首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The yeast OGG1 gene was recently cloned and shown to encode a protein that possesses N-glycosylase/AP lyase activities for the repair of oxidatively damaged DNA at sites of 7,8-dihydro-8-oxoguanine (8-oxoguanine). Similar activities have been identified for Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) and Drosophila ribosomal protein S3. Both Fpg and S3 also contain a deoxyribophosphodiesterase (dRpase) activity that removes 2-deoxyribose-5-phosphate at an incised 5' apurinic/apyrimidinic (AP) sites via a beta-elimination reaction. Drosophila S3 also has an additional activity that removes trans-4-hydroxy-2-pentenal-5-phosphate at a 3' incised AP site by a Mg2+-dependent hydrolytic mechanism. In view of the substrate similarities between Ogg1, Fpg and S3 at the level of base excision repair, we examined whether Ogg1 also contains dRpase activities. A glutathione S-transferase fusion protein of Ogg1 was purified and subsequently found to efficiently remove sugar-phosphate residues at incised 5' AP sites. Activity was also detected for the Mg2+-dependent removal of trans -4-hydroxy-2-pentenal-5-phosphate at 3' incised AP sites and from intact AP sites. Previous studies have shown that DNA repair proteins that possess AP lyase activity leave an inefficient DNA terminus for subsequent DNA synthesis steps associated with base excision repair. However, the results presented here suggest that in the presence of MgCl2, Ogg1 can efficiently process 8-oxoguanine so as to leave a one nucleotide gap that can be readily filled in by a DNA polymerase, and importantly, does not therefore require additional enzymes to process trans -4-hydroxy-2-pentenal-5-phosphate left at a 3' terminus created by a beta-elimination catalyst.  相似文献   

2.
DNA deoxyribophosphodiesterase (dRpase) of E. coli catalyzes the release of deoxyribose-phosphate moieties following the cleavage of DNA at an apurinic/apyrimidinic (AP) site by either an AP endonuclease or AP lyase. Exonuclease I is a single-strand specific DNA nuclease which affects the expression of recombination and repair pathways in E. coli. We show here that a major dRpase activity in E. coli is associated with the exonuclease I protein. Highly purified exonuclease I isolated from an over-producing stain contains high levels of dRpase activity; it catalyzes the release of deoxyribose-5-phosphate from an AP site incised with endonuclease IV of E. coli and the release of 4-hydroxy-2-pentenal-5-phosphate from an AP site incised by the AP lyase activity of endonuclease III of E. coli. A strain containing a deletion of the sbcB gene showed little dRpase activity; the activity could be restored by transformation of the strain with a plasmid containing the sbcB gene. The dRpase activity isolated from an overproducing stain was increased 70-fold as compared to a normal sbcB+ strain (AB3027). These results suggest that the dRpase activity may be important in pathways for both DNA repair and recombination.  相似文献   

3.
The E. coli single-stranded binding protein (SSB) has been demonstrated in vitro to be involved in a number of replicative, DNA renaturation, and protective functions. It was shown previously that SSB can interact with exonuclease I to stimulate the hydrolysis of single-stranded DNA. We demonstrate here that E. coli SSB can also enhance the DNA deoxyribophosphodiesterase (dRpase) activity of exonuclease I by stimulating the release of 2-deoxyribose-5-phosphate from a DNA substrate containing AP endonuclease-incised AP sites, and the release of 4-hydroxy-2-pentenal-5-phosphate from a DNA substrate containing AP lyase-incised AP sites. E. coli SSB and exonuclease I form a protein complex as demonstrated by Superose 12 gel filtration chromatography. These results suggest that SSB may have an important role in the DNA base excision repair pathway.  相似文献   

4.
DNA deoxyribophosphodiesterase.   总被引:17,自引:0,他引:17       下载免费PDF全文
A previously unrecognized enzyme acting on damaged termini in DNA is present in Escherichia coli. The enzyme catalyses the hydrolytic release of 2-deoxyribose-5-phosphate from single-strand interruptions in DNA with a base-free residue on the 5' side. The partly purified protein appears to be free from endonuclease activity for apurinic/apyrimidinic sites, exonuclease activity and DNA 5'-phosphatase activity. The enzyme has a mol. wt of approximately 50,000-55,000 and has been termed DNA deoxyribophosphodiesterase (dRpase). The protein presumably is active in DNA excision repair to remove a sugar-phosphate residue from an endonucleolytically incised apurinic/apyrimidinic site, prior to gap filling and ligation.  相似文献   

5.
The oligonucleotide [5'-32P]pdT8d(-)dTn, containing an apurinic/apyrimidinic (AP) site [d(-)], yields three radioactive products when incubated at alkaline pH: two of them, forming a doublet approximately at the level of pdT8dA when analysed by polyacrylamide-gel electrophoresis, are the result of the beta-elimination reaction, whereas the third is pdT8p resulting from beta delta-elimination. The incubation of [5'-32P]pdT8d(-)dTn, hybridized with poly(dA), with E. coli endonuclease III yields two radioactive products which have the same electrophoretic behaviour as the doublet obtained by alkaline beta-elimination. The oligonucleotide pdT8d(-) is degraded by the 3'-5' exonuclease activity of T4 DNA polymerase as well as pdT8dA, showing that a base-free deoxyribose at the 3' end is not an obstacle for this activity. The radioactive products from [5'-32P]pdT8d(-)dTn cleaved by alkaline beta-elimination or by E. coli endonuclease III are not degraded by the 3'-5' exonuclease activity of T4 DNA polymerase. When DNA containing AP sites labelled with 32P 5' to the base-free deoxyribose labelled with 3H in the 1' and 2' positions is degraded by E. coli endonuclease VI (exonuclease III) and snake venom phosphodiesterase, the two radionuclides are found exclusively in deoxyribose 5-phosphate and the 3H/32P ratio in this sugar phosphate is the same as in the substrate DNA. When DNA containing these doubly-labelled AP sites is degraded by alkaline treatment or with Lys-Trp-Lys, followed by E. coli endonuclease VI (exonuclease III), some 3H is found in a volatile compound (probably 3H2O) whereas the 3H/32P ratio is decreased in the resulting sugar phosphate which has a chromatographic behaviour different from that of deoxyribose 5-phosphate. Treatment of the DNA containing doubly-labelled AP sites with E. coli endonuclease III, then with E. coli endonuclease VI (exonuclease III), also results in the loss of 3H and the formation of a sugar phosphate with a lower 3H/32P ratio that behaves chromatographically as the beta-elimination product digested with E. coli endonuclease VI (exonuclease III). From these data, we conclude that E. coli endonuclease III cleaves the phosphodiester bond 3' to the AP site, but that the cleavage is not a hydrolysis leaving a base-free deoxyribose at the 3' end as it has been so far assumed. The cleavage might be the result of a beta-elimination analogous to the one produced by an alkaline pH or Lys-Trp-Lys. Thus it would seem that E. coli 'endonuclease III' is, after all, not an endonuclease.  相似文献   

6.
Mitochondrial DNA polymerase gamma (pol gamma) is active in base excision repair of AP (apurinic/apyrimidinic) sites in DNA. Usually AP site repair involves cleavage on the 5' side of the deoxyribose phosphate by AP endonuclease. Previous experiments suggested that DNA pol gamma acts to catalyze the removal of a 5'-deoxyribose phosphate (dRP) group in addition to playing the conventional role of a DNA polymerase. We confirm that DNA pol gamma is an active dRP lyase and show that other members of the family A of DNA polymerases including Escherichia coli DNA pol I also possess this activity. The dRP lyase reaction proceeds by formation of a covalent enzyme-DNA intermediate that is converted to an enzyme-dRP intermediate following elimination of the DNA. Both intermediates can be cross-linked with NaBH(4). For both DNA pol gamma and the Klenow fragment of pol I, the enzyme-dRP intermediate is extremely stable. This limits the overall catalytic rate of the dRP lyase, so that family A DNA polymerases, unlike pol beta, may only be able to act as dRP lyases in repair of AP sites when they occur at low frequency in DNA.  相似文献   

7.
8.
Enzymes that release 5'-deoxyribose-5-phosphate (dRP) residues from preincised apurinic/apyrimidinic (AP) DNA have been collectively termed DNA deoxyribophosphodiesterases (dRPases), but they fall into two distinct categories: the hydrolytic dRPases and AP lyases. In order to resolve a number of conflicting reports in the dRPase literature, we examined two putative hydrolytic dRPases (Escherichia coli exonuclease I (exo I) and RecJ) and four AP lyases (E. coli 2, 6-dihydroxy-5N-formamidopyrimidine (Fapy) DNA glycosylase (Fpg) and endonuclease III (endo III), bacteriophage T4 endonuclease V (endo V), and rat polymerase beta (beta-pol)) for their abilities to (i) excise dRP from preincised AP DNA and (ii) incise AP DNA. Although exo I and RecJ exhibited robust 3' to 5' and 5' to 3' exonucleolytic activities, respectively, on appropriate substrates, they failed to demonstrate detectable dRPase activity. All four AP lyases possessed both dRPase and traditional AP lyase activities, albeit to varying degrees. Moreover, as best illustrated with Fpg, AP lyase enzymes could be trapped on both preincised and unincised AP DNA using NaBH(4) as the reducing agent. These results further support the assertion that the catalytic mechanism of the AP lyases, the beta-elimination reaction, does proceed through an imine enzyme-DNA intermediate and that the active site residues responsible for dRP release must contain primary amines. Further, these data indicate a biological significance for the beta-elimination reaction of DNA glycosylase/AP lyases in that they, in concert with hydrolytic AP endonucleases, can create appropriate gapped substrates for short patch base excision repair (BER) synthesis to occur efficiently.  相似文献   

9.
Apurinic/apyrimidinic (AP) sites are among the most frequent DNA lesions. The first step in the AP site repair involves the magnesium-dependent enzyme AP endonuclease 1 (APE1) that catalyzes hydrolytic cleavage of the DNA phosphodiester bond at the 5′ side of the AP site, thereby generating a single-strand DNA break flanked by the 3′-OH and 5′-deoxyribose phosphate (dRP) groups. Increased APE1 activity in cancer cells might correlate with tumor chemoresistance to DNA-damaging treatment. It has been previously shown that the multifunctional oncoprotein Y-box-binding protein 1 (YB-1) interacts with APE1 and inhibits APE1-catalyzed hydrolysis of AP sites in single-stranded DNAs. In this work, we demonstrated that YB-1 stabilizes the APE1 complex with double-stranded DNAs containing the AP sites and stimulates cleavage of these AP sites at low magnesium concentrations.  相似文献   

10.
Addition of thioglycolate and DEAE-Sephadex chromatography were used to analyze the cleavage of the C(3')-O-P bond 3' to AP (apurinic/apyrimidinic) sites in DNA and to distinguish between a mechanism of hydrolysis (which would allow the nicking enzyme to be called 3' AP endonuclease) or beta-elimination (so that the nicking enzyme should be called AP lyase). For this purpose, DNA labelled in the AP sites was first cleaved by rat-liver AP endonuclease, then with the 3' nicking catalyst in the presence of thioglycolate and the reaction products were analyzed on DEAE-Sephadex: deoxyribose-5-phosphate (indicating a 3' cleavage by hydrolysis) and the thioglycolate:unsaturated sugar-5-phosphate adduct (indicating a cleavage by beta-elimination) are well separated allowing to eventually easily discard the hypothesis of a hydrolytic process and the appellation of 3' AP endonuclease. We have shown that addition of thioglycolate to the unsaturated sugar resulting from nicking the C(3')-O-P bond 3' to AP sites by beta-elimination is an irreversible reaction. We have also shown that the thioglycolate must be present from the beginning of the reaction with the nicking catalyst to prevent the primary 5' product of the beta-elimination reaction from undergoing other modifications that complicate the interpretation of the results.  相似文献   

11.
J Kim  S Linn 《Nucleic acids research》1988,16(3):1135-1141
Treatment of DNA containing AP sites with either T4 UV endonuclease or with E. coli endonuclease III followed by a human class II AP endonuclease releases a putative beta-elimination product. This result suggests that both the T4 endonuclease and E. coli endonuclease III class I AP endonucleases catalyze phosphodiester bond cleavage via a lyase- rather than a hydrolase mechanism. Indeed, we have not detected a class I AP endonuclease which hydrolytically catalyzes phosphodiester bond cleavage. Whereas these enzymes use a lyase-like rather than a hydrolytic mechanism, they nonetheless catalyze phosphodiester bond cleavage. We suggest that the term endonuclease can be properly applied to them.  相似文献   

12.
2-Deoxyribonolactone (3) is produced in DNA as a result of reaction with a variety of DNA damaging agents. The lesion undergoes beta-elimination to form a second metastable electrophilic product (4). In this study, DNA containing 2-deoxyribonolactone (3) and its beta-elimination product (4) are generated at specific sites using a photolabile nucleotide precursor. 2-Deoxyribonolactone is not incised by any of the 8 AP lyases tested. One enzyme, Escherichia coli endonuclease III, cross-links to 3, and the lesion strongly inhibits excision of typical abasic sites by this enzyme. Two of the enzymes, FPG and NEIL1 known to cleave normal abasic sites (1) by effecting beta,delta-elimination form cross-links to the butenolide lesion (4). The observed results are ascribable to characteristics of the enzymes and the lesions. These enzymes are also important for the removal of oxidative base lesions. These results suggest that high concentrations of 3 and 4 may exert significant effects on the repair of normal AP site and oxidative base lesions in cells by reducing the cellular activity of these BER enzymes either via cross-linking or competing with binding to the BER enzymes.  相似文献   

13.
14.
Endonuclease IV gene, the only putative AP endonuclease of C. pneumoniae genome, was cloned into pET28a. Recombinant C. pneumoniae endonuclease I V (CpEndoIV) was expressed in E. coli and purified to homogeneity. CpEndoIV has endonuclease activity against apurinic/apyrimidinic sites (AP sites) of double-stranded (ds) oligonucleotides. AP endonuclease activity of CpEndoIV was promoted by divalent metal ions Mg2+ and Zn2+, and inhibited by EDTA. The natural (A, T, C and G) and modified (U, I and 8-oxo-G (GO)) bases opposite AP site had little effect on the cleavage efficiency of AP site of ds oligonucleotides by CpEndoIV. However, the CpEndoIV-dependent cleavage of AP site opposite modified base GO was strongly inhibited by Chlamydia DNA glycosylase MutY. Interestingly, the AP site in single-stranded (ss) oligonucleotides was also the effective substrate of CpEndoIV. Similar to E. coli endonuclease IV, AP endonuclease activity of CpEndoIV was also heat-stable to some extent, with a half time of 5 min at 60 degrees C.  相似文献   

15.
Abasic (AP) sites are formed spontaneously and are inevitably intermediates during base excision repair of DNA base damages. AP sites are both mutagenic and cytotoxic and key enzymes for their removal are AP endonucleases. However, AP endonuclease independent repair initiated by DNA glycosylases performing β,δ-elimination cleavage of the AP sites has been described in mammalian cells. Here, we describe another AP endonuclease independent repair pathway for removal of AP sites in Schizosaccharomyces pombe that is initiated by a bifunctional DNA glycosylase, Nth1 and followed by cleavage of the baseless sugar residue by tyrosyl phosphodiesterase Tdp1. We propose that repair is completed by the action of a polynucleotide kinase, a DNA polymerase and finally a DNA ligase to seal the gap. A fission yeast double mutant of the major AP endonuclease Apn2 and Tdp1 shows synergistic increase in MMS sensitivity, substantiating that Apn2 and Tdp1 process the same substrate. These results add new knowledge to the complex cellular response to AP sites, which could be exploited in chemotherapy where synthetic lethality is a key strategy of treatment.  相似文献   

16.
The effect of dimeric DNA intercalating compounds was assayed on a purified AP endonuclease from Microccoccus luteus using apurinic supercoiled PM2 DNA as a substrate. Binding on apurinic sites was estimated through the competition with the intercalating compound, 9-NH2-ellipticine, which displays great specificity for apurinic sites. An acridine dimer with a spermine linker is at 0.1 microM the best inhibitor of cleavage at the apurinic site induced either by the AP endonuclease or by 9-NH2-ellipticine. Bisintercalating agents are more effective inhibitors of AP endonuclease than monointercalating ones. Most effective inhibitors among dimers have acridine residues.  相似文献   

17.
Homogeneous Fpg protein of Escherichia coli has DNA glycosylase activity which excises some purine bases with damaged imidazole rings, and an activity excising deoxyribose (dR) from DNA at abasic (AP) sites leaving a gap bordered by 5'- and 3'-phosphoryl groups. In addition to these two reported activities, we show that the Fpg protein also catalyzes the excision of 5'-terminal deoxyribose phosphate (dRp) from DNA, which is the principal product formed by the incision of AP endonucleases at abasic sites. Moreover, the rate of the Fpg protein catalysis for the 2,6-diamino-4-hydroxy-5-formamidopyrimidine-DNA glycosylase activity is slower than the activities excising dR from abasic sites and dRp from abasic sites preincised by endonucleases. The product released by the Fpg protein in the excision of 5'-terminal dRp from an abasic site preincised by an AP endonuclease is a single base-free unsaturated dRp, suggesting that the excision results from beta-elimination. The release of 5'-terminal dRp by crude extracts of E. coli from wild type and fpg-mutant strains shows that the Fpg protein is one of the major EDTA-resistant activities catalyzing this reaction.  相似文献   

18.
Free radical attack on the sugar-phosphate backbone generates oxidized apurinic/apyrimidinic (AP) residues in DNA. 2'-deoxyribonolactone (dL) is a C1'-oxidized AP site damage generated by UV and gamma-irradiation, and certain anticancer drugs. If not repaired dL produces G-->A transitions in Escherichia coli. In the base excision repair (BER) pathway, AP endonucleases are the major enzymes responsible for 5'-incision of the regular AP site (dR) and dL. DNA glycosylases with associated AP lyase activity can also efficiently cleave regular AP sites. Here, we report that dL is a substrate for AP endonucleases but not for DNA glycosylases/AP lyases. The kinetic parameters of the dL-incision were similar to those of the dR. DNA glycosylases such as E. coli formamidopyrimidine-DNA glycosylase, mismatch-specific uracil-DNA glycosylase, and human alkylpurine-DNA N-glycosylase bind strongly to dL without cleaving it. We show that dL cross-links with the human proteins 8-oxoguanine-DNA (hOGG1) and thymine glycol-DNA glycosylases (hNth1), and dR cross-links with Nth and hNth1. These results suggest that dL and dR induced genotoxicity might be strengthened by BER pathway in vivo.  相似文献   

19.
L F Povirk  C W Houlgrave 《Biochemistry》1988,27(10):3850-3857
Bleomycin and neocarzinostatin induce modified apurinic/apyrimidinic (AP) sites by oxidation of the sugar moiety in DNA. In order to quantitatively assess the susceptibility of these lesions to repair endonucleases, drug-treated 3H-labeled colE1 DNA was mixed with 14C-labeled heat-depurinated DNA, and endonuclease-susceptible sites in the mixture were titrated with various AP endonucleases or with polyamines. Single- and double-strand breaks were quantitated by determining the fractions of supercoiled, nicked circular, and linear molecules. Exonuclease III and endonucleases III and IV of Escherichia coli, as well as putrescine, produced a nearly 2-fold increase in single-strand breaks in bleomycin-treated DNA, indicating cleavage of drug-induced AP sites. The bleomycin-induced AP sites were comparable to heat-induced sites in their sensitivity to E. coli endonucleases III and IV but were cleaved by exonuclease III only at high concentrations. Bleomycin-induced AP sites were much more sensitive to cleavage by putrescine than heat-induced sites. Treatment with putrescine or very high concentrations of endonuclease III also increased the number of double-strand breaks in bleomycin-treated DNA, suggesting a minor class of lesion consisting of an AP site accompanied by a closely opposed break in the complementary strand. These complex lesions were resistant to cleavage by endonuclease IV. However, when colE1 DNA was treated with neocarzinostatin, subsequent treatment with putrescine, endonuclease IV, or very high concentrations of endonuclease III produced a dramatic increase in double-strand breaks but no detectable increase in single-strand breaks. These results suggest that virtually all neocarzinostatin-induced AP sites are accompanied by a closely opposed strand break.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
DNA base analogs, 2,4,5,6-substituted pyrimidines and 2,6-substituted purines were tested as potential inhibitors of E. coli Fpg protein (formamidopyrimidine -DNA glycosylase). Three of the seventeen compounds tested revealed inhibitory properties. 2-Thioxanthine was the most efficient, inhibiting 50% of 2,6-diamino-4-hydroxy-5N-methyl-formamidopyrimidine (Fapy-7MeG) excision activity at 17.1 microM concentration. The measured K(i) was 4.44 +/- 0.15 microM. Inhibition was observed only when the Fpg protein was first challenged to its substrate followed by the addition of the base analog, suggesting uncompetitive (catalytic) inhibition. For two other compounds, 2-thio- or 2-oxo-4,5,6-substituted pyrimidines, IC(50) was only 343.3 +/- 58.6 and 350 +/- 24.4 microM, respectively. No change of the Fpg glycosylase activity was detected in the presence of Fapy-7MeG, up to 5 microM. We also investigated the effect of DNA structure modified by tryptophan pyrolysate (Trp-P-1) on the activity of base excision repair enzymes: Escherichia coli and human DNA glycosylases of oxidized (Fpg, Nth) and alkylated bases (TagA, AlkA, and ANPG), and for bacterial AP endonuclease (Xth protein). Trp-P-1, which changes the secondary DNA structure into non-B, non-Z most efficiently inhibited excision of alkylated bases by the AlkA glycosylase (IC(50) = 1 microM). The ANPG, TagA, and Fpg proteins were also inhibited although to a lesser extent (IC(50) = 76.5 microM, 96 microM, and 187.5 microM, respectively). Trp-P-1 also inhibited incision of DNA at abasic sites by the beta-lyase activity of the Fpg and Nth proteins, and to a lesser extent by the Xth AP endonuclease. Thus, DNA conformation is critical for excision of damaged bases and incision of abasic sites by DNA repair enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号