local variation in seed dispersal rate and distance. To test the generality of the conclusions derived from the eight local sites, we established 16 sites along a 1650-km transect in western Australia, covering 11° of latitude and a six-fold increase in rainfall, at which we sampled the ant assemblage, estimated ant species richness and ant activity and observed the removal rate of myrmecochorous seeds. We also assessed the importance of ant species identity at a continental scale via a review of studies carried out throughout Australia which examined ant seed dispersal. Among the eight sandplain shrubland sites, ant species identity, in particular the presence of one genus, Rhytidoponera, was associated with the most dispersal and above average dispersal distances. At the landscape scale, Rhytidoponera presence was the most important determinant of seed removal rate, while seed removal rate was negatively correlated with ant species richness and latitude. Most ant seed removal studies carried out throughout Australia reinforce our observations that Rhytidoponera species were particularly important seed dispersers. It is suggested that superficially diffuse mutualisms may depend greatly on the identity of particular partners. Even at large biogeographic scales, temporal and spatial variation in what are considered to be diffuse mutualisms may often be linked to variation in the abundance of particular partners, and be only weakly – or negatively – associated with the diversity of partners.  相似文献   

20.
In the present work, firstly, ant emergence was observed: it is a long, stereotyped, precarious event which may require the help of congeners. Then, our experiments on Myrmica sabuleti Meinert 1861 callow ants emerging apart from or inside their colony showed the following points. 1. Newly emerged workers, even if having never olfactorily perceived nestmates, are attracted by congeners’ odor. They can distinguish such an odor from that of another species of Myrmica as well as somewhat from that of alien workers of the same species. So, they might have acquired, at least partly, the knowledge of their congeners’ odor during their larval life. 2. Callow ants having visually perceived congeners at their emergence move towards a presented congener’s washed corpse. Callow ants having emerged without seeing any congeners do not move towards such a corpse. Callow ants having emerged beside a piece of thyme moved towards a non-odorous (solvent-washed) piece of thyme. So, ants may acquire, at least partly, the knowledge of the visual aspect of their species just at their emergence, probably by imprinting. 3. Very young workers confronted with their congeners’ odor on one hand and their congeners’ visual aspect on the other hand, somewhat prefer the odor, even if these young ants belong to a species which exclusively uses its vision for navigating. So, for very young ants, whatever the species, odors are more important and better known than visual characters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号