首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tramadol, an analgesic agent, and its two main metabolites O-desmethyltramadol (M1) and N-desmethyltramadol (M2) were determined simultaneously in human plasma by a rapid and specific HPLC method. The sample preparation was a simple extraction with ethyl acetate. Chromatographic separation was achieved with a Chromolith Performance RP-18e 50 mm x 4.6 mm column, using a mixture of methanol:water (13:87, v/v) adjusted to pH 2.5 by phosphoric acid, in an isocratic mode at flow rate of 2 ml/min. Fluorescence detection (lambda(ex)=200 nm/lambda(em)=301 nm) was used. The calibration curves were linear (r(2)>0.997) in the concentration range of 2.5-500 ng/ml, 1.25-500 ng/ml and 5-500 ng/ml for tramadol, M1 and M2, respectively. The lower limit of quantification was 2.5 ng/ml for tramadol, 1.25 ng/ml for M1 and 5 ng/ml for M2. The within- and between-day precisions in the measurement of QC samples at four tested concentrations were in the range of 2.5-9.7%, 2.5-9.9% and 5.9-11.3% for tramadol, M1 and M2, respectively. The developed procedure was applied to assess the pharmacokinetics of tramadol and its two main metabolites following administration of 100mg single oral dose of tramadol to healthy volunteers.  相似文献   

2.
A number of analytical methods have been established to quantify methylphenidate (MPH). However, to date no HPLC methods are applicable to human pharmacokinetic studies without the use of mass spectrometry (MS) detection. We developed a sensitive and reliable HPLC-fluorescence method for the determination of MPH in human plasma using 4-(4,5-diphenyl-1H-imidazol-2-yl) benzoyl chloride (DIB-Cl) as the derivatizing agent. An established GC-MS method was adopted in this study as a comparator assay. MPH was derivatized using DIB-Cl, and separated isocratically on a C18 column using a HPLC system with fluorescence detection (lambda(ex)=330 nm, lambda(em)=460 nm). The lower limit of quantification was found to be 1 ng/mL. A linear calibration curve was obtained over the concentrations ranging from 1 ng/mL to 80 ng/mL (r=0.998). The relative standard deviations of intra-day and inter-day variations were 相似文献   

3.
Fluoxetine (FLX) and norfluoxetine (NFLX) racemic mixtures were determined by reversed-phase liquid chromatography with fluorescence detection (lambda(exc)=227 nm, lambda(em)=305 nm). The calibration curves prepared from drug-free plasma and brain were linear in the range of 5-1000 ng ml(-1) and 100-40,000 ng g(-1) for doped samples, with detection limits of 3.2 and 2.1 ng ml(-1) in plasma and 31.5 and 26.1 ng g(-1) in brain tissue for FLX and NFLX, respectively. Enantiomer determination was carried out through normal phase HPLC-FD (lambda(exc)=224 nm, lambda(em)=336 nm) after precolumn chiral derivatization with R-1-(1-naphthyl)ethyl isocyanate. Standard curves also prepared in a drug-free matrix were linear for each enantiomer over the range of 2-1000 ng ml(-1) and 20-7000 ng g(-1) with detection limits for the four compounds ranging between 0.2 and 0.5 ng ml(-1) in plasma and between 3.0 and 8.2 ng g(-1) in brain tissue. In both methods the analytes were isolated from the biological matrix by a new solid-phase extraction procedure with recovery in plasma and brain over 90 and 87%, respectively. The repeatability of this extraction procedure was satisfactory within-day and between-day with CV<9.1%. This study also offered the opportunity to obtain an assessment of the potential relationships between the concentration of individual enantiomers of FLX and NFLX in plasma and brain tissue after chronic treatment with racemic FLX at a dose intended to mimic the human plasma concentration of FLX in standard clinical conditions, and therefore should make for more reliable extrapolation of neurochemical findings in other species.  相似文献   

4.
A rapid, sensitive and simple high-performance liquid chromatographic (HPLC) method with ultraviolet detector (UV) has been developed for the determination of bifendate in 100 microl plasma of rats. Sample preparation was carried out by deproteinization with 100 microl of acetonitrile. A 20 microl of supernatant was directly injected into the HPLC system with methanol-double distilled water (65/35, v/v) as the mobile phase at a flow rate of 1.0 ml/min. Separation was performed with a microBondapak C(18) column at 30 degrees C. The peak was detected at 278 nm. The calibration curve was linear (r(2)=0.9989) in the concentration range of 0.028-2.80 microg/ml in plasma. The intra- and inter-day variation coefficients were not more than 6.55% and 6.07%, respectively. The limit of detection was 5 ng/ml. The mean recoveries of bifendate were ranged from 94.53% to 99.36% in plasma. The present method has been successfully applied to the pharmacokinetic study of bifendate liposome in rats.  相似文献   

5.
A stereoselective reversed-phase HPLC assay to determine S-(-) and R-(+) enantiomers of esmolol in human plasma was developed. The method involved liquid-liquid extraction of esmolol from human plasma, using S-(-)-propranolol as the internal standard, and employed 2,3,4,6-tetra-O-acetyl-beta-d-glucopyranosyl isothiocyanate as a pre-column chiral derivatization reagent. The derivatized products were separated on a 5-microm reversed-phase C18 column with a mixture of acetonitrile/0.02 mol/L phosphate buffer (pH 4.5) (55:45, v/v) as mobile phase. The detection of esmolol derivatives was made at lambda=224 nm with UV detector. The assay was linear from 0.035 to 12 microg/ml for each enantiomer. The analytical method afforded average recoveries of 94.8% and 95.5% for S-(-)- and R-(+)-esmolol, respectively. For each enantiomer, the limit of detection was 0.003 microg/ml and the limit of quantification for the method was 0.035 microg/ml (RSD<14%). The reproducibility of the assay was satisfactory.  相似文献   

6.
An HPLC method was developed and validated for the determination of mifepristone in human plasma. C(18) solid-phase extraction cartridges were used to extract plasma samples. Separation was by C(18) column; mobile phase, methanol-acetonitrile-water (50:25:25, v/v/v); flow rate, 0.8 ml/min; UV detection at 302 nm. The calibration curve was linear in the concentration range of 10 ng/ml to 20 microg/ml (r=0.9991). Within- and between-day variability were acceptable. The limit of detection for the assay was 6 ng/ml. Plasma samples were stable for at least 7 days in the state of plasma or residue treated at -20 degrees C. The method was simple, sensitive and accurate, and allowed to determine ng mifepristone in human plasma. It could be applied to assess the plasma level of mifepristone in women receiving low oral doses of mifepristone.  相似文献   

7.
An HPLC method for determining quercetin in human plasma and urine is presented for application to the pharmacokinetic study of rutin. Isocratic reversed-phase HPLC was employed for the quantitative analysis by using kaempferol as an internal standard. Solid-phase extraction was performed on an Oasis HLB cartridge (>95% recovery). The HPLC assay was carried out using a Luna ODS-2 column (150 x 2.1 mm I.D., 5 microm particle size). The mobile phase was acetonitrile-10 mM ammonium acetate solution containing 0.3 mM EDTA-glacial acetic acid, 29:70:1 (v/v, pH 3.9) and 26:73:1 (v/v, pH 3.9) for the determination of plasma and urinary quercetin, respectively. The flow-rate was 0.3 ml/min and the detection wavelength was set at 370 nm. Calibration of the overall analytical procedure gave a linear signal (r>0.999) over a concentration range of 4-700 ng/ml of quercetin in plasma and 20-1000 ng/ml of quercetin in urine. The lower limit of quantification was approximately 7 ng/ml of quercetin in plasma and approximately 35 ng/ml in urine. The detection limit (defined at a signal-to-noise ratio of about 3) was approximately 0.35 ng/ml in plasma and urine. A preliminary experiment to investigate the plasma concentration and urinary excretion of quercetin after oral administration of 200 mg of rutin to a healthy volunteer demonstrated that the present method was suitable for determining quercetin in human plasma and urine.  相似文献   

8.
A sensitive, simple, and accurate method for determination of spinosin in rat plasma with sulfamethoxazole (SMZ) as internal standard was developed using RP-HPLC with UV detection. Sample preparations were carried out by protein precipitation with acetonitrile, followed by the evaporation of the acetonitrile to dryness. The resultant residue was then reconstituted in mobile phase and injected onto a Hypersil C(18) (200 x 4.6 mm I.D., 5 microm) analytical column. The mobile phase consisted of acetonitrile-water (15:85, v/v) with 1% glacial acetic acid. The assay was shown to be linear over the range of 18.07-903.5 ng/ml (R(2)=0.995). Mean recovery was determined as 93.6%. Within- and between-day precisions were 相似文献   

9.
The validation of an analytical method to quantify the antiangiogenic, (Z)-3-[2,4-dimethyl-5-(2-oxo-1,2-dihydro-indol-3-ylidenemethyl)-1H-pyrrol-3-yl]propionic acid (SU006668) for pharmacokinetic determination in a phase I clinical trial, is described. HPLC, with a gradient mobile phase and UV detection at 440 nm, was used. SU006668 was extracted from plasma by precipitation of proteins with acetonitrile. The assay was linear from 25 to 2000 ng/ml (r(2)=0.997); sensitive (limit of quantification 25 ng/ml), accurate (RE 2.6-11.9%) and reproducible (inter-batch precision C.V. 3.2%). Pharmacokinetic data for six patients are presented. They show linear pharmacokinetics with a low volume of distribution and induction at doses of 50, 100 and 200 mg/m(2).  相似文献   

10.
2-Mercaptoethylamine (cysteamine) is an aminothiol compound used as a drug for the treatment of cystinosis, an autosomal recessive lysosomal storage disorder. Because of cysteamine's important role in clinical settings, its analysis by sensitive techniques has become pivotal. Unfortunately, the available methods are either complex or labor intensive. Therefore, we have developed a new rapid, sensitive, and simple method for determining cysteamine in biological samples (brain, kidney, liver, and plasma), using N-(1-pyrenyl) maleimide (NPM) as the derivatizing agent and reversed-phase high performance liquid chromatography (HPLC) with a fluorescence detection method (lambda(ex)=330 nm, lambda(em)=376 nm). The mobile phase was acetonitrile and water (70:30) with acetic acid and o-phosphoric acid (1 mL/L). The calibration curve for cysteamine in serine borate buffer (SBB) was found to be linear over a range of 0-1200 nM (r(2)=0.9993), and in plasma and liver matrix, the r(2) values were 0.9968 and 0.9965, respectively. The coefficients of the variation for the within-run and between-run precisions ranged from 0.68 to 9.90% and 0.63 to 4.17%, respectively. The percentage of relative recovery ranged from 94.1 to 98.6%.  相似文献   

11.
An enantioseparation of the antipsychotic drug butaclamol in human plasma by high-performance liquid chromatography (HPLC) with solid phase extraction is presented. The separation was achieved on the vancomycin macrocyclic antibiotic chiral stationary phase (CSP) Chirobiotic V with a polar ionic mobile phase (PIM) consisting of methanol : glacial acetic acid : triethylamine (100:0.2:0.05, v/v/v) at a flow rate of 0.5 ml/min. The detection wavelength was 262 nm. Bond Elut C18 solid phase extraction cartridges were used in the sample preparation of butaclamol samples from plasma. The method was validated over the range of 100-3,000 ng/ml for each enantiomer concentration (R(2) > 0.999). Recoveries for (+)- and (-)-butaclamol were in the range of 94-104% at the 300-2,500 ng/ml level. The method proved to be precise (within-run precision ranged from 1.1-2.6% and between-run precision ranged from 1.9-3.2%) and accurate (within-run accuracies ranged from 1.5-5.8% and between-run accuracies ranged from 2.7-7.7%). The limit of quantitation (LOQ) and limit of detection (LOD) for each enantiomer in human plasma were 100 ng/ml and 50 ng/ml, respectively.  相似文献   

12.
An enantioselective HPLC method has been developed and validated for the stereospecific analysis of N-ethyl-3,4-methylenedioxyamphetamine (MDE) and its major metabolites N-ethyl-4-hydroxy-3-methoxyamphetamine (HME) and 3,4-methylenedioxyamphetamine (MDA). These compounds have been analyzed both from human plasma and urine after administration of 70 mg pure MDE-hydrochloride enantiomers to four subjects. The samples were prepared by hydrolysis of the o-glucuronate and sulfate conjugates using beta-glucuronidase/arylsulfatase and solid-phase extraction with a cation-exchange phase. A chiral stationary protein phase (chiral-CBH) was used for the stereoselective determination of MDE, HME and MDA in a single HPLC run using sodium dihydrogenphosphate, ethylendiaminetetraacetic acid disodium salt and isopropanol as the mobile phase (pH 6.44) and fluorimetric detection (lambda(ex) 286 nm, lambda(em) 322 nm). Moreover, a suitable internal standard (N-ethyl-3,4-methylenedioxybenzylamine) was synthesized and qualified for quantitation purposes. The method showed high recovery rates (>95%) and limits of quantitation for MDE and MDA of 5 ng/ml and for HME of 10 ng/ml. The RSDs for all working ranges of MDE, MDA and HME in plasma and urine, respectively, were less than 1.5%. After validation of the analytical methods in plasma and urine samples pharmacokinetic parameters were calculated. The plasma concentrations of (R)-MDE exceeded those of the S-enantiomer (ratio R:S of the area under the curve, 3.1) and the plasma half time of (R)-MDE was longer than that of (S)-MDE (7.9 vs. 4.0 h). In contrast, the stereochemical disposition of the MDE metabolites HME and MDA was reversed. Concentrations of the (S)-metabolites in plasma of volunteers were much higher than those of the (R)-enantiomers.  相似文献   

13.
An HPLC system using a simple liquid-liquid extraction and HPLC with UV detection has been validated to determine tramadol concentration in human plasma. The method developed was selective and linear for concentrations ranging from 10 to 2000 ng/ml with average recovery of 98.63%. The limit of quantitation (LOQ) was 10 ng/ml and the percentage recovery of the internal standard phenacetin was 76.51%. The intra-day accuracy ranged from 87.55 to 105.99% and the inter-day accuracy, 93.44 to 98.43% for tramadol. Good precision (5.32 and 6.67% for intra- and inter-day, respectively) was obtained at LOQ. The method has been applied to determine tramadol concentrations in human plasma samples for a pharmacokinetic study.  相似文献   

14.
A simple and sensitive reversed-phase isocratic HPLC method for the determination of albendazole and its metabolites has been developed. The mobile phase consisting of acetonitrile-water-perchloric acid (70%) (30:110:0.06 (v/v/v)) was pumped at a flow rate of 0.80 ml/min on a 5 microm, reverse phase, Discovery RPamide C16 column with UV detection at 290 nm. The calibration graphs were linear in the range of 0.05- 1 microg/ml for albendazole, albendazole sulphoxide and albendazole sulphone. The limit of quantification was 50 ng/ml for albendazole, 25 ng/ml for albendazole sulphoxide and 30 ng/ml for albendazole sulphone. The within-day and day-to-day coefficient of variation averaged 4.98 and 6.95% for albendazole, 3.83 and 6.83% for albendazole sulphoxide and 3.44 and 5.51% for albendazole sulphone, respectively. The mean extraction recoveries of albendazole, albendazole sulphoxide and albendazole sulphone were 79.25, 93.03 and 88.78%, respectively. The method was applied to determine the plasma levels of albendazole sulphoxide in endemic normals administered with albendazole during pharmacokinetic studies.  相似文献   

15.
A new approach using a simple solid-phase extraction technique has been developed for the determination of pyronaridine (PND), an antimalarial drug, in human plasma. After extraction with C18 solid-phase sorbent, PND was analyzed using a reverse phase chromatographic method with fluorescence detection (at lambda(ex)=267 nm and lambda(em)=443 nm). The mean extraction recovery for PND was 95.2%. The coefficient of variation for intra-assay precision, inter-assay precision and accuracy was less than 10%. The quantification limit with fluorescence detection was 0.010 microg/mL plasma. The method described herein has several advantages over other published methods since it is easy to perform and rapid. It also permits reducing both, solvent use and sample preparation time. The method has been used successfully to assay plasma samples from clinical pharmacokinetic studies.  相似文献   

16.
A rapid and sensitive high-performance thin-layer chromatographic (HPTLC) method was developed and validated for the quantitative estimation of boswellic acids in formulation containing Boswellia serrata extract (BSE) and 11-keto beta-boswellic acid in human plasma. Simple extraction method was used for isolation of boswellic acid from formulation sample and acidified plasma sample. The isolated samples were chromatographed on silica gel 60F(254)-TLC plates, developed using ternary-solvent system (hexane-chloroform-methanol, 5:5:0.5, v/v) and scanned at 260 nm. The linearity range for 11-KBA spiked in 1 ml of plasma was 29.15-145.75 ng with average recovery of 91.66%. The limit of detection and limit of quantification for 11-KBA in human plasma were found to be 8.75 ng/ml and 29.15 ng/ml. The developed method was successfully applied for the assay of market formulations containing BSE and to determine plasma level of 11-keto beta-boswellic acid in a clinical pilot study.  相似文献   

17.
A gradient reversed-phase HPLC assay has been developed to determine sodium ferulate (SF) in beagle dog plasma with tinidazole as an internal standard. Chromatographic separation was made on a C(18) column using 0.5% acetic acid and acetonitrile (80:20, v/v) as mobile phase. UV detection was performed at 320 nm. The calibration curve for SF was linear in the range of 0.05-10 microg/ml, and the achieved limit of quantification (LOQ) was 51.4 ng/ml. The results of linearity, within- and between-day precision, and accuracy demonstrate that this method is reliable, sensitive and sufficient for in vivo beagle dog pharmacokinetic (PK) studies of SF.  相似文献   

18.
A practical and selective HPLC method for the separation and quantification of omeprazole enantiomers in human plasma is presented. C18 solid phase extraction (SPE) cartridges were used to extract the enantiomers from plasma samples and the chiral separation was carried out on a Chiralpak AD column protected with a CN guard column, using ethanol:hexane (70:30) as the mobile phase, at a flow rate of 0.5 ml/min. The detection was carried out at 302 nm. The method proved to be linear in the range of 10-1000 ng/ml for each enantiomer, with a quantification limit of 5 ng/ml. Precision and accuracy, demonstrated by within-day and between-day assays, were lower than 10%.  相似文献   

19.
A high-performance liquid chromatographic (HPLC) method with fluorescence detection has been developed for the determination of rizatriptan in human plasma. Following a single-step liquid-liquid extraction with methyl tertiarybutyl ether, the analytes were separated using a mobile phase consisting of 0.05% (v/v) triethylamine in water (adjusting to pH 2.75 with 85% phosphoric acid) and acetonitrile (92:8, v/v). Fluorescence detection was performed at an excitation wavelength of 225nm and an emission wavelength of 360nm. The linearity for rizatriptan was within the concentration range of 0.5-50ng/ml. The intra- and inter-day precisions of the method were not more than 8.0%. The lower limit of quantification (LLOQ) was 0.5ng/ml for rizatriptan. The method was sensitive, simple and repeatable enough to be used in pharmacokinetic studies.  相似文献   

20.
Puerarin, an isoflavone C-glycoside, has been identified as the major active component isolated from Pueraria lobata (Kudzu) responsible for suppression of alcohol drinking. In order to conduct clinical studies of Kudzu's efficacy, a method for measuring its bioavailability and pharmacokinetic profile is needed. We have developed a gradient reversed-phase HPLC system for pharmacokinetic study of puerarin in human plasma. Solid-phase extraction was performed on an abselut Nexus cartridge (60 mg/3 ml) possessing adsorbent function with a recovery of >97% and 4-hydroxybenzoic acid was used as an internal standard. The HPLC assay was performed on a YMC ODS-A column (150 mm x 4.6mm i.d., 5 microm particle size). The HPLC mobile phase consisted of methanol/0.5% acetic acid with 20-35% methanol gradient at a flow-rate of 0.8 ml/min. The UV wavelength was set at 254 nm. Calibration of the overall analytical procedure gave a linear signal (r>0.999) over a puerarin concentration range of 5-500 ng/ml in human plasma. The lower limit of quantification was ca. at 8 ng/ml of puerarin in plasma. The detection limit (defined as signal-to-noise ratio of about 3) was approximately 3 ng/ml. The preliminary pharmacokinetic study after oral administration of the Kudzu capsules containing 400mg of puerarin to a healthy volunteer confirmed that the present method was suitable for determining puerarin in human plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号