首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cheese starter strain, Streptococcus cremoris HP, produced variant colonies when streaked on the surface of solid media and incubated at 30 or 37°C or in the presence of penicillin. Serial plating and incubation at 37°C or in the presence of penicillin resulted in the production of variants. Subculture followed by incubation at 25°C or in the absence of penicillin resulted in the reversion or partial reversion to the parent form. Colony morphology and cell morphology exhibited the characteristics of the L-phase. Evidence suggested that the aberrant forms of S. cremoris at 30°C were transitional phase variants but at 37°C and in the presence of penicillin they were L-phase variants. Electron micrographs showed that the cell walls of the variant cells were defective and that there were differences in the density and the organization of the cytoplasmic constituents compared with the parent cell.  相似文献   

2.
The lactate concentration gradient and the components of the electrochemical proton gradient (delta micro H+) were determined in cells of Streptococcus cremoris growing in batch culture. The membrane potential (delta psi) and the pH gradient (delta pH) were determined from the accumulation of the lipophilic cation tetraphenylphosphonium and the weak acid benzoate, respectively. During growth the external pH decreased from 6.8 to 5.3 due to the production of lactate. Delta pH increased from 0 to -35 mV, inside alkaline (at an external pH of 5.7), and fell to zero directly after growth stopped. Delta psi was nearly constant at -90 mV during growth and also dissipated within 40 min after termination of growth. The internal lactate concentration decreased from 200 mM at the beginning of growth (at pH 6.8) to 30 mM at the end of growth (at pH 5.3); the external lactate concentration increased from 8 to 30 mM due to the fermentation of lactose. Thus, the lactate gradient decreased from 80 mV to zero as growth proceeded and the external pH decreased. From the data obtained on delta psi, delta pH, and the lactate concentration gradient, the H+/lactate stoichiometry (n) was calculated. The value of n varied with the external pH from 1.9 (at pH 6.8) to 0.9 (at pH values below 6). This implies that especially at high pH values the carrier-mediated efflux of lactate supplies a significant quantity of metabolic energy to S. cremoris cells. At pH 6.8 this energy gain was almost two ATP equivalents per molecule of lactose consumed if the H+/ATP stoichiometry equals 2. These results supply strong experimental evidence for the energy recycling model postulated by Michels et al.  相似文献   

3.
Some kinetic properties of a dipeptidase purified from a cell-free extract of Streptococcus cremoris H 61 were investigated. The Km values of this enzyme for various dipeptides were divided into 3 groups. Group 1 comprised mainly of neutral dipeptides, such as Leu-Gly, Leu-Leu and Leu-Ala, which had relatively low Km values (in the range 4.0-6.6 mm). Group 2 consisted of dipeptides with aromatic large amino acids either at the N- or C-terminal positions, like Leu-Phe, Phe-Ala and Leu-Tyr, which had very low Km values (in the range 1.0-2.4 mm). Group 3 was made up by dipeptides with acidic or basic amino acids at the N-terminals; His-Ala and Glu-Val were typical of this group. These had very high Km values (in the range 10–20 mm). Substantial substrate competition was found to exist in the presence of His-Ala. Bestatin inhibited the enzyme competitively with Leu-Gly and was found to have an apparent Ki value of 3.0 × 10?8 m for the enzyme. Further, the enzyme was completely inhibited by EDTA at a concentration of 2.0 × 10?5 m. On the other hand, once the activity was inhibited by EDTA, it could be restored by Co2+ and Zn2+ in the acidic pH side, and by Ca2+ and Mn2+ in the alkaline pH side.  相似文献   

4.
beta-d-phosphogalactoside galactohydrolase (beta-PGal) was isolated and purified from cell-free extracts of Streptococcus cremoris HP to apparent homogeneity to gel electrophoresis. Using the chromogenic o-nitrophenol-beta-d-galactopyranoside-6-phosphate as substrate, the purified enzyme exhibited a specific activity of 18.71 U/mg of protein and K(m) and V(max) values of 5.88 x 10(-4) M and 23.8 mumol of o-nitrophenol liberated per min per mg of protein, respectively. d-Galactose-6-phosphate was a weak competitive inhibitor of beta-PGal. Activity was relatively heat resistant and was maximal from pH 5.0 to 8.0 and over a temperature range of 45 to 52 C. Dithiothreitol, ethylenediaminetetraacetic acid, and citrate stimulated beta-PGal activity, whereas Mg(2+), Li(1+), and p-hydroxymercuribenzoate were inhibitory. Molecular weight of the enzyme was estimated at 6.76 x 10(4). Amino acid composition was similar to other beta-phosphogalactosidases previously investigated, with the exception that the S. cremoris enzyme contains a small amount of half cystine.  相似文献   

5.
In Streptococcus lactis ML3 and Streptococcus cremoris Wg2 the uptake of glutamate and glutamine is mediated by the same transport system, which has a 30-fold higher affinity for glutamine than for glutamate at pH 6.0. The apparent affinity constant for transport (KT) of glutamine is 2.5 +/- 0.3 microM, independent of the extracellular pH. The KTS for glutamate uptake are 3.5, 11.2, 77, and 1200 microM at pH 4.0, 5.1, 6.0, and 7.0, respectively. Recalculation of the affinity constants based on the concentration of glutamic acid in the solution yield KTS of 1.8 +/- 0.5 microM independent of the external pH, indicating that the protonated form of glutamate, i.e., glutamic acid, and glutamine are the transported species. The maximal rates of glutamate and glutamine uptake are independent of the extracellular pH as long as the intracellular pH is kept constant, despite large differences in the magnitude and composition of the components of the proton motive force. Uptake of glutamate and glutamine requires the synthesis of ATP either from glycolysis or from arginine metabolism and appears to be essentially unidirectional. Cells are able to maintain glutamate concentration gradients exceeding 4 X 10(3) for several hours even in the absence of metabolic energy. The t1/2s of glutamate efflux are 2, 12, and greater than 30 h at pH 5.0, 6.0, and 7.0, respectively. After the addition of lactose as energy source, the rate of glutamine uptake and the level of ATP are both very sensitive to arsenate. When the intracellular pH is kept constant, both parameters decrease approximately in parallel (between 0.2 and 1.0 mM ATP) with increasing concentrations of the inhibitor. These results suggest that the accumulation of glutamate and glutamine is energized by ATP or an equivalent energy-rich phosphorylated intermediate and not by the the proton motive force.  相似文献   

6.
7.
Batch cultures (pH 6.7) of Streptococcus bovis JB1 were severely inhibited by 1.25 and 5 microM lasalocid and monensin, respectively, even though large amounts of glucose remained in the medium. However, continuous cultures tolerated as much as 10 and 20 microM, respectively, and used virtually all of the glucose. Although continuous cultures grew with high concentrations of ionophore, the yield of bacterial protein decreased approximately 10-fold. When pH was decreased from 6.7 to 5.7, the potency of both ionophores increased, but lasalocid always caused a larger decrease in yield. The increased activity of lasalocid at pH 5.7 could largely be explained by an increased binding of the ionophore to the cell membrane. Because monensin did not show an increased binding at low pH, some other factor (e.g., ion turnover) must have been influencing its activity. There was a linear increase in lasalocid binding as the concentration increased, but monensin binding increased markedly at high concentrations. Based on the observations that (i) S. bovis cells bound significant amounts of ionophore (the ratio of ionophore to cell material was more important than the absolute concentration), (ii) batch cultures responded differently from continuous cultures, and (iii) pH can have a marked effect on ionophore activity, it appears that the term "minimum inhibitory concentration" may not provide an accurate assessment of microbial growth inhibition in vivo.  相似文献   

8.
Batch cultivation of Spirulina sp. was carried out under limited light at 30°C in the pH range of 9.2 to 9.7. The specific growth rate D was calculated from the tangent of the growth curve and the cell concentration at that time, and the amount of light energy absorbed per unit time per unit cell weight (Ex), namely, the specific absorption rate of light energy, was also calculated from the total amount of radiant flux of transmitted light at the surface of the culture vessel and cell concentration of the culture solution. A plot against Ex of D in the linear growth phase in batch culture and at various phases in continuous culture gave, for Ex of less than 1.0 kcal/g·h, points scattered near a straight line with slope m 0.037 g/kcal and an intercept on the ordinate, −b, of −0.0046 h−1, and, for higher Ex values, points scattered near a curve of gradually decreasing slope which tended to approach a constant value.A Lineweaver-Burk plot of the reciprocal of D plus b against that of Ex yielded an equation for the growth rate which represented well the growth curve in batch culture. This equation also expressed the linear increase of D with increase of Ex at high cell concentration in the culture solution. The relation between cell growth rate and cell fluidity is discussed by use of a vector equation obtained by applying this relation to a culture solution contained in a given closed surface.  相似文献   

9.
Summary Leuconostoc mesenteroides subsp.cremoris was grown in continuous culture in lactose medium with varying citrate concentrations. All citrate (10, 25, 50 and 75 mMol/l) was used and lactose consumption increased with increasing initial citrate concentrations correlate with an increase of dry cell weight. Citrate lead to an increase of acetate and could be a source of ATPvia acetate kinase pathway. For each steady state, YATP values were calculated and were twice greater than the generally accepted value of 10.5. The maintenance energy was calculated it was constant for lactose (2.5 mMol/l.h.) and increased for citrate suggesting a greater requirement of energy for citrate utilization.  相似文献   

10.
The kinetic response of Streptococcus cremoris HP to growth at super optimal temperatures is reported. The response to a step increase in temperature was shown to be transient and to result from an increased metabolic rate caused by the raised temperature combined with thermal deactivation of the cell mass present. The catabolic and anabolic activities of the cell were shown to decay at different rates resulting in an accumulation of cells capable of catabolism (energy production) but unable to reproduce. The proposed mechanism was confirmed by independent estimates of the catabolic and anabolic activities of the culture. A mathematical model based on the proposed mechanism and incorporating simultaneous exponential growth, thermal death, and catabolic uncoupling of anabolically inactive cells was developed. Experimental evaluation of the model indicated the presence of a delay in deactivation of metabolic activity in response to a temperature transient. After the inclusion of this delay in death, it was confirmed that the model was capable of prediction of the balanced growth and transient response of this organism to changes in growth temperature. The delay in death was shown to be of major significance to the control of a simulated cheddar cheese fermentation.  相似文献   

11.
12.
13.
Vancomycin production in batch and continuous culture   总被引:5,自引:0,他引:5  
Production of the glycopeptide antibiotic vancomycin by two Amycolatopsis orientalis strains was examined in batch shake flask culture in a semidefined medium with peptone as the nitrogen source. Different growth and production profiles were observed with the two strains; specific production (Y(p/x)) was threefold higher with strain ATCC 19795 than with strain NCIMB 12945. A defined medium with amino acids as the nitrogen source was developed by use of the Plackett-Burman statistical screening method. This technique identified certain amino acids (glycine, phenylalanine, tyrosine, and arginine) that gave significant increased specific production, whereas phosphate was identified as inhibitory for high specific vancomycin production. Experiments made with the improved medium and strain ATCC 19795 showed that vancomycin production kinetics were either growth dissociated or growth associated, depending on the amino acid concentration. In chemostat culture at a constant dilution rate (0.087 h(-1)), specific vancomycin production rate (q(vancomycin)) decreased linearly as the medium phosphate concentration was increased from 2 to 8 mM. In both phosphate and glucose limited chemostats, q(vancomycin) was a function of specific growth rate; the maximum value was observed at D = 0.087 h(-1) (52% of the maximum specific growth rate). Under phosphate limited growth conditions, q(vancomycin) was threefold higher (0.37 mg/g dry weight/h) than under glucose limitation (0.12 mg/g dry weight/h). (c) 1996 John Wiley & Sons, Inc.  相似文献   

14.
Summary Growth of a lactic streptococcus was studied in continuous cultures, under various conditions of medium richness, without carbon source limitation, and with a large range of dilution rates. Increasing the concentrations of growth factors and protein nitrogen sources resulted in increased volumetric productivities of biomass and lactic acid with maximum values in the 0.3–0.4 h–1 dilution rate range. Growth was shown to be dependent on both the inhibitory effect of lactic acid and the availability of certain nutrients, as has previously been shown for batch cultures.Offprint requests to: A. Pareilleux  相似文献   

15.
A bacteriocin-producing Streptococcus bovis strain (HC5) outcompeted a sensitive strain (JB1) before it reached stationary phase (pH 6.4), even though it grew 10% slower and cell-free bovicin HC5 could not yet be detected. The success of bacteriocin-negative S. bovis isolates was enhanced by the presence of another sensitive bacterium (Clostridium sticklandii SR). PCR based on repetitive DNA sequences indicated that S. bovis HC5 was not simply transferring bacteriocin genes to S. bovis JB1. When the two S. bovis strains were coinoculated into minimal medium, bacteriocin-negative isolates predominated, and this effect could be explained by the longer lag time (0.5 vs. 1.5 h) of S. bovis HC5. If the glucose concentration of the minimal medium was increased from 2 to 7 mg mL(-1), the effect of lag time was diminished and bacteriocin-producing isolates once again dominated the coculture. When the competition was examined in continuous culture, it became apparent that batch culture inocula were never able to displace a strain that had already reached steady state, even if the inoculum was large. This result indicated that bacterial selection for substrate affinity was even more important than bacteriocin production.  相似文献   

16.
Acid phosphatase activity was detected in Streptococcus mutans strain NCTC 10832, and both acid and alkaline phosphatase in strains 2M2 and K1R. In batch culture, activity was maximal by mid exponential phase for 2M2 and at the end of this phase for NCTC 10832. Alkaline, but not acid, phosphatase activity of 2M2 and K1R increased when the inorganic phosphate in the medium was low; this was considered due, at least partly, to inducible or derepressible enzymes. In continuous culture, acid phosphatase activity of NCTC 10832 varied with the sugar substrate. The activity was increased by cell disruption and the degree of this increase for cells grown on different sugars parallelled the amounts of extracellular, insoluble polysaccharide produced on those sugars. Activity was highest for glucose-grown whole cells and for sucrose-grown disrupted cells.  相似文献   

17.
18.
Prophage curing was achieved in Streptococcus lactis and Streptococcus cremoris, and the cured derivatives were shown to be indicators for their temperate bacteriophages. Relysogenization of these cured derivatives completed the first formal demonstration of the lysogenic state in lactic streptococci.  相似文献   

19.
The cell wall proteinase fraction of Streptococcus cremoris HP has been isolated. This preparation did not exhibit any activity due to either specific peptidases known to be located near the outside surface of and in the membrane or intracellular proteolytic enzymes. By using thin-layer chromatography for the detection of relatively small hydrolysis products which remain soluble at pH 4.6, it was shown that β-casein is preferentially attacked by the cell wall proteinase. This was also the case when whole casein or micelles were used as the substrate. κ-casein hydrolysis is a relatively slow process, and αs-casein degradation appeared to proceed at an extremely low rate. These results could be confirmed by using 14CH3-labeled caseins. A relatively fast and linear initial progress of 14CH3-labeled β-casein degradation is not inhibited by αs-casein and only slightly by κ-casein at concentrations of these components which reflect their stoichiometry in the micelles. Possible implications of β-casein degradation for growth of the organism in milk are discussed.  相似文献   

20.
Frankia grown in batch culture was unable to maintain a high rate of nitrogenase activity and, once a peak level was reached, activity rapidly declined. Addition of 5 mM carbon source of cultures or transfer to fresh medium was followed by brief recovery of nitrogenase activity. The extent of recovery decreased as additions or transfers were made to progressively older cultures. Daily addition of fresh medium (dilution rate = 0.125 day-1) allowed Frankia to be maintained in continuous, derepressed culture with stable rates of growth and nitrogenase activity for more than 30 days. The proportion of active, mature vesicles also remained constant in continuous culture but decreased with time in batch culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号