首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In asynchronous RTG-2 cell cultures infected with infectious pancreatic necrosis (IPN) virus, inhibition of cellular DNA synthesis, but not protein synthesis, was detected 5 to 6 h postinfection and was 80 to 90% complete by 7 to 8 h. Inhibition of DNA synthesis was largely abolished by UV irradiation of the virus. Sedimentation analyses of phenol-extracted DNA indicated that native cellular DNA was not degraded during infection. Sedimentation on alkaline sucrose gradients of DNA from cells pulsed with radioactive thymidine for varying periods indicated that elongation of nascent DNA chains proceeded normally in infected cells. These and previous results suggest that IPN virus infection results in a reduction of the number of chromosomal sites active in DNA synthesis but does not affect the rate of polymerization at active sites. Cells synchronized with excess thymidine and hydroxyurea and infected with virus at the time of release from the block demonstrated an inhibition of DNA synthesis 3 h postinfection. Cells infected 4 h prior to release continued to synthesize normal amounts of DNA for 1 to 2 h after release. These results indicated that DNA synthesis in early synthetic phase is relatively insensitive to inhibition by IPN virus.  相似文献   

2.
The consequences of herpes simplex virus type 2 (HSV-2) and human embryonic fibroblast cell interaction at different temperatures (37, 40, and 42 degrees C) were investigated. Incubation at 37 or 40 degrees C was permissive for HSV-2 inhibition of host DNA synthesis, induction of virus-specific DNA replication, and infectious virus production. The amount of [methyl-3H]thymidine incorporated into viral DNA and the final yield of new infectious virus were significantly reduced at 40 degrees C compared to 37 degrees C. At 42 degrees C, detectable virus-specific DNA synthesis was totally blocked. Maximum stimulation of host cell DNA synthesis at 42 degrees C was measured after a multiplicity of infection of 0.5 to 1.0 PFU/cell. By autoradiography, data indicated that HSV-2 stimulates host cell chromosomal DNA synthesis. Stimulation of thymidine kinase activity with thermostability properties in common with a virus enzyme was detected during the first 24 h of infection at 42 degrees C, after 24 h the enhanced thymidine kinase activity had properties in common with host cell isozymes. The data obtained during this investigation indicated that stimulation of host cell DNA synthesis does not require viral DNA synthesis.  相似文献   

3.
Cultures of human embryonic lung (HEL) cells in different physiological states were studied for their susceptibility to infection with human cytomegalovirus (CMV) with respect to production of infectious virus, synthesis of viral antigens, and virus-induced stimulation of cellular DNA synthesis. In general, subconfluent, actively growing cells yielded higher amounts of infectious virus than did confluent contact-inhibited cells. The higher yield of infectious virus was correlated with a greater percentage of cells producing viral antigens within the first 48 h after infection. In confluent cultures, 25 to 50% of the cells produced viral antigens within the first 48 h postinfection. This proportion did not change over a 10-fold range of multiplicity of infection, indicating that many of the cells in confluent cultures did not support productive infection. However, virtually all the cells in subconfluent cultures were susceptible. Also, in contrast to herpes simplex virus and pseudorabies virus, infectious CMV is not produced by cells treated with 5-fluorouracil and thymidine. Virus-induced stimulation of cellular DNA synthesis in cells infected at high multiplicities of infection could be detected only in confluent cultures, in which cellular DNA synthesis had been previously suppressed, but could not be detected in similarly treated cultures of subconfluent cells. The lack of detectable stimulation of cellular DNA synthesis in the latter was related to the fact that practically all the cells in the culture synthesized viral antigens within the first 48 h after infection, productive infection and detectable synthesis of cellular DNA being mutually exclusive.  相似文献   

4.
H Iida  K Oda 《Journal of virology》1975,15(3):471-478
The pattern of synthesis of non-histone chromosomal proteins in simian virus (SV) 40-infected African green monkey kidney cells was analyzed by polyacryl-amide gel electrophoresis to see whether the changes in chromosomal protein metabolism are involved in the viral-induced synthesis of cellular DNA and mRNA. During the prereplicative phase of infection, the rate of histone synthesis was decreased until 15 h postinfection, whereas that of non-histone protein synthesis was increased after 5 h postinfection and reached a maximum at 10 to 15 h postinfection when viral-induced synthesis of cellular DNA and mRNA began to be observed. Stimulation of non-histone protein synthesis was also observed in the infected cells treated with cytosine arabinoside and was dependent on the multiplicity of infection. Stimulation occurred in almost all species of non-histone proteins. These results suggest that the stimulation of non-histone protein synthesis is caused by an early SV40 function and occurs prior to the viral-induced synthesis of cellular DNA and mRNA. During the replicative phase of infection, a marked increase in the rate of synthesis was observed in the non-histone proteins with molecular weights of about 48,000, 35,000, and 23,000, which were subsequently found to be SV40 capsid proteins.  相似文献   

5.
6.
The induction of focus formation in low serum and of neoplastic transformation of Syrian hamster embryo cells was examined after the expression of herpes simplex virus type 2 functions. Syrian hamster embryo cells infected at a high multiplicity (5 PFU/cell) with 5-bromo-2'-deoxyuridine-labeled herpes simplex virus type 2 (11% substitution of thymidine residues) were exposed to near UV light irradiation at various times postinfection. This procedure specifically inactivated the viral genome, while having little, if any, effect on the unlabeled cellular DNA. Focus formation in 1% serum and neoplastic transformation were observed in cells exposed to virus inactivated before infection, but the frequency was enhanced (15- to 27-fold) in cells in which the virus was inactivated at 4 to 8 h postinfection. Only 2 to 45 independently isolated foci were capable of establishing tumorigenic lines. The established lines exhibited phenotypic alterations characteristic of a transformed state, including reduced serum requirement, anchorage-independent growth, and tumorigenicity. They retained viral DNA sequences and, even at relatively late passage, expressed viral antigens, including ICP 10.  相似文献   

7.
Bunyamwera virus replication was examined in Aedes albopictus (mosquito) cell cultures in which a persistent infection is established and in cytopathically infected BHK cells. During primary infection of A. albopictus cells, Bunyamwera virus reached relatively high titers (107 PFU/ml), and autointerference was not observed. Three virus-specific RNAs (L, M, and S) and two virion proteins (N and G1) were detected in infected cells. Maximum rates of viral RNA synthesis and viral protein synthesis were extremely low, corresponding to <2% of the synthetic capacities of uninfected control cells. Viral protein synthesis was maximal at 12 h postinfection and was shut down to barely detectable levels at 24 h postinfection. Virus-specific RNA and nucleocapsid syntheses showed similar patterns of change, but later in infection. The proportions of cells able to release a single PFU at 3, 6, and 54 days postinfection were 100, 50, and 1.5%, respectively. Titers fell to 103 to 105 PFU/ml in carrier cultures. Persistently infected cultures were resistant to superinfection with homologous virus but not with heterologous virus. No changes in host cell protein synthesis or other cytopathic effects were observed at any stage of infection. Small-plaque variants of Bunyamwera virus appeared at approximately 7 days postinfection and increased gradually until they were 75 to 95% of the total infectious virus at 66 days postinfection. Temperature-sensitive mutants appeared between 23 and 49 days postinfection. No antiviral activity similar to that reported in A. albopictus cell cultures persistently infected with Sindbis virus (R. Riedel and D. T. Brown, J. Virol. 29: 51-60, 1979) was detected in culture fluids by 3 months after infection. Bunyamwera virus replicated more rapidly in BHK cells than in mosquito cells but reached lower titers. Autointerference occurred at multiplicities of infection of 10. Virus-specific RNA and protein syntheses were at least 20% of the levels in uninfected control cells. Host cell protein synthesis was completely shut down, and nucleocapsid protein accumulated until it was 4% of the total cell protein. We discuss these results in relation to possible mechanisms involved in determining the outcome of arbovirus infection of vertebrate and mosquito cells.  相似文献   

8.
The time course of replication of simian virus 40 deoxyribonucleic acid (DNA) was investigated in growing monolayer cultures of subcloned CV1 cells. At multiplicities of infection of 30 to 60 plaque-forming units (PFU)/cell, first progeny DNA molecules (component 1) were detected by 10 hr after infection. During the following 10 to 12 hr, accumulation of virus DNA proceeded at ever increasing rates, albeit in a non-exponential fashion. The rate of synthesis then remained constant, until approximately the 40th hour postinfection, when DNA replication stopped. Under these conditions, the duration of the virus growth cycle was approximately 50 hr. The time needed for the synthesis of one DNA molecule was found to be approximately 15 min. At multiplicities of infection of 1 or less than 1 PFU/cell, the onset of the linear phase of DNA accumulation was delayed, but the final rate of DNA synthesis was the same, independent of the input multiplicity. This was taken as a proof that templates for the synthesis of viral DNA multiply in the cell during the early phase of replication. However, the probability for every replicated DNA molecule to become in turn replicative decreased constantly during that phase. This could be accounted for by assuming a limited number of replication sites in the infected cell.  相似文献   

9.
DNA synthesis in Epstein-Barr virus (EBV)-infected lymphocytes was inhibited by phosphonoacetic acid (PAA) as measured by [3H]thymidine incorporation. PAA, at a concentration of 200 microgram/ml, inhibited [3H]thymidine incorporation by human umbilical cord lymphocytes infected with EBV strain P94 but had little effect on DNA synthesis in mitogen-stimulated cells. Transformed cell lines did not develop from infected cord cell cultures treated with 100 microgram of PAA per ml. Cytofluorometric analysis showed marked increases in cellular nucleic acid content (RNA plus DNA) as early as 9 days after infection of cord cells in the absence of PAA and before significant enhancement of [3H]thymidine incorporation became apparent. Moreover, EBV led to increases in cellular nucleic acid even when 200 microgram of PAA per ml was added to cell cultures before infection. The apparent discrepancy between results obtained by [3H]thymidine incorporation and cytofluorometry is explained either by significant inhibition of cellular DNA polymerases by PAA or by a block at the G2 + M phase of the cell cycle. The data suggest that EBV initiates alterations in cellular nucleic acid synthesis or cell division without prior replication of viral DNA by virus-induced DNA polymerases.  相似文献   

10.
R Hand 《Journal of virology》1976,19(3):801-809
The inhibition of thymidine incorporation into DNA in Newcastle disease virus-infected cells has been studied. At 6 h after infection of L-929 cells at high multiplicity, transport of exogenous thymidine across the cell membrane was inhibited. The kinetics of this inhibition, decreased Vmax with no change in Km, suggest that there are fewer sites available for transport in infected cells. The conversion of thymidine to dTTP was not inhibited. Equilibrium of exogenous thymidine with the acid-soluble pool occurred more slowly and at a lower level of radioactivity than in uninfected cells, and there was a reduction in the rate of incorporation of exogenous thymidine into DNA. The reduction of incorporation into the pool and into DNA was proportionate. The size of total cellular dTTP pools was changed very little in infected cells. DNA synthesized in infected cells in the presence of [3H]BrdUrd had reduced incorporation of tritium but similar buoyant density to that from uninfected cells. The results show that Newcastle disease virus inhibits DNA synthesis directly and, in addition, decreases thymidine transport. Together these account for the overall decrease in thymidine incorporation into DNA of infected cells.  相似文献   

11.
In this report we confirm and further characterize the induction of a novel ribonucleotide reductase after herpes simplex virus infection of mammalian cells. Induction of the enzyme was observed at a multiplicity of infection of 1 PFU/cell or greater and was found to be maximal (three- to sixfold the activity in mock-infected controls at 6 to 8 h postinfection at a multiplicity of infection of 10 PFU/cell. Partial purification and subsequent characterization of the reductase activity from infected cells demonstrated the existence of two enzymes which could be separated by precipitation with ammonium sulfate. One of the activities precipitated at between 35 and 55% salt saturation, as did the enzyme from control cells, whereas the novel activity precipitated at 0 to 35% saturation. This latter enzyme was similar to the herpes simplex virus-induced reductase described by others in its lack of requirement for Mg2 and its resistance to inhibition by dTTP and dATP; in addition, we found that it was inhibited by ATP, whereas the enzyme from control cells displayed an absolute requirement for the nucleotide. Both enzymes were equally inhibited by pyridoxal phosphate and showed similar cold and heat stability. The enzyme induced by herpes simplex virus infection, however, was much more labile than the control enzyme upon purification.  相似文献   

12.
Deoxyribonucleic Acid Synthesis in FV-3-infected Mammalian Cells   总被引:12,自引:11,他引:1       下载免费PDF全文
Deoxyribonucleic acid (DNA) synthesis and virus growth in frog virus 3 (FV-3)-infected mammalian cells in suspension were examined. The kinetics of thymidine incorporation into DNA was followed by fractionating infected cells. The cell fractionation procedure separated replicating viral DNA from matured virus. Incorporation of isotope into the nuclear fraction was depressed 2 to 3 hr postinfection; this inhibition did not require protein synthesis. About 3 to 4 hr postinfection, there was an increase in thymidine incorporation into both nuclear and cytoplasmic fractions. The nuclear-associating DNA had a guanine plus cytosine (GC) content of 52%; unlike host DNA it was synthesized in the presence of mitomycin C, it could be removed from nuclei by centrifugation through sucrose, and it was susceptible to nuclease digestion. This nuclear-associating DNA appeared to be a precursor of cytoplasmic DNA of infected cells. The formation of the latter DNA class could be selectively inhibited by conditions (infection at 37 C or inhibition of protein synthesis) that permit continued incorporation of thymidine into nuclear-associating DNA. The cytoplasmic DNA class also had a GC content of 52%, was resistant to nuclease degradation, and its sedimentation profile in sucrose gradients corresponded to that of infective virus. Contrary to previous reports, we found that (i) viral DNA synthesis can continue in the absence of concomitant protein synthesis, and (ii) viral DNA synthesis is not abolished at 37 C. The temperature lesion in FV-3 replication appeared to be in the packaging of DNA into the form that appears in the cytoplasmic fraction of disrupted cells.  相似文献   

13.
Relationships between the rate of DNA synthesis in cultured human umbilical cord leukocytes and the multiplicity of added Epstein-Barr virus (EBV) were studied. At low multiplicities of approximately 0.1 transforming units/cell (approximately 10 physical particles/cell), inoculated cultures demonstrated increased rates of DNA synthesis, by comparison to uninoculated cultures, 3 days after inoculation. Stimulation of DNA synthesis was evident of progressively longer intervals after inoculations of 10-fold dilutions of virus. The rate of DNA synthesis, determined by short [-3H]thymidine pulses, reflected as small as twofold changes in multiplicity and thus can serve as a quantitative assay for the virus. Changes in the rate of DNA synthesis were evident before increases in cell number or alteration in morphology. Stimulation of DNA synthesis in umbilical cord leukocytes was inhibited by treatment of EBV with antibody and also in graded fashion, by progressive doses of UV irradiation to the virus. Induction of DNA synthesis by EBV was serum dependent. Estimates of the number of cells transformed were obtained by extrapolation from a standard curve relating known numbers of transformed cells to [-3H]thymidine incorporation and also by cloning cells after exposure to virus. At the low multiplicities of infection used in these experiments approximately 0.04 to 0.002 of the total cellular population was transformed. The high efficiency of cell transformation by EBV by comparison to other DNA tumor viruses is emphasized.  相似文献   

14.
The ability of poliovirus that was irradiated with UV light at energies up to 2,160 ergs/mm2 to subsequently inhibit host cell protein synthesis was measured. The inactivation of the host cell shutoff function followed one-hit kinetics. Increasing irradiation did not affect the rate of inhibition until the multiplicity of infection after irradiation was reduced to approximately 1 PFU/cell. At higher functional multiplicities, the rate was unchanged, but an increasing lag before the onset of inhibition was observed with increasing irradiation. The energy levels required to inactivate virus-induced inhibition of host cell protein synthesis suggest that damage to virus RNA rather than to virus capsid proteins is responsible for the loss of function. When the inactivation of host cell shutoff was compared with the inactivation of other viral functions by UV irradiation, it correlated exactly with the loss of infectivity but not with other viral functions measured. Guanidine treatment, which prevents detectable viral RNA and protein synthesis, completely inhibited host cell shutoff by low multiplicities of unirradiated virus infection but not higher multiplicities. When a high multiplicity of virus was first reduced to a low titer by irradiation, host cell shutoff was still evident in the presence of guanidine. The results demonstrate that the complete inhibition of host cell protein synthesis can be accomplished by one infectious viral genome per cell.  相似文献   

15.
Deoxyribonucleic acid (DNA) polymerase activity was induced at approximately 18 to 20 hr after infection of secondary cultures of human embryonic kidney cells with adenovirus type 2 or type 12, and, at 30 to 50 hr after infection, the activity of this enzyme increased two- to threefold. The activity of thymidine kinase was also induced, but the activity of deoxycytidylic deaminase was not. The DNA content per cell at 71 hr after infection was 1.6-fold greater in adenovirus 2-infected cultures, and approximately 2.4-fold greater in adenovirus 12-infected cultures, than in the noninfected cultures. Several properties of DNA polymerase were studied. The enzymes in normal and adenovirus 2- or 12-infected cell extracts were saturated by approximately the same concentration of heat-denatured salmon sperm DNA primer (160 mug/ml); the enzyme activities had a similar broad pH optimum between 7.5 and 9. Extracts prepared from cells infected by either adenovirus did not activate DNA polymerase from noninfected cells, nor did the noninfected cell extracts inhibit enzyme activity of infected cell extracts. DNA polymerase in both normal and adenovirus 2- or 12-infected cells was located predominantly in the nucleus. In each case, the cytoplasm had only 30% of the enzyme activity of the nucleus. At 40 hr after infection with adenovirus 2 or 12, the activities of the enzyme in the nuclear and cytoplasmic fractions increased two- to threefold. Puromycin, an inhibitor of protein synthesis, prevented DNA polymerase induction when added to cultures during the 18- to 30-hr postinfection period, and it arrested the additional increase in enzyme activity when added after enzyme induction began. However, the increases in both DNA polymerase and thymidine kinase activities took place after treatment of infected cultures with 1-beta-d-arabinofuranosylcytosine, an inhibitor of DNA synthesis and adenovirus growth.  相似文献   

16.
Normal and simian virus 40-transformed WI-38 cells exhibited a differential sensitivity to infection with type 3 reovirus. A progressive decrease in viability began 24 to 36 h after infection of transformed cells terminating in complete lysis of cultures by 96 h. Normal cells were productively infected and continued to produce and release virus for as long as 14 days after infection, but exhibited no detectable cytopathology. Inhibition of cellular DNA synthesis began 15 to 18 h after infection in transformed cells before development of cytopathology. No inhibition of DNA synthesis was detected in infected normal cells. No significant differences were noted in the adsorption or early replication characteristics of reovirus in normal and transformed cells. Virus replication and host cell DNA synthesis in normal and transformed human cells were compared to reovirus-infected L-929 mouse fibroblast cells.  相似文献   

17.
[3H]leucine-labeled proteins synthesized in BHK-21 cells infected with Semliki Forest virus were fractionated by polyacrylamide gel electrophoresis (PAGE). Cellular and virus-specific proteins were identified by difference analysis of the PAGE profiles. The specific activity of intracellular [3H]leucine was determined. Two alterations of protein synthesis, which develop with different time courses, were discerned. (i) In infected cultures an inhibition of overall protein synthesis to about 25% of the protein synthesis in mock-infected cultures develops between about 1 and 4 h postinfection (p.i.). (ii) The relative amount of virus-specific polypeptides versus cellular polypeptides increases after infection. About 80% of the proteins synthesized at 4 h p.i. are cellular proteins. Since significant amounts of nontranslocating ribosomes in polyribosomes were not detected up to 7 h p.i., the inhibition of protein synthesis is not caused by inactivation of about 75% of all polyribosomes but by a decreased protein synthetic activity of the majority of polyribosomes. Indirect evidence indicates that an inhibition of elongation and/or release of protein synthesis develops in infected cells, which is sufficient to account for the observed inhibition of protein synthesis. Inhibition of over-all protein synthesis developed when virus-specific RNA began to accumulate at the maximal rate. This relationship was observed during virus multiplication at 37, 30, and 25 C. A possible mechanism by which synthesis of virus-specific RNA in the cytoplasm could inhibit cellular protein synthesis is discussed. Indirect evidence and analysis of polyribosomal RNA show that the increased synthesis of virus-specific protein is brought about by a substitution of cellular by viral mRNA in the polyribosomes.  相似文献   

18.
Infection of human embryonic kidney (HEK) cell cultures with adenovirus types 2 or 12 resulted in an initial drop in the rate of incorporation of (3)H-thymidine into deoxyribonucleic acid (DNA) during the early latent period of virus growth, followed by a marked rise in label uptake. It was shown by cesium chloride isopycnic centrifugation that, after adenovirus 2 infection, there was a decrease in the rate of incorporation of thymidine into cellular DNA. Moreover, DNA-DNA hybridization experiments revealed that, by 28 to 32 hr after infection with either adenovirus 2 or 12, the amount of isolated pulse-labeled DNA capable of hybridizing with HEK cell DNA was reduced by approximately 60 to 70%. Autoradiographic measurements showed that the inhibition of cellular DNA synthesis was due to a decrease in the ability of an infected cell to synthesize DNA. The adenovirus-induced inhibition of host cell DNA synthesis was not due to degradation of cellular DNA. (3)H-thymidine incorporated into cellular DNA at the time of infection remained acid-precipitable, and labeled material was not incorporated into viral DNA. Furthermore, when zone sedimentation through neutral or alkaline sucrose density gradients was employed, no detectable change was observed in the sedimentation rate of this cellular DNA at various times after infection with adenovirus 2 or 12. In addition, there was no increase in deoxyribonuclease activity in cells infected with either virus. Cultures infected for 38 hr with adenovirus 2 or 12 incorporated three to four times as much (3)H-uridine into ribonucleic acid (RNA) as did non-infected cultures. Furthermore, the net RNA synthesized by infected cultures substantially exceeded that of control cultures. The activity of thymidine kinase was induced, but there was no stimulation of uridine kinase.  相似文献   

19.
Infectious deoxyribonucleic acid (DNA) was extracted from green monkey kidney (CV-1) cultures at various times after the cultures were infected with simian virus 40 (SV40) at input multiplicities of 0.01 and 0.1 plaque-forming unit (PFU) per cell. A pronounced decrease in infectious DNA was observed from 3 to 16 hr after virus infection, suggesting that structurally altered intracellular forms may have been generated early in infection. Evidence is also presented that SV40 DNA synthesis requires concurrent protein synthesis. DNA replication was studied in the presence and absence of cycloheximide in: (i) SV40-infected and uninfected cultures of CV-1 cells; (ii) cultures synchronized with 1-β-d-arabinofuranosylcytosine (ara-C) for 24 to 30 hr prior to the addition of cycloheximide; and (iii) in heterokaryons of SV40-transformed hamster and susceptible monkey kidney cells. DNA synthesis was determined by pulse-labeling the cultures with 3H-thymidine at various times from 24 to 46 hr after infection. In addition, the total infectious SV40 DNA was measured. Addition of cycloheximide, even after early proteins had been induced, grossly inhibited both SV40 and cellular DNA syntheses. The activities of thymidine kinase, DNA polymerase, deoxycytidylate deaminase, and thymidylate kinase were measured; these enzyme activities remained high for at least 9 hr in the presence of cycloheximide. SV40 DNA prelabeled with 3H-thymidine before the addition of cycloheximide was also relatively stable during the time required for cycloheximide to inhibit further DNA replication.  相似文献   

20.
Adsorption of ultraviolet-inactivated Sendai virus, at high or low multiplicity, to HeLa cells caused a transient increased incorporation of (3)H-thymidine into the cellular deoxyribonucleic acid (DNA). In HeLa cells synchronized by a double-thymidine block, this increased incorporation of thymidine during the S phase lasted from about 30 to 90 min after virus adsorption. The observations that the kinetics of accumulation of radioactive thymidine in the nucleotide pool did not differ in control and in the virus-treated cells and that the (32)P incorporation into the DNA of the virus-treated cells was inhibited at the same time indicate that the augmented incorporation of (3)H-thymidine into DNA results from a transient block in the endogenous pathway of thymidine synthesis. Chromatographic analysis of the nucleotide pool of the virus-treated cells labeled with (14)C-formate indicates that methylation of deoxyuridine monophosphate to thymidine monophosphate is inhibited. It is suggested that the inhibition is caused by a block of either the thymidilate synthetase or some step in the tetrahydrofolate cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号