首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of K+ concentration, light intensity and CO2 levels on the volume of Commelina communis L. guard cell protoplasts were studied. Two degrees of swelling response were observed, both dependent on an external supply of K+, but not necessarily on the supply of a permeant anion. The presence of K+ itself, independent of light or CO2 level, stimulated swelling at a relatively slow rate. When K+, light and low CO2 conditions were supplied together, the swelling was relatively rapid and of high magnitude. The rapid swelling was specific for K+ and Rb+ giving a half maximal effect after 2 h at a KCl concentration of about 18 mmol m−3. The addition of CaCl2 at 1 mol m−3 inhibited K+-dependent swelling under all conditions tested. The response to light and low CO2 levels by Commelina guard cell protoplasts is thought to reflect a high degree of physiological integrity.  相似文献   

2.
Isolated epidermal protoplasts of Commelina communis L. increase in volume in the presence of KCl. Since this swelling is an osmotic phenomenon it reflects K+ influx. ATP slightly decreased the volume of the protoplasts, pointing towards the possibility that K+ uptake is passive. On the other hand abscisic acid (ABA) and sodium orthovanadate increased the swelling, and their effect was reversed by ATP. This may support the suggestion that ABA inhibits the active and ATPase-mediated relase of K+ from epidermal cells. Mg2+-dependent, K+-stimulated ATPase activity was found in the microsomal fraction from epidermal cells. This activity was vandadate sensitive. ABA increased the basal activity in the presence of Mg2+ but inhibited the K+ stimulation.  相似文献   

3.
Calcium ions play an important role in the regulation of stomatal movement and the mechanism underlying this action is yet to be determined. It is suggested that guard cell plasma membrane ATPase is a target for calcium action and that this effect is mediated by calmodulin. In this study, the effects of calcium and two calmodulin antagonists on ATPase activity in a crude homogenate of Commelina communis L. guard cell protoplasts were examined. The homogenate contained Mg2+-dependent, K+-simulated ATPase activity, which was inhibited by CaCl2 while stimulated by the calmodulin antagonists, compound 48/80 and chlorpromazine. The calmodulin antagonists partially reversed the inhibitory effect of calcium ions. The results support the possibility of calmodulin involvement in the regulation of guard cell ATPase activity by calcium ions.  相似文献   

4.
ABA affected K+ and solute transport between guard cells and epidermal cells as indicated by K+ staining and plasmolysis. ABA enhanced K+ (86Rb) uptake into epidermal cells. To find out whether the ABA enhanced accumulation of K+ (86Rb) in epidermal cells is active, uptake in the presence of exogenous ATP was studied. These studies hinted that K+ (86Rb) uptake by epidermal cells is a passive process, while its release is an active one. This was verified by applying iodoacetate, which interferes with energy supply. The epidermal cells thus seem to play a role in stomatal movement.  相似文献   

5.
Potassium is a major osmolyte used by plant cells. The accumulation rates of K+ in cells may limit the rate of expansion. In the present study, we investigated the involvement of ion channels in K+ uptake using patch clamp technique. Ion currents were quantified in protoplasts of the elongation and emerged blade zone of the developing leaf 3 of barley ( Hordeum vulgare L.). A time-dependent inward-rectifying K+-selective current was observed almost exclusively in elongation zone protoplasts. The current showed characteristics typical of Shaker-type channels. Instantaneous inward current was highest in the epidermis of the emerged blade and selective for Na+ over K+. Selectivity disappeared, and currents decreased or remained the same, depending on tissue, in response to salt treatment. Net accumulation rates of K+ in cells calculated from patch clamp current–voltage curves exceeded rates calculated from membrane potential and K+ concentrations of cells measured in planta by factor 2.5–2.7 at physiological apoplastic K+ concentrations (10–100 m m ). It is concluded that under these conditions, K+ accumulation in growing barley leaf cells is not limited by transport properties of cells. Under saline conditions, down-regulation of voltage-independent channels may reduce the capacity for growth-related K+ accumulation.  相似文献   

6.
Potassium ions (K+) are required for plant growth and development, including cell division and cell elongation/expansion, which are mediated by the K+ transport system. In this study, we investigated the role of K+ in cell division using tobacco BY-2 protoplast cultures. Gene expression analysis revealed induction of the Shaker -like outward K+ channel gene, NTORK1 , under cell-division conditions, whereas the inward K+ channel genes NKT1 and NtKC1 were induced under both cell-elongation and cell-division conditions. Repression of NTORK1 gene expression by expression of its antisense construct repressed cell division but accelerated cell elongation even under conditions promoting cell division. A decrease in the K+ content of cells and cellular osmotic pressure in dividing cells suggested that an increase in cell osmotic pressure by K+ uptake is not required for cell division. In contrast, K+ depletion, which reduced cell-division activity, decreased cytoplasmic pH as monitored using a fluorescent pH indicator, SNARF-1. Application of K+ or the cytoplasmic alkalizing reagent (NH4)2SO4 increased cytoplasmic pH and suppressed the reduction in cell-division activity. These results suggest that the K+ taken up into cells is used to regulate cytoplasmic pH during cell division.  相似文献   

7.
Membrane resistances, electrical potentials and intracellular K+ activity have been studied in protoplasts of Acer pseudoplatanus L. using microelectrodes. The plasmalemma appears to be damaged during protoplast processing, so that it is almost completely depolarized. The positive polarization of the protoplasts is a property of their tonoplast. The osmotic shock of general dilution of the medium brings about a slight positive polarization of the protoplasts, which probably is the consequence of a dilution of the ionic contents of the cell. A rapid dilution of extracellular potassium produces the same effect by a considerable efflux of K+, which changes the concentration gradient so that electropositivity is accentuated. In general, certain states of shock can cause such polarization. These results, particularly the development of internal potassium activity, help in understanding the initial cause of the positive polarization that is sometimes observed in protoplasts.  相似文献   

8.
The effect of phytochrome on K+ transport in guard cells of Commelina communis L. was studied following stomatal movement and using the K+−channel blockers tetraethylammonium (TEA), Cs+ and quinidine. TEA and quinidine prevented stomatal opening and closure in red light, but not when it was supplemented with far-red. This indicates that channels that can be blocked by TEA and quinidine are regulated by phytochrome. Evidence for a phytochrome effect on K+ leakage through other membranal compartments was also found. These phytochrome effects are modified by temperature. Elevated temperature decreases the involvement of channels and increases K+ transport through other membrane compartments, while low temperature causes channel opening and diminishes K+ leakage. The interaction between phytochrome effects and those of temperature is discussed.  相似文献   

9.
Abstract. The specific effects of hypoxia and various inhibitors on stomatal opening in the light and closing in the dark were characterized in isolated epidermis from Commelina communis L. Reducing the guard cell metabolism with hypoxia and the uncoupler carbonyl cyanide-m-chloro-phenyl-hydrazone, CCCP, respectively, inhibited both stomatal opening and closing. Stomatal closing was very efficiently blocked by CCCP and this effect could be readily reversed by washing out the inhibitor. The authors were unable to inhibit stomatal opening with ATPase-inhibitors, without also affecting closing. Orthovanadate, up to 2 mol m−3, affected neither opening nor closing. Dicyclohexylcarbodiimide, DCCD, and diethylstilbestrol, DES, inhibited opening as well as closing to about 50%. The K+ -channel blocker tetraethylammonium chloride, TEA-Cl, inhibited both stomatal opening and closing, as did phenyl acetic acid, PAA, a compound considered to interfere with blue light induced stomatal opening. The results are discussed in the view that the uncontrolled K+ leakage from the guard cells is low, that K+ efflux during stomatal closing, as well as K+ influx during opening, occurs through specific K+-channels and that ATP and/or a membrane potential seems to be needed to keep these channels open.  相似文献   

10.
Potassium ion channels in the plasmalemma   总被引:2,自引:0,他引:2  
The potassium ion is an indispensible cytosolic component of living cells and a key osmolyte of plant cells, crossing the plasmalemma to drive physiological processes like cell growth and motor cell activity. K+ transport across the plasmalemma may be passive through channels, driven by the electrochemical gradient, K+ equilibrium potential (EK) – membrane potential (Vm), or secondary active by coupling through a carrier to the inward driving force of H+ or Na+. Known K+ channels are permeable to monovalent cations, a permeability order being K+ > Rb+ > NH4+ > Na+≥ Li+ > Cs+. The macroscopic K+ currents across a cell or protoplast surface commonly show rectification, i.e. a Vm-dependent conductance which in turn, may be controlled by the cytosolic activity of Ca2+, of K+, of H+, or by the K+ driving force. Analysis by the patch clamp technique reveals that plant K+ channels are similar to animal channels in their single channel conductance (4 to 100 pS), but different in that a given channel population slowly activates and may not inactivate at all. Single-channel kinetics reveal a broad range of open times (ms to s) and closed times (up to 100 s). Further progress in elucidating plant K+ channels will critically depend on molecular cloning, and the availability of channel-specific (phyto)toxins.  相似文献   

11.
Abstract. Xanthoxylin is a cytotoxic and fungicidal compound with the characteristics of a typical phytoalexin. At a concentration of 0.3 mol m−3 it inhibits K+-dependent acid extrusion and K+ net uptake (or uptake of equivalent alkaline cations such as Rb+ and CS+) by up to about 80% and hyperpolarizes by about 20% the membrane electrical potential. Its inhibition of the acid extrusion does not depend on altered ion exchange involving the anions in the media, a reduction of the metabolic energy available, or detectable changes in the permeability of the cell membrane to H+ ions. The drop in K+ net uptake depends on a decrease in the influx of K+ into the cell. In functional terms, xanthoxylin is an inhibitor of the K+ permeation mechanism and does not appear to interact with the mechanisms creating the electrochemical energy gradient.  相似文献   

12.
Mechanisms of potassium absorption by higher plant roots   总被引:18,自引:0,他引:18  
Potassium, as a plant macronutrient, is accumulated in plant cells from relatively dilute soil solutions and is indispensable for many vital processes. Studies characterising potassium uptake by roots stretch back over many decades. However, it is only with the introduction of modern electrophysiological and molecular techniques that investigations have been possible at a molecular level. Such approaches have confirmed the existence of discrete high and low affinity uptake systems at the root plasma membrane and have greatly enhanced our understanding of the underlying molecular nature of these uptake systems.
High affinity K+ uptake from micromolar external K+ levels is coupled to H+ transport as demonstrated independently by patch clamping of single root protoplasts and by studying the transport system after expression in Xenopus oocytes . The measured coupling ratio between the two ions is 1:1 and is sufficient to account for an accumulation ratio in excess of 106, a value which encompasses experimental observations on K+ accumulation.
Low affinity K+ uptake activates at relatively high external K+ levels in the millimolar range and is 'passive' i.e. down the electrochemical gradient for potassium. In two higher plant species single cell inward potassium currents have been identified which are associated with low affinity potassium uptake. Furthermore, specific ion channels which underlie these potassium influxes and form a major constituent of the low affinity potassium uptake pathway have been identified and characterised.  相似文献   

13.
The protein kinase inhibitor K-252a induces a rapid, transient decrease of extracellular pH and [K+], and a concomitant increase in extracellular [Ca2+] in suspensions of cultured parsley cells. These effects are subsequently reversed. As with K-252a, fusicoccin also induces similar changes in pH and extracellular [Ca2+], but reversion does not occur. Acidification by HCI also leads to an increase in external [Ca2+], suggesting that the changes in extracellular [Ca2+] are mainly due to a pH-dependent displacement of Ca2+ ionically bound to the cell wall. The artificial acidification by HCI is rapidly followed by cell-mediated alkalinization, a process associated with K2 release and rebinding of Ca2+. Any change in external pH or [K+] induced by K-252a, fusicoccin, or HCI is followed by an uptake of 45Ca2+ into cellular pools. The results show that K-252a may be a valuable tool for studying the complex regulation of ion transport which may involve changes in the phosphorylation of unknown proteins.  相似文献   

14.
Recent studies have suggested that Ca2+/calmodulin (CaM) or CaM-like proteins may be involved in blue light (BL)-dependent proton pumping in guard cells. As the increase in cytosolic concentration of Ca2+ is required for the activation of CaM and CaM-like proteins, the origin of the Ca2+ was investigated by measuring BL-dependent proton pumping with various treatments using guard cell protoplasts (GCPs) from Vicia faba . BL-dependent proton pumping was affected neither by Ca2+ channel blockers nor by changes of Ca2+ concentration in the medium used for the GCPs. Addition of Ca2+ ionophores and an agonist to GCPs did not induce proton pumping. However, BL-dependent proton pumping was inhibited by 10 m M caffeine, which releases Ca2+ from the intracellular stores, and by 10 μ M 2,5-di-( tert -butyl)-1,4-benzohydroquinone (BHQ) and 10 μ M cyclopiazonic acid (CPA), inhibitors of Ca2+-ATPase in the sarcoplasmic and endoplasmic reticulum (ER). By contrast, the inhibitions were not observed by 10 μ M thapsigargin, an inhibitor of animal ER-type Ca2+-ATPase. The inhibitions by caffeine and BHQ were reversible. Light-dependent stomatal opening in the epidermis of Vicia was inhibited by caffeine, BHQ, and CPA. From these results, we conclude that the Ca2+ thought to be required for BL-dependent proton pumping may originate from intracellular Ca2+ stores, most likely from ER in guard cells, and that this origin of Ca2+ may generate a stimulus-specific Ca2+ signal for stomatal opening.  相似文献   

15.
The influence of plant ontogeny on xylem exudate K+ concentrations and K+ transport to the shoot was studied in both nutrient-solution and field-grown tomato plants ( Lycopersicon esculentum ).
K+ concentrations in xylem exudate from decapitated plants decreased during tomato plant development from a high of 12 m M to a low of 5 m M . In the nutrient-solution plants, the most rapid decline occurred during the vegetative growth phase, while in field-grown plants, the xylem K+ concentrations remained high during an-thesis and then subsequently declined. The rapid decline in nutrient-solution plants might be related to a decrease in the absorptive efficiency of the root system. In field-grown plants, a reduction in the availability of assimilates to the root might account in part for the decrease in xylem exudate K+ concentrations. The volume (ml h−1 plant−1) and the net rates of K+ exudation (mmol h−1 plant−1) decreased dramatically as the fruits approached maturity. Since only a small reduction in xylem exudate K+ concentrations occurred during fruiting, the hydraulic conductivity of the root system decreased as the tomato plants aged. It is proposed that the ontogenetic changes in xylem transport of K+ contribute to a reduction in leaf free space K+ concentration which would explain the decline in tomato leaf K+ concentrations.  相似文献   

16.
Stomatal responses to light and CO2 are dependent on KCI concentration   总被引:1,自引:0,他引:1  
Abstract. The responses of stomata on detached epidermis of Commelina communis to light and CO2 have been shown to be strongly dependent on the concentration of KCI in the incubation medium. There was a high sensitivity to the two stimuli in 50 mM KCI, but there were much reduced responses at lower and higher concentrations. It is considered that an appropriate choice of medium is essential if useful physiological studies of stomata are to be made using epidermal strips. At lower KCI concentrations, the ability of the stomata to open is thought to be limited by the availability of K+ ions, and at higher concentrations their ability to close may be affected because of an inhibition of the net efflux of K+. The production of malate was related to KCI concentration, and was largest in the medium containing zero KCI which supported poor stomatal responses to light and CO2It is concluded that malate metabolism is unlikely to play a central part in the changes in guard cell turgor that are brought about by light and CO2.  相似文献   

17.
Young sunflower plants ( Helianthus annuus L. cv. Halcón), grown in nutrient solution at two K+ levels (0.25 and 2.5 m M ) were used to study the effect of K+ content in the root on uptake and transport of K+ to the exuding stream of decapitated plants. Roots of plants grown in low K+ gave higher exudation flux, higher K+ concentration in exudate and higher K+ flux than high K+ roots. After 6 h of uptake the K+ flux in low K+ roots was about three times that in high K+ roots. When the roots were kept in a nutrient solution in which Rb+ replaced K+, low K+ roots exuded much more Rb+ than K+ after the first 2 h, whereas high K+ roots exuded about similar amounts of K+ and Rb+. In intact plants grown at three different K+ levels (0.1, 1.0 and 10.0 m M ), there was an inverse relationship between the K+ level in the nutrient solution and the Rb+ accumulated in the roots or transported to the shoot. The results suggest that the transport of ions from xylem parenchyma to stele apoplast may be controlled by ions coming down from the shoot in sieve tubes.  相似文献   

18.
Irradiation of cultured rose ( Rosa damascena Mill. cv. Gloire de Guilan) cells with ultraviolet light caused of loss of K+, which occurred with sigmoid kinetics. The kinetics of loss of K+ were not changed when the extracellular concentration of K+ was held constant during the period of efflux. Furthermore, the rate of loss of K+ was approximately the same even though the K+ concentration in the medium was increased from 0.1 to 10 m M . The kinetics of uptake of the lipophilic methyltriphenylphosphonium cation, an indicator of the plasma membrane potential, were linear throughout the period of K+ efflux, suggesting that the starting and stopping of K+ efflux do not reflect a passive response to changes in the membrane potential of the cells. The results are interpreted in terms of activation and inactivation of an efflux channel or pump for K+.  相似文献   

19.
A marked increase in the Na+, K+-ATPase activity of sea urchin embryos occurred following an elevation of its mRNA level, revealed by Northern blotting analysis, in developmental period between the swimming blastula and the late gastrula stage. cDNA clone of Na+, K+-ATPase α-subunit, obtained from γgt10 cDNA library of sea urchin gastrulae, was digested with EcoRl ad Hindlll. The obtained 268 bp cDNA fragment, hybridized to a 4.6 Kb RNA, was used as probe for Northern blotting analysis. The level of Na+, K+-ATPase mRNA was higher in embryo-wall cell fraction isolated from late gastrulae (ectoderm cells) than the level in the bag fraction, containing mesenchyme cells (mesoderm cells) and archenteron (endoderm cells). The activity of Na+, K+-ATPase and the level of its mRNA were higher in animalized embryos obtained by pulse treatment with A23187 for 3 hr, starting at the 8–16 cell stage and were considerably lower in vegetalized embryos induced by 3 hr treatment with Li+ than that in normal embryos at the post gastrula corresponidng stage. Augmentation of Na+, K+-ATPase gene expression can be regarded as a marker for ectoderm cell differentiation at the post gastrula stage, which results from determination of cell fate in prehatching period.  相似文献   

20.
Shoot activity has been reported to affect rates of ion uptake by plant roots in other ways than merely through supply of assimilates. To elucidate the mechanisms by which a signal from the upper part of the plant controls the rate of K+ and NO3 uptake by roots, both uptake of K+ and NO3 and secretion into the xylem of young sunflower plants ( Helianthus annuus L.) were measured after changes in light intensity.
No close correlation was observed between the uptake of NO3 and that of K+; an increase in light intensity produced a much greater stimulation of NO3 uptake than of K+ uptake. On the other hand, secretion of NO3 into the xylem was tightly coupled to that of K+, and this coupling was strongly disturbed by excision of the root. The results suggest the involvement of the K2-malate shuttle on the regulation by the shoot of K+ and NO3 secretion in the xylem, which is linked to NO3 uptake, while K+ uptake is independent of this regulation mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号