首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Domestication of algae by lichen‐forming fungi describes the symbiotic relationship between the photosynthetic (green alga or cyanobacterium; photobiont) and fungal (mycobiont) partnership in lichen associations ( Goward 1992 ). The algal domestication implies that the mycobiont cultivates the alga as a monoculture within its thallus, analogous to a farmer cultivating a food crop. However, the initial photobiont ‘selection’ by the mycobiont may be predetermined by the habitat rather than by the farmer. When the mycobiont selects a photobiont from the available photobionts within a habitat, the mycobiont may influence photobiont growth and reproduction ( Ahmadjian & Jacobs 1981 ) only after the interaction has been initiated. The theory of ecological guilds ( Rikkinen et al. 2002 ) proposes that habitat limits the variety of photobionts available to the fungal partner. While some studies provide evidence to support the theory of ecological guilds in cyanobacterial lichens ( Rikkinen et al. 2002 ), other studies propose models to explain variation in symbiont combinations in green algal lichens ( Ohmura et al. 2006 ; Piercey‐Normore 2006 ; Yahr et al. 2006 ) hypothesizing the existence of such guilds. In this issue of Molecular Ecology, Peksa & ?kaloud (2011) test the theory of ecological guilds and suggest a relationship between algal habitat requirements and lichen adaptation in green algal lichens of the genus Lepraria. The environmental parameters examined in this study, exposure to rainfall, altitude and substratum type, are integral to lichen biology. Lichens have a poikilohydric nature, relying on the availability of atmospheric moisture for metabolic processes. Having no known active mechanism to preserve metabolic thallus moisture in times of drought, one would expect a strong influence of the environment on symbiont adaptation to specific habitats. Adaptation to changes in substrata and its properties would be expected with the intimate contact between crustose lichens in the genus Lepraria. Altitude has been suggested to influence species distributions in a wide range of taxonomic groups. This is one of the first studies to illustrate an ecological guild, mainly for exposure to rainfall (ombrophiles and ombrophobes), with green algal lichens.  相似文献   

2.
The lichens, Nephroma expallidum (Nyl.) Nyl. and N. arcticum (L.) Torss., consistently have at least two symbionts in a single thallus: a green alga in the algal layer and a blue-green alga in the internal cephalodia. The cephalodia originate from algal cells in contact with the lower surface of the lichen, in the zone of rhizine formation. The rhizines surround the epiphytic algal colony and form a second cortical layer; following dissociation of the original lower cortex, further growth of the two organisms results in the cyanophyte colony being enveloped by a compact layer of fungal tissue and positioned in the lichen medulla. The colony may eventually assume a superior or inferior position in relation to the lichen thallus, depending in part on the lichen species. Nephroma anticum may have two distinct morphological forms of blue-green algae in the same thallus and occasionally in the same cephalodium. It appears that the relationship that exists between the cephalodial algae and the lichen thallus is antagonistic and results, in some cases, in the exclusion of the green algal layer and death to the cephalodial cyanophytes.  相似文献   

3.
The two endolithic lichen species Hymenelia prevostii and Hymenelia coerulea were investigated with regard to their thallus morphology and their effects on the surrounding substrate. The physiological processes responsible for the observed alterations of the rock were identified. Whereas the thallus surface of H. coerulea was level, H. prevostii formed small depressions that were deepest in the thallus center. In a cross‐section, both species revealed an algal zone consisting of algal cavities parallel to the substrate surface and a fungal zone below. However, H. prevostii revealed significantly larger cavities with more than twice the cell number and a denser pattern of cavities than H. coerulea, resulting in a biomass per surface area being more than twice as large. Below H. prevostii the layer of macroscopically visibly altered rock material was about twice as deep and within this layer, the depletion of calcium and manganese was considerably higher. In simultaneous measurements of the oxygen uptake/oxygen release and pH shift, the isolated algal strains of both lichens revealed respiration‐induced acidification of the medium in the dark. At higher light intensities, H. coerulea and to a lesser extent also H. prevostii alkalized the medium which may lessen the acidification effect somewhat under natural conditions. In a long‐term growth experiment, the isolated algal strains of both lichens revealed acidification of the medium to a similar extent. Neither acidic lichen substances nor oxalic acid was identified. The significant differences between the weathering patterns of both species are based on the same respiration‐induced acidification mechanism, with H. prevostii having a greater effect due to its higher biomass per area.  相似文献   

4.
Symbioses such as lichens are potentially threatened by drastic environmental changes. We used the lichen Peltigera aphthosa—a symbiosis between a fungus (mycobiont), a green alga (Coccomyxa sp.), and N2‐fixing cyanobacteria (Nostoc sp.)—as a model organism to assess the effects of environmental perturbations in nitrogen (N) or phosphorus (P). Growth, carbon (C) and N stable isotopes, CNP concentrations, and specific markers were analyzed in whole thalli and the partners after 4 months of daily nutrient additions in the field. Thallus N was 40% higher in N‐fertilized thalli, amino acid concentrations were twice as high, while fungal chitin but not ergosterol was lower. Nitrogen also resulted in a thicker algal layer and density, and a higher δ13C abundance in all three partners. Photosynthesis was not affected by either N or P. Thallus growth increased with light dose independent of fertilization regime. We conclude that faster algal growth compared to fungal lead to increased competition for light and CO2 among the Coccomyxa cells, and for C between alga and fungus, resulting in neither photosynthesis nor thallus growth responded to N fertilization. This suggests that the symbiotic lifestyle of lichens may prevent them from utilizing nutrient abundance to increase C assimilation and growth.  相似文献   

5.

Background and Aims

Cyanolichens are usually stated to be bipartite (mycobiont plus cyanobacterial photobiont). Analyses revealed green algal carbohydrates in supposedly cyanobacterial lichens (in the genera Pseudocyphellaria, Sticta and Peltigera). Investigations were carried out to determine if both cyanobacteria and green algae were present in these lichens and, if so, what were their roles.

Methods

The types of photobiont present were determined by light and fluorescence microscopy. Small carbohydrates were analysed to detect the presence of green algal metabolites. Thalli were treated with selected strengths of Zn2+ solutions that stop cyanobacterial but not green algal photosynthesis. CO2 exchange was measured before and after treatment to determine the contribution of each photobiont to total thallus photosynthesis. Heterocyst frequencies were determined to clarify whether the cyanobacteria were modified for increased nitrogen fixation (high heterocyst frequencies) or were normal, vegetative cells.

Key Results

Several cyanobacterial lichens had green algae present in the photosynthetic layer of the thallus. The presence of the green algal transfer carbohydrate (ribitol) and the incomplete inhibition of thallus photosynthesis upon treatment with Zn2+ solutions showed that both photobionts contributed to the photosynthesis of the lichen thallus. Low heterocyst frequencies showed that, despite the presence of adjacent green algae, the cyanobacteria were not altered to increase nitrogen fixation.

Conclusions

These cyanobacterial lichens are a tripartite lichen symbiont combination in which the mycobiont has two primarily photosynthetic photobionts, ‘co-primary photobionts’, a cyanobacterium (dominant) and a green alga. This demonstrates high flexibility in photobiont choice by the mycobiont in the Peltigerales. Overall thallus appearance does not change whether one or two photobionts are present in the cyanobacterial thallus. This suggests that, if there is a photobiont effect on thallus structure, it is not specific to one or the other photobiont.  相似文献   

6.
Aiming to investigate whether a carbon-to-nitrogen equilibrium model describes resource allocation in lichens, net photosynthesis (NP), respiration (R), concentrations of nitrogen (N), chlorophyll (Chl), chitin and ergosterol were investigated in 75 different lichen associations collected in Antarctica, Arctic Canada, boreal Sweden, and temperate/subtropical forests of Tenerife, South Africa and Japan. The lichens had various morphologies and represented seven photobiont and 41 mycobiont genera. Chl a, chitin and ergosterol were used as indirect markers of photobiont activity, fungal biomass and fungal respiration, respectively. The lichens were divided into three groups according to photobiont: (1) species with green algae, (2) species with cyanobacteria, and (3) tripartite species with green algal photobionts and cyanobacteria in cephalodia. Across species, thallus N concentration ranged from 1 to 50 mg g-1 dry wt., NP varied 50-fold, and R 10-fold. In average, green algal lichens had the lowest, cyanobacterial Nostoc lichens the highest and tripartite lichens intermediate N concentrations. All three markers increased with thallus N concentration, and lichens with the highest Chl a and N concentrations had the highest rates of both P and R. Chl a alone accounted for ca. 30% of variation in NP and R across species. On average, the photosynthetic efficiency quotient [KF=(NPmax+R)/R)] ranged from 2.4 to 8.6, being higher in fruticose green algal lichens than in foliose Nostoc lichens. The former group invested more N in Chl a and this trait increased NPmax while decreasing R. In general terms, the investigated lichens invested N resources such that their maximal C input capacity matched their respiratory C demand around a similar (positive) equilibrium across species. However, it is not clear how this apparent optimisation of resource use is regulated in these symbiotic organisms.  相似文献   

7.
O. L. Lange  H. Pfanz  E. Kilian  A. Meyer 《Planta》1990,182(3):467-472
Earlier experiments (T.D. Brock 1975, Planta124, 13–23) addressed the question whether the fungus of the lichen thallus might enable the algal component to function when moisture stress is such that the algal component would be unable to function under free-living conditions. It was concluded that the liberated phycobiont in ground lichen thalli could not photosynthesize at water potentials as low as those at which the same alga could when it was present within the thallus. However, our experience with lichen photosynthesis has not substantiated this finding. Using instrumentation developed since the mid-1970's to measure photosynthesis and control humidity, we repeated Brock's experiments. When applying “matric” water stress (equilibrium with air of constant relative humidity) we were unable to confirm the earlier results for three lichen species including one of the species,Letharia vulpina, had also been used by Brock. We found no difference between the effects of low water potential on intact lichens and their liberated algal components (ground thallus material and isolated algae) and no indication that the fungal component of the lichen symbiosis protects the phycobiont from the adverse effects of desiccation once equilibrium conditions are reached. The photosynthetic apparatus of the phycobiont alone proved to be highly adapted to water stress as it possesses not only the capability of functioning under extremely low degrees of hydration but also of becoming reactivated solely by water vapor uptake.  相似文献   

8.
Thallus organization is examined inAspicilia californicaRosentreter, a fruticose lichen known from several localities in central and southern California. The sprawling, terete thallus branches possess a dense central medulla of thick-walled, longitudinally oriented fungal cells. This central tissue emerges at branch apices to form a darkly pigmented fungal tip. Thallus development involves the apical extension of the tip to produce a fungal tissue over which a cylindrical algal layer and cortex will eventually be formed. Apical branches are initiated by furcation entirely within the fungal tip. Lateral branches, emerging from the lichenized thallus, arise as a divergent bundle of elongate fungal cells originating in the medulla. The photobiont appears to play no direct role in initiation of apical or lateral branches. It is concluded that thallus development inA. californicaoccurs with a relatively low degree of synchrony between mycobiont and photobiont growth, similar to the pattern observed in crustose lichens with prothallic growth. A rather similar type of thallus organization is observed inA. hispida, although in that species mycobiont growth and branch initiation appear to be somewhat more closely associated with algal cell proliferation. A squamuloseAspiciliafrom central Spain produces rhizomorphs that may sometimes become invested with an algal layer and cortex, resembling the thallus axes ofA. californica.  相似文献   

9.
Lichens are symbioses of two organisms, a fungal mycobiont and a photoautotrophic photobiont. In nature, many lichens tolerate extreme environmental conditions and thus became valuable models in astrobiological research to fathom biological resistance towards non-terrestrial conditions; including space exposure, hypervelocity impact simulations as well as space and Martian parameter simulations. All studies demonstrated the high resistance towards non-terrestrial abiotic factors of selected extremotolerant lichens. Besides other adaptations, this study focuses on the morphological and anatomical traits by comparing five lichen species—Circinaria gyrosa, Rhizocarpon geographicum, Xanthoria elegans, Buellia frigida, Pleopsidium chlorophanum—used in present-day astrobiological research. Detailed investigation of thallus organization by microscopy methods allows to study the effect of morphology on lichen resistance and forms a basis for interpreting data of recent and future experiments. All investigated lichens reveal a common heteromerous thallus structure but diverging sets of morphological-anatomical traits, as intra-/extra-thalline mucilage matrices, cortices, algal arrangements, and hyphal strands. In B. frigida, R. geographicum, and X. elegans the combination of pigmented cortex, algal arrangement, and mucilage seems to enhance resistance, while subcortex and algal clustering seem to be crucial in C. gyrosa, as well as pigmented cortices and basal thallus protrusions in P. chlorophanum. Thus, generalizations on morphologically conferred resistance have to be avoided. Such differences might reflect the diverging evolutionary histories and are advantageous by adapting lichens to prevalent abiotic stressors. The peculiar lichen morphology demonstrates its remarkable stake in resisting extreme terrestrial conditions and may explain the high resistance of lichens found in astrobiological research.  相似文献   

10.
During the evolution of the lichen symbiosis, shifts from one main type of photobiont to another were infrequent (Miadlikowska et al. 2006 ) but some remarkable transitions from green algal to diazotrophic cyanobacterial photobionts are known from unrelated fungal clades within the ascomycetes. Cyanobacterial, including tripartite, associations (green algal and cyanobacterial photobionts in one lichen individual) facilitate these holobionts to live as C‐ and N‐autotrophs. Tripartite lichens are among the most productive lichens, which provide N‐fertilization to forest ecosystems under oceanic climates (Peltigerales) or deliver low, but ecologically significant N‐input into subarctic and alpine soil communities (Lecanorales, Agyriales). In this issue of Molecular Ecology, Schneider et al. (2016) mapped morphometric data against an eight‐locus fungal phylogeny across a transition of photobiont interactions from green algal to a tripartite association and used a phylogenetic comparative framework to explore the role of nitrogen‐fixing cyanobacteria in size differences in the Trapelia–Placopsis clade (Agyriales). Within the group of tripartite species, the volume of cyanobacteria‐containing structures (cephalodia) correlates with thallus thickness in both phylogenetic generalized least squares and phylogenetic generalized linear mixed‐effects analyses, and the fruiting body core volume increased ninefold. The authors conclude that cyanobacterial symbiosis appears to have enabled lichens to overcome size constraints in oligotrophic environments such as rock surfaces. The Trapelia–Placopsis clade analyzed by Schneider et al. (2016) is an exciting example of interactions between ecology, phylogeny and lichen biology including development – from thin crustose green algal microlichens to thick placodioid, tripartite macrolichens: as thick as three in a bed (Scott 1820 ).  相似文献   

11.
This work describes the rhizomorphs and their relation to thallus development in the squamulose lichen Aspicilia crespiana Rico ined. The rhizomorphs capture algal cells, giving rise to new squamules terminally or laterally. The thallus thus consists of a network of lichenized squamules interlinked by mycobiontic rhizomorphs. A previously proposed comparison of lichen rhizomorphs to the prothallus (hypothallus) of crustose lichens is applied and expanded upon. Other less organized prothallic structures sometimes produced by A. crespiana are also described. The importance of lichenizing rhizomorphs as an essential feature of thallus growth in this species is emphasized and a competitive role in substrate occupation and thallus expansion is suggested.  相似文献   

12.
We tested the hypothesis that lichen species with a photosynthetic CO2-concentrating mechanism (CCM) use nitrogen more efficiently in photosynthesis than species without this mechanism. Total ribulose bisphosphate carboxylase-oxygenase (Rubisco; EC 4.1.1.39) and chitin (the nitrogenous component of fungal cell walls), were quantified and related to photosynthetic capacity in eight lichens. The species represented three modes of CO2 acquisition and two modes of nitrogen acquisition, and included one cyanobacterial ( Nostoc ) lichen with a CCM and N2 fixation, four green algal ( Trebouxia ) lichens with a CCM but without N2 fixation and three lichens with green algal primary photobionts ( Coccomyxa or Dictyochloropsis ) lacking a CCM. The latter have N2-fixing Nostoc in cephalodia. When related to thallus dry weight, total thallus nitrogen varied 20-fold, chitin 40-fold, Chl a 5-fold and Rubisco 4-fold among the species. Total nitrogen was lowest in three of the four Trebouxia lichens and highest in the bipartite cyanobacterial lichen. Lichens with the lowest nitrogen invested a larger proportion of this into photosynthetic components, while the species with high nitrogen made relatively more chitin. As a result, the potential photosynthetic nitrogen use efficiency was negatively correlated to total thallus nitrogen for this range of species. The cyanobacterial lichen had a higher photosynthetic capacity in relation to both Chl a and Rubisco compared with the green algal lichens. For the range of green algal lichens both Chl a and Rubisco contents were linearly related to photosynthetic capacity, so the data did not support the hypothesis of an enhanced photosynthetic nitrogen use efficiency in green-algal lichens with a CCM.  相似文献   

13.
The epiphytic lichens Hypogymnia physodes (L.) W. Wats, and Bryoria capillaris (Ach.) Brodo & D. Hawksw. growing on spruce branches were transplanted from a clean rural area to the environment of a fertilizer plant and a pulp mill in central Finland. The common major pollutants in these environments are SO2, NOx and ammonia but the fertilizer plant also emits fluorides. In the transmission electron microscope two main types of cellular injuries were observed both in algal and fungal cells in both species and in both environments. The first type, characterized by rapid degeneration of cell organelles, was an apparently acute injury leading to plasmolysis and rapid death of the cells. The second type was considered chronic injury and involved changes in chloroplast shape, swelling of mitochondria and increased density of cytoplasm in algal cells, and increased vacuolization and appearance of dark vacuolar accumulations in fungal cells. The cytoplasmic storage droplets decreased gradually in size both in algae and fungi. The acute injury was mainly seen in the lichens transplanted to sites with higher pollution levels near the sources, and was more usual in algal than in fungal cells. B. capillaris was more susceptible to acute injury than H. physodes. An additional injury type was detected in algal cells of both lichen species in the vicinity of the fertilizer plant. This type was characterized by severe swelling of thylakoids and their interspaces and granulation of thylakoid membranes, and was suspected to be related to the effects of fluorides. The injuries as seen in light microscope, and expressed as increased proportion of dead algae and visible bleaching of thallus, were usually observable simultaneously. The injuries as seen in the electron microscope always preceded other injuries; they were clearly observable already after one week of transplantation in the more polluted sites but developed more slowly in the less polluted ones. The time lack between these injuries and the visible ones was 2–3 weeks in the more polluted sites, but several months or even years in the less polluted ones.  相似文献   

14.
The large distributional areas and ecological niches of many lichenized fungi may in part be due to the plasticity in interactions between the fungus (mycobiont) and its algal or cyanobacterial partners (photobionts). On the one hand, broad‐scale phylogenetic analyses show that partner compatibility in lichens is rather constrained and shaped by reciprocal selection pressures and codiversification independent of ecological drivers. On the other hand, sub‐species‐level associations among lichen symbionts appear to be environmentally structured rather than phylogenetically constrained. In particular, switching between photobiont ecotypes with distinct environmental preferences has been hypothesized as an adaptive strategy for lichen‐forming fungi to broaden their ecological niche. The extent and direction of photobiont‐mediated range expansions in lichens, however, have not been examined comprehensively at a broad geographic scale. Here we investigate the population genetic structure of Lasallia pustulata symbionts at sub‐species‐level resolution across the mycobiont's Europe‐wide range, using fungal MCM7 and algal ITS rDNA sequence markers. We show that variance in occurrence probabilities in the geographic distribution of genetic diversity in mycobiont‐photobiont interactions is closely related to changes in climatic niches. Quantification of niche extent and overlap based on species distribution modeling and construction of Hutchinsonian climatic hypervolumes revealed that combinations of fungal–algal interactions change at the sub‐species level along latitudinal temperature gradients and in Mediterranean climate zones. Our study provides evidence for symbiont‐mediated niche expansion in lichens. We discuss our results in the light of symbiont polymorphism and partner switching as potential mechanisms of environmental adaptation and niche evolution in mutualisms.  相似文献   

15.
Arthopyrenia endobrya from Southern Brazil is illustrated and described as a new species of lichens. The thallus is composed of filamentous green algae loosely surrounded by fungal hyphae. Both symbionts grow endophytically within the leaf cells of two species ofLejeuneaceae (Hepaticae). The algae and hyphae penetrate the cell walls of the host by means of fine perforations. The ascocarps develop between the leaves and perforate them with their apical region. The classification as a member of the genusArthopyrenia is preliminary.
  相似文献   

16.
R. Honegger  M. Peter  S. Scherrer 《Protoplasma》1996,190(3-4):221-232
Summary Cryotechniques, such as low temperature scanning electron microscopy (LTSEM) and freeze-substitution for transmission electron microscopy (TEM), were applied to two cyanobacterial and three green algal macrolichens in order to locate free water and to visualize drought-induced structural alterations at the mycobiont—photobiont interface. The following species were examined:Peltigera canina/Nostoc punctiforme, Sticta sylvatica/Nostoc sp. (both Peltigerales),Parmelia sulcata/Trebouxia impressa, Hypogymnia physodes/Trebouxia sp. (both Lecanorales), andXanthoria parietina/Trebouxia arboricola (Teloschistales). In all species free water was confined to the symplast and the apoplast. No intercellular water reservoirs were found in the gas-filled thallus interior. Thalline fluctuations in water content reflect fluctuations in apoplastic and symplastic water. All the taxonomically diverse lichen photobionts have access to water and dissolved nutrients via the fungal apoplast only. Drought stress (i.e., water content 20%/dw and below) caused dramatic shrinkage and deformation in all cell types. At any level of hydration the fungal and algal protoplast maintained close contact with the cell wall. This applied to the cyanobacterial photobionts and their murein sacculus and gelatinous sheath too. Although the cytoplasm of both partners was strongly condensed in desiccated lichens the cellular membrane systems, usually negatively contrasted, were very well preserved. The significance of these data is discussed with regard to the functioning of the symbiotic relationship.  相似文献   

17.
Symbioses represent a frequent and successful lifestyle on earth and lichens are one of their classic examples. Recently, bacterial communities were identified as stable, specific and structurally integrated partners of the lichen symbiosis, but their role has remained largely elusive in comparison to the well-known functions of the fungal and algal partners. We have explored the metabolic potentials of the microbiome using the lung lichen Lobaria pulmonaria as the model. Metagenomic and proteomic data were comparatively assessed and visualized by Voronoi treemaps. The study was complemented with molecular, microscopic and physiological assays. We have found that more than 800 bacterial species have the ability to contribute multiple aspects to the symbiotic system, including essential functions such as (i) nutrient supply, especially nitrogen, phosphorous and sulfur, (ii) resistance against biotic stress factors (that is, pathogen defense), (iii) resistance against abiotic factors, (iv) support of photosynthesis by provision of vitamin B12, (v) fungal and algal growth support by provision of hormones, (vi) detoxification of metabolites, and (vii) degradation of older parts of the lichen thallus. Our findings showed the potential of lichen-associated bacteria to interact with the fungal as well as algal partner to support health, growth and fitness of their hosts. We developed a model of the symbiosis depicting the functional multi-player network of the participants, and argue that the strategy of functional diversification in lichens supports the longevity and persistence of lichens under extreme and changing ecological conditions.  相似文献   

18.
Bacterial communities of the lichens from a Sphagnum bog (Karelia) and tundra (Vorkuta oblast) were investigated. Members of the phylum Acidobacteria were numerous in the thallus of living and decaying lichens (3.8 × 108 cells/g), constituting 6 to 32% of the total bacterial number. Pure cultures of acidobacteria were isolated from the samples of living and decaying lichen thallus. Ten of them were identified and classified as members of subgroup 1 of the Acidobacteria. The hydrolytic activity of two strains isolated from the living and decomposing zones of the thallus was investigated. They were capable of growth on xylan, starch, pectin, laminarin, and lichen extract. Acidobacteria were shown to be a stable and numerous component of microbial communities of the bog and tundra lichens.  相似文献   

19.

Premise

The long-term potential for acclimation by lichens to changing climates is poorly known, despite their prominent roles in forested ecosystems. Although often considered “extremophiles,” lichens may not readily acclimate to novel climates well beyond historical norms. In a previous study (Smith et al., 2018), Evernia mesomorpha transplants in a whole-ecosystem climate change experiment showed drastic mass loss after 1 yr of warming and drying; however, the causes of this mass loss were not addressed.

Methods

We examined the causes of this warming-induced mass loss by measuring physiological, functional, and reproductive attributes of lichen transplants.

Results

Severe loss of mass and physiological function occurred above +2°C of experimental warming. Loss of algal symbionts (“bleaching”) and turnover in algal community compositions increased with temperature and were the clearest impacts of experimental warming. Enhanced CO2 had no significant physiological or symbiont composition effects. The functional loss of algal photobionts led to significant loss of mass and specific thallus mass (STM), which in turn reduced water-holding capacity (WHC). Although algal genotypes remained detectable in thalli exposed to higher stress, within-thallus photobiont communities shifted in composition toward greater diversity.

Conclusions

The strong negative impacts of warming and/or lower humidity on Evernia mesomorpha were driven by a loss of photobiont activity. Analogous to the effects of climate change on corals, the balance of symbiont carbon metabolism in lichens is central to their resilience to changing conditions.  相似文献   

20.
H. Reznik  E. Peveling  J. Vahl 《Planta》1968,78(3):287-292
Summary The rhizines of the lichens, Parmelia caperata, Parmelia trichotera and Lobaria pulmonaria were studied with the Stereoscan scanning electronmicroscope and in ultrathin sections with the transmission electronmicroscope. The rhizines are composed of fungal hyphae.The fungal hyphae in the rhizines of the thallus of Parmelia caperata and in the cilia at the thallus border of Parmelia trichotera are connected by a glue-like substance. The ends of the Parmelia caperata rhizines are flattened and enlarged. With these footlike rhizines the thalli are in good connection with the substratum. The cilia at the thallus border of Parmelia trichotera have a tip by which the thallus is fixed on bark or rocks. The cell walls of the fungi hyphae in the Parmelia caperata rhizines and in the Parmelia trichotera cilia are 150–400 nm thick.The rhizines of Lobaria pulmonaria consist of fungi hyphae which are interlaced without a gluey substance. The thallus of Lobaria pulmonaria is connected to the substratum through the tips of single hyphae. The hyphae walls of Lobaria pulmonaria are 800–1800 nm thick.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号