首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tomaymycin reacts covalently with guanine in the DNA minor groove, exhibiting considerable specificity for the flanking bases. The sequence dependence of tomaymycin bonding to DNA was investigated in synthetic DNA oligomers and polymers. The maximum extent of bonding to DNA is greater for homopurine and natural DNA sequences than for alternating purine-pyrimidine sequences. Saturation of DNA with tomaymycin has little effect on the melting temperature in the absence of unbound drug. Fluorescence lifetimes were measured for DNA adducts at seven of the ten unique trinucleotide bonding sites. Most of the adducts had two fluorescence lifetimes, representing two of the four possible binding modes. The lifetimes cluster around 2-3 ns and 5-7 ns; the longer lifetime is the major component for most bonding sites. The two lifetime classes were assigned to R and S diastereomeric adducts by comparison with previous NMR results for oligomer adducts. The lifetime difference between binding modes is interpreted in terms of an anomeric effect on the excited-state proton transfer reaction that quenches tomaymycin fluorescence. Bonding kinetics of polymer adducts were monitored by fluorescence lifetime measurements. Rates of adduct formation vary by two orders of magnitude with poly(dA-dG).poly(dC-dT), reacting the fastest at 4 x 10(-2) M-1 s-1. The sequence specificity of tomaymycin is discussed in light of these findings and other reports in the literature.  相似文献   

2.
Tomaymycin is a member of the pyrrolo[1,4]benzodiazepine [P(1,4)B] antitumor antibiotic group. This antibiotic is proposed to react with the exocyclic 2-amino group (N2) of guanine to form a covalent adduct that lies snugly within the minor groove of DNA. While DNA-footprinting experiments using methidiumpropyl-EDTA have revealed the favored bonding sequences for tomaymycin and related drugs on DNA, the stereochemistry at the covalent bonding site (C-11) and orientation in the minor groove were not established by these experiments. In previous studies using a combined fluorescence, high-field NMR, and molecular modeling approach, we have shown that for tomaymycin there are two diastereomeric species (11R and 11S) on both calf thymus DNA and d(ATGCAT)2. Although we were able to infer the identity (stereochemistry at C-11 and orientation in the minor groove) of the two species on d(ATGCAT)2 by high-field NMR and fluorescence studies, in combination with molecular mechanics calculations, definitive experimental evidence was lacking. We have designed and synthesized a self-complementary 12-mer [d(CICGAATTCICG)2] based on the Dickerson dodecamer [d(CGCGAATTCGCG)2] that bonds identically two tomaymycin molecules, each having a defined orientation and stereochemistry. Thus the bis(tomaymycin)-12-mer adduct maintains the self-complementarity of the original duplex molecule. Two-dimensional proton J-correlated spectroscopy (COSY) of the bis(tomaymycin)-d(CICGAATTCICG)2 adduct (I = inosine) unequivocally shows that C-11 of tomaymycin covalently bonds through N2 of guanine with an 11S stereochemistry in the sequence 5'-CGA-3'.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Tomaymycin is an antibiotic belonging to the pyrrolo[1,4]benzodiazepine group of antitumor compounds. Previous studies have shown that tomaymycin and other members of this group, which include anthramycin, sibiromycin, and the neothramycins, bind covalently through N-2 of guanine and lie within the minor groove of DNA. Two fluorescent ground-state species of tomaymycin were observed in protic solvents and on DNA. 1H NMR studies showed that the two fluorescent species in methanol are the 11R,11aS and 11S,11aS diastereomeric 11-methyl ethers of tomaymycin. On the basis of epimerization experiments and exchange of carbon-13 from 13CH3OH into the C-11 methoxy group of the tomaymycin methyl ether, a mechanism is proposed for their interconversion via 10,11-anhydrotomaymycin. Coupling information revealed that the solution conformations of the two diastereomers differ, with the C-5 carbonyl lying closer to the plane of the aromatic ring in the 11R,11aS diastereomer. The fluorescence excitation and emission spectra of the two emitting species in methanol were separated by time-resolved fluorescence spectroscopy and were associated with the diastereomeric forms identified by 1H NMR. Time-resolved fluorescence studies of tomaymycin in protic solvents and on DNA indicated that the absorption spectrum of the longer lifetime component (11R,11aS form) is red-shifted relative to the absorption spectrum of the shorter lifetime component (11S,11aS form), consistent with more extensive conjugation. The two conformational forms of tomaymycin on DNA were tentatively identified as the 11S,11aS and 11R,11aS diastereomeric adducts, which bind in opposite orientations in the minor groove. This proposal is supported by molecular modeling studies using a 6-mer duplex adduct of d(ATGCAT)2.  相似文献   

4.
The purpose of this study was to explore an accurate characterization of the binding interaction of antibiotic drug cephalexin with calf thymus DNA (CT-DNA) as a relevant biological target by using UV absorption, fluorescence spectroscopy and circular dichroism (CD) in vitro under simulated physiological conditions (pH = 7.4) and also through a molecular modeling study. The results showed that the drug interacts with the DNA helix via a minor groove binding mode. The thermodynamic parameters were calculated and showed that the reaction between the drug and CT-DNA was exothermic. In addition, the drug enforced traceable changes in the viscosity of DNA. The molecular modeling results indicated that cephalexin forcefully binds to the minor groove of DNA with a relative binding energy of ?21.02?kJ mol?1. The obtained theoretical results were in good agreement with those obtained from experimental studies.  相似文献   

5.
Fluorescence spectroscopy was used to study the interaction between the minor-groove-binding drug netropsin and the self-complementary oligonucleotide d(CTGAnPTTCAG)2 containing the fluorescent base analogue 2-aminopurine (nP). The binding of netropsin to this oligonucleotide causes strong quenching of the 2-aminopurine fluorescence, observed by steady-state as well as time-resolved spectroscopy. From fluorescence titrations, binding isotherms were recorded and evaluated. The parameters showed one netropsin binding site/oligonucleotide duplex and an association constant of about 10(5) M-1 at 25 degrees C, 3-4 orders of magnitude weaker than for an exclusive adenine/thymine host sequence. From the temperature dependence of the association constant the thermodynamic parameters were obtained as delta G = -29 kJ/mol, delta H = -12 kJ/mol and delta S = +55 J.mol-1.K-1 at 25 degrees C. These parameters resemble those of the interaction of poly[(dG-dC).(dG-dC)] with netropsin, indicating a mainly entropy-driven reaction. The amino group of 2-aminopurine, like that of guanine, resides in the minor groove of DNA. Therefore the relatively weak binding of netropsin to d(CTGAnPTTCAG)2 is probably related to partial blockage of the tight fit of netropsin into the preferred minor groove of an exclusive adenine/thymine host sequence.  相似文献   

6.
Chai J  Wang J  Xu Q  Hao F  Liu R 《Molecular bioSystems》2012,8(7):1902-1907
The toxic interaction of ractopamine (RAC) with calf thymus DNA (ct DNA) was studied in vitro using multi-spectroscopic methods and molecular modeling methods. The hypochromic effect without a noticeable shift in UV-vis absorption indicated that the minor groove binding mode existed in the interaction between RAC and DNA. The fluorescence quenching of RAC was observed with the increasing addition of DNA and was proved to be the static quenching. The binding constant and the binding site sizes were 4.13 × 10(3) and 0.97, respectively. The thermodynamic calculation demonstrated that the hydrogen bond and van der Waals were main acting forces. This result further confirmed the existence of groove binding mode. Afterwards, we found another interaction mode, electrostatic binding mode through the fluorescence polarization, ionic effects and denatured DNA experiments. Circular dichroism spectroscopy (CD) was then employed to monitor the conformation changes of DNA. Molecular modeling studies illustrated the visual display of the binding mode and the detailed information of the H-bond.  相似文献   

7.
The interaction between the dimer structure of ibuprofen drug (D-IB) and calf thymus DNA under simulative physiological conditions was investigated with the use of Hoechst 33258 and methylene blue dye as spectral probes by the methods of UV-visible absorption, fluorescence spectroscopy, circular dichroism spectroscopy and molecular modeling study.Using the Job's plot, a single class of binding sites for theD-IB on DNA was put in evidence. The Stern–Volmer analysis of fluorescence quenching data shows the presence of both the static and dynamic quenching mechanisms. The binding constants, Kb were calculated at different temperatures, and the thermodynamic parameters ?G°, ?H° and ?S° were given. The experimental results showed that D-IB molecules could bind with DNA via groove binding mode as evidenced by: I. DNA binding constant from spectrophotometric studies of the interaction of D-IB with DNA is comparable to groove binding drugs. II. Competitive fluorimetric studies with Hoechst 33258 have shown that D-IB exhibits the ability of this complex to displace with DNA-bounded Hoechst, indicating that it binds to DNA in strong competition with Hoechst for the groove binding. III. There is no significantly change in the absorption of the MB-DNA system upon adding the D-IB, indicates that MB molecules are not released from the DNA helix after addition of the D-IB and are indicative of a non-intercalative mode of binding. IV. Small changes in DNA viscosity in the presence of D-IB, indicating weak link to DNA, which is consistent with DNA groove binding. As well as, induced CD spectral changes, and the docking results revealed that groove mechanism is followed by D-IB to bind with DNA.  相似文献   

8.
Kwon Y  Xi Z  Kappen LS  Goldberg IH  Gao X 《Biochemistry》2003,42(5):1186-1198
Neocarzinostatin (NCS-chrom), a natural enediyne antitumor antibiotic, undergoes either thiol-dependent or thiol-independent activation, resulting in distinctly different DNA cleavage patterns. Structures of two different post-activated NCS-chrom complexes with DNA have been reported, revealing strikingly different binding modes that can be directly related to the specificity of DNA chain cleavage caused by NCS-chrom. The third structure described herein is based on recent studies demonstrating that glutathione (GSH) activated NCS-chrom efficiently cleaves DNA at specific single-base sites in sequences containing a putative single-base bulge. In this structure, the GSH post-activated NCS-chrom (NCSi-glu) binds to a decamer DNA, d(GCCAGAGAGC), from the minor groove. This binding triggers a conformational switch in DNA from a loose duplex in the free form to a single-strand, tightly folded hairpin containing a bulge adenosine embedded between a three base pair stem. The naphthoate aromatic moiety of NCSi-glu intercalates into a GG step flanked by the bulge site, and its substituent groups, the 2-N-methylfucosamine carbohydrate ring and the tetrahydroindacene, form a complementary minor groove binding surface, mostly interacting with the GCC strand in the duplex stem of DNA. The bulge site is stabilized by the interactions involving NCSi-glu naphthoate and GSH tripeptide. The positioning of NCSi-glu is such that only single-chain cleavage via hydrogen abstraction at the 5'-position of the third base C (which is opposite to the putative bulge base) in GCC is possible, explaining the observed single-base cleavage specificity. The reported structure of the NCSi-glu-bulge DNA complex reveals a third binding mode of the antibiotic and represents a new family of minor groove bulge DNA recognition structures. We predict analogue structures of NCSi-R (R = glu or other substituent groups) may be versatile probes for detecting the existence of various structures of nucleic acids. The NMR structure of this complex, in combination with the previously reported NCSi-gb-bulge DNA complex, offers models for specific recognition of DNA bulges of various sizes through binding to either the minor or the major groove and for single-chain cleavage of bulge DNA sequences.  相似文献   

9.
Anthramycin, tomaymycin and sibiromycin are pyrrolo(1,4)benzodiazepine antitumor antibiotics. These compounds react with DNA and other guanine-containing polydeoxynucleotides to form covalently bound antibiotic - polydeoxynucleotide complexes. Experiments utilizing radiolabelled antibiotics have led to the following conclusions: 1. Sibiromycin reacts much faster than either anthramycin or tomaymycin with DNA. 2. At saturation binding the final antibiotic to base ratios for sibiromycin, anthramycin and tomaymycin are 1 : 8.8,1: 12.9, and 1 : 18.2, respectively. 3. No reaction with RNA or protein occurs with the pyrrolo(1,4)benzodiazepine antibiotics. 4. Sibiromycin effectively competes for the same DNA binding sites as anthramycin and tomaymycin; however, there is only partial overlap for the same binding sites between anthramycin and tomaymycin. 5. Whereas all three pyrrolo(1,4)benzodiazepine antibiotic-DNA complexes are relatively stable to alkaline conditions, their stability under acidic conditions increases in the order tomaymycin, anthramycin and sibiromycin. 6. No loss of non-exchangeable hydrogens in either the pyrrol ring or the side chains of these antibiotics occurs upon formation of their complexes with DNA. 7. Unchanged antibiotic has been demonstrated to be released upon acid treatment of the anthramycin-DNA and tomaymycin-DNA complexes. 8. A Schiff base linkage between the antibiotics and DNA has been eliminated. The comparative reactivity of the three antibiotics towards DNA and the stability of their DNA complexes is discussed in relation to their structures. A working hypothesis for the formation of the antibiotic-DNA covalent complexes is proposed based upon the available information.  相似文献   

10.
Therapeutic drugs and environmental pollutants may exhibit high reactivity toward DNA bases and backbone. Understanding the mechanisms of drug-DNA binding is crucial for predicting their potential genotoxicity. We developed a fluorescence analytical method for the determination of the preferential binding mode for drug-DNA interactions. Two nucleic acid dyes were employed in the method: TO-PRO-3 iodide (TP3) and 4',6-diamidino-2-phenylindole (DAPI). TP3 binds DNA by intercalation, whereas DAPI exhibits minor groove binding. Both dyes exhibit significant fluorescence magnification on binding to DNA. We evaluated the DNA binding constant, K(b), for each dye. We also performed fluorescence quenching experiments with 11 molecules of various structures and measured a C(50) value for each compound. We determined preferential binding modes for the aforementioned molecules and found that they bound to DNA consistently, as indicated by other studies. The values of the likelihood of DNA intercalation were correlated with the partition coefficients of the molecules. In addition, we performed nuclear magnetic resonance (NMR) studies of the interactions with calf thymus DNA for the three molecules. The results were consistent with the fluorescence method described above. Thus, we conclude that the fluorescence method we developed provides a reliable determination of the likelihoods of the two different DNA binding modes.  相似文献   

11.
A novel method of analysis of double-stranded DNA-ligand interaction is presented. The interaction is monitored by the fluorescence of a DNA bis-intercalator oxazole homodimer YoYo-3. The fluorescence intensity or its decay time reflects the modification of the DNA double helix. The DNA sequence is scanned by hybridization with short oligomers having consecutively overlapping complementary sequences to analyse the sequence specificity of binding. In our experiments we used as ligands the minor groove binders netropsin, SN6999 (both with AT-preference), the GC-specific ligand chromomycin A3 as well as the derivative SN6113 (non-specific interaction), which displace the bis-intercalator YoYo-3 or influence the duplex structure in such away that the fluorescence intensity and lifetime decrease in comparison to a ligand-free screening. The changes of fluorescence emission clearly define the binding motif and indicate minor groove interactions with a reduced DNA binding site. Titration of the ligand quantitatively characterizes its binding by determining the dependence of the binding constant on the oligonucleotide sequence.  相似文献   

12.
The binding to DNA of a mixed function ligand (NETGA) is described, in which a potential intercalating group, an acridine moiety, is incorporated at the carboxyl terminus of the minor groove binding oligopeptide netropsin skeleton. Scatchard analysis of absorption data provided evidence of two modes of binding to DNA with K1 = 9.1 x 10(5) M-1 at low r values (0.003-0.1), and a binding site size n = 10, indicative of binding of both moeities. At high binding ratios (greater than 0.1), K2 = 0.9 x 10(5) M-1 and n = 5 corresponding to external binding. Complementary strand MPE footprinting on a pBR322 restriction fragment showed NETGA binds to 5'-AAAT like netropsin. It causes enhanced cleavage by MPE, particularly at G-C rich sequences and remote from the preferred binding sites. Viscometry measurements provided evidence for biphasic modes of the two binding portions of NETGA. Fluorescence polarization and linear dichroism measurements were in accord with distinct modes of interaction of the acridine (intercalation) and oligopeptide (minor groove binding) portions of NETGA. LD measurements on NETGA indicate that the oligopeptide moiety (netropsin-like) has an orientation typical of minor groove binders, whereas the degree of intercalation of the acridine group is decreased by association of the oligopeptide moiety.  相似文献   

13.
The toxic interaction between 2‐naphthylamine (2‐NA) and herring sperm deoxyribonucleic acid (hs‐DNA) has been thoroughly investigated by UV absorption, fluorescence, and circular dichroism (CD) spectroscopic methods. UV absorption result indicates that 2‐NA may intercalate into the stack base pairs of DNA during the toxic interaction of 2‐NA with DNA. A fluorescence quenching study shows that DNA quenches the intrinsic fluorescence of 2‐NA via a static pathway. The studies on effects of ionic strength and anionic quenching rule out electrostatic and groove bindings as the dominant binding modes. Further studies on denatured DNA fluorescence quenching and thermal melting studies confirm that the dominant binding mode of 2‐NA‐DNA is intercalative binding. A CD spectral study shows that the binding interaction of 2‐NA with DNA leads to the disorganization of the neat double‐helical structure of hs‐DNA. © 2013 Wiley Periodicals, Inc. J BiochemMol Toxicol 27:279‐285, 2013; View this article online at wileyonlinelibrary.com . DOI 10.1002/jbt.21488  相似文献   

14.
A series of biochemical investigations were undertaken to determine the mechanism of Q-banding. The results were as follows: 1. In agreement with previous studies, highly AT-rich DNA, such as poly(dA)-poly(dT), markedly enhanced quinacrine fluorescence while GC containing DNA quenched fluorescence. These effects persisted at DNA concentrations comparable to those in the metaphase chromosome. 2. Studies of quinacrine-DNA complexes in regard to the hypochromism of quinacrine, DNA Tm, DNA viscosity, and equilibrium dialysis, indicated the quinacrine was bound by intercalation with relatively little side binding. 3. Single or double stranded nucleotide polymers, in the form of complete or partial helices, were 1000-fold more effective in quenching than solutions of single nucleotides, suggesting that base stacking is required for quenching. 4. Studies of polymers in the A conformation, such as transfer RNA and DNA-RNA hybrids, indicated that marked base tilting does not affect the ability of nucleic acids to cause quenching or enhancement of quinacrine fluorescence. 5. Salts inhibit the binding of quinacrine to DNA. 6. Spermine, polylysine and polyarginine, which bind in the small groove of DNA, inhibited quinacrine binding and quenching, while histones, which probably bind in the large groove, had little effect. This correlated with the observation that removal of histones with acid has no effect on Q-banding. 7. Mouse liver chromatin was separated into five fractions. At concentrations of quinacrine from 2×10?6 to 2×10?5 M all fractions inhibited to varying degrees the ability of the chromatin DNA to bind quinacrine and quench quinacrine fluorescence. At saturating levels of quinacrine two fractions, the 400 g pellet (rich in heterochromatin) and a dispersed euchromatin supernatant fraction, showed a decreased number of binding sites for quinacrine. These two fractions were also the richest in non-histone proteins. 8. DNA isolated from the different fractions all showed identical quenching of quinacrine fluorescence. 9. Mouse GC-rich, mid-band, AT-rich, and satellite DNA, isolated by CsCl and Cs2SO4-Ag+ centrifugation all showed identical quenching of quinacrine fluorescence, indicating that within a given organism, except for very AT or GC-rich satellites, the variation in base composition is not adequate to explain Q-banding. — We interpret these results to indicate that: (a) quinacrine binds to chromatin by intercalation of the three planar rings with the large group at position 9 lying in the small groove of DNA, (b) most pale staining regions are due to a decrease binding of quinacrine, and (c) this inhibition of binding is predominately due to non-histone proteins.  相似文献   

15.
The antibiotic drug, netropsin, was complexed with the DNA oligonucleotide duplex [d(GGTATACC)]2 to monitor drug 13C NMR chemical shifts changes. The binding mode of netropsin to the minor groove of DNA is well-known, and served as a good model for evaluating the relative sensitivity of 13C chemical shifts to hydrogen bonding. Large downfield shifts were observed for four resonances of carbons that neighbor sites which are known to form hydrogen bond interactions with the DNA minor groove. Many of the remaining resonances of netropsin exhibit shielding or relatively smaller deshielding changes. Based on the model system presented here, large deshielding NMR shift changes of a ligand upon macromolecule binding can likely be attributed to hydrogen bond formation at nearby sites.  相似文献   

16.
17.
Spectroscopic studies of interaction of chlorobenzylidine with DNA   总被引:5,自引:0,他引:5  
Zhong W  Yu JS  Huang W  Ni K  Liang Y 《Biopolymers》2001,62(6):315-323
Electronic absorbance and fluorescence titrations are used to probe the interaction of chlorobenzylidine with DNA. The binding of chlorobenzylidine to DNA results in hypochromism, a small shift to a longer wavelength in the absorption spectra, and emission quenching in the fluorescence spectra. These spectral characteristics suggest that chlorobenzylidine binds to DNA by an intercalative mode. This conclusion is reinforced by fluorescence polarization measurements. Scatchard plots constructed from fluorescence titration data give a binding constant of 1.3 x 10(5) M(-1) and a binding site size of 10 base pairs. This indicates that chlorobenzylidine has a high affinity with DNA. The intercalative interaction is exothermic with a Van't Hoff enthalpy of -143 kJ/mol. This result is obtained from the temperature dependence of the binding constant. The interaction of chlorobenzylidine with DNA is affected by the pH value of the solution. The binding constant has its maximum at pH 3.0. Upon binding to DNA, the fluorescence from chlorobenzylidine is quenched efficiently by the DNA bases and the fluorescence intensity tends to be constant at high concentrations of DNA when the binding is saturated. The Stern-Volmer quenching constant obtained from the linear quenching plot is 1.6 x 10(4) M(-1) at 25 degrees C. The measurements of the fluorescence lifetime and the dependence of the quenching constant on the temperature indicate that the fluorescence quenching process is static. The fluorescence lifetime of chlorobenzylidine is 1.9 +/- 0.4 ns.  相似文献   

18.
Studies on the interaction of isoxazolcurcumin with calf thymus DNA   总被引:1,自引:0,他引:1  
The interaction of isoxazolcurcumin (IOC), a synthetic derivative of curcumin, with calf thymus-DNA (ct-DNA) has been investigated by UV-Vis, fluorescence, circular dichroism spectroscopies, viscosity measurements and docking studies. From these analyses, the binding constant, number of binding sites and mode of binding of IOC to ct-DNA has been determined. The binding constant of IOC to DNA calculated from both UV-Vis and CD spectra was found to be in the 10(4)M(-1) range. Analyses of fluorescence spectra, viscosity measurements and molecular modeling of IOC-DNA interactions indicate that IOC is a minor groove binder of ct-DNA and preferentially binds to AT rich regions. Ethidium bromide displacement studies revealed that IOC did not have any effect on ethidium bromide bound DNA which is indicative of groove binding. To elucidate the preferred region of binding of IOC to DNA, docking studies have been performed and changes in accessible surface area (DeltaASA) of nucleobases determined due to IOC-DNA complexation.  相似文献   

19.
Acridines and their derivatives are well-known probes for nucleic acids as well as being relevant in the field of drug development to establish new chemotherapeutic agents. We have shown from molecular modelling studies that 9-phenyl acridine and some of its derivatives can act as inhibitors of topoisomerase I and thus have potential to act as anticancer agents. Rational design of new compounds for therapeutics requires knowledge about their structural stability and interactions with various cellular macromolecules. In this regard it is important to know how these molecules would interact with DNA. Here we report the interaction of 9-phenyl acridine (ACPH) with calf thymus DNA (CT-DNA) based on various biophysical and molecular modelling studies. Spectrophotometric studies indicated that ACPH binds to CT-DNA. DNA melting studies revealed that binding of ACPH to CT-DNA resulted in a small increase in melting temperature, which is unlikely in case of classical intercalator; rather, it indicates external binding. Viscosity measurements show that ACPH exhibits groove binding. Competitive binding of ACPH to CT-DNA pre-bound to ethidium bromide (EB) showed slow quenching. Measurement of the binding constant of ACPH by fluorescent intercalator displacement (FID) assay corroborated the notion that there was groove binding. Molecular modelling studies also supported this finding. Results indicate that binding of ACPH is through partial intercalation in the minor groove of DNA.  相似文献   

20.
BACKGROUND: We report on the potential DNA binding modes and spectral characteristics of the cell-permeant far red fluorescent DNA dye, DRAQ5, in solution and bound within intact cells. Our aim was to determine the constraints for its use in flow cytometry and bioimaging. METHODS: Solution characteristics and quantum yields were determined by spectroscopy. DRAQ5 binding to nuclear DNA was analyzed using fluorescence quenching of Hoechst 33342 dye, emission profiling by flow cytometry, and spectral confocal laser scanning microscopy of the complex DRAQ5 emission spectrum. Cell cycle profiling utilized an EGFP-cyclin B1 reporter as an independent marker of cell age. Molecular modeling was used to explore the modes of DNA binding. RESULTS: DRAQ5 showed a low quantum yield in solution and a spectral shift upon DNA binding, but no significant fluorescence enhancement. DRAQ5 caused a reduction in the fluorescence intensity of Hoechst 33342 in live cells prelabeled with the UV excitable dye, consistent with molecular modeling that suggests AT preference and an engagement of the minor groove. In vivo spectral analysis of DRAQ5 demonstrated shifts to longer wavelengths upon binding with DNA. Analysis of spectral windows of the dual emission peaks at 681 and 707 nm in cells showed that cell cycle compartment recognition was independent of the far red-near IR emission wavelengths monitored. CONCLUSIONS: The study provides new clues to modes of DNA binding of the modified anthraquinone molecule in vivo, and its AT base-pair selectivity. The combination of low quantum yield but high DNA affinity explains the favorable signal-to-noise profile of DRAQ5-nuclear fluorescence. The robust nature of cell cycle reporting using DRAQ5, even when restricted spectral windows are selected, facilitates the analysis of encroaching spectral emissions from other fluorescent reporters, including GFP-tagged proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号