首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
以抗旱性较强的荔枝东刘1号和抗旱性较弱的陈紫1-2年分盆栽实生幼苗为试验材料。研究了水分胁迫对荔枝(Litchi chinensis Sonn)叶片细胞胞质以及以离子键和共价键与细胞壁结合的H^ -ATPase活性的影响。结果表明:(1)叶片相对含水量随水分胁迫程度的增加而减少,抗旱性强的东刘1号下降的幅度小于抗旱性弱的陈紫。(2)H^ -ATPase在细胞中的分布是:细胞胞质H^ -ATPase占绝大多数,其次是共价键结合H^ -ATPase,离子键结合H^ -ATPase最少,品种间差异不明显。(3)在水分胁迫下,荔枝叶片H^ -ATPase活性(比活性)均上升,抗旱性强的品种上升的幅度均大于抗旱性弱的品种。  相似文献   

2.
柯玉琴  潘廷国 《应用生态学报》2002,13(10):1303-1306
随NaCl胁迫浓度的提高 ,甘薯苗期株高和叶面积生长受抑制 ;叶片IAA水平下降 ,而IAA氧化酶和POD活性提高 .不耐盐品种生长受抑制程度及IAA水平下降幅度均大于中耐盐品种和耐盐品种 ,叶片IAA氧化酶和POD活性上升的幅度大于中耐盐及耐盐品种 .同时浓度NaCl胁迫还引起了叶片绿原酸含量的增加 ,中耐盐品种栗子香和不耐盐品种胜利百号在 170mmol·L-1的NaCl浓度胁迫下 ,绿原酸含量上升达到最高值 ,耐盐品种徐薯 18绿原酸含量达到最高值的浓度是 2 5 5mmol·L-1,而后随NaCl胁迫浓度的提高 ,绿原酸含量均有下降 ,但仍高于对照 .  相似文献   

3.
研究了16 g/L甘露醇处理对小麦细胞再分化、细胞IAA氧化酶、IAA过氧化物酶、 谷胱甘肽转移酶和过氧化物酶活性的影响。结果表明,甘露醇处理使小麦细胞再生能力明显降低,引起细胞蛋白质含量、IAA过氧化物酶和GST活性明显降低;但使细胞IAA氧化酶和POD活性明显增高。  相似文献   

4.
用~(14)C-Pro和~3H_2-Tyr离体暗培养黄瓜子叶,发现细胞质、SECW和RCW中的Hyp/Pro和Idt/Tyr都随时间呈线性增加。这两种比值后两者高于前者,而两种比值增加速度之比在胞质部分最大、RCW中最小。表明在胞质和胞壁中都有Pro羟化和Tyr异联化过程,但羟化作用主要发生在胞质中,异联化主要在RCW中。 理化处理(高渗溶液和CHM)和放射性示踪证明胞质中存在HRGP库;它被分泌到胞壁后,先以离子键与壁结合,后转变为共价键与壁结合的伸展素。  相似文献   

5.
甘露醇对小麦细胞IAA氧化酶过氧化物酶及GST活性的影响   总被引:1,自引:0,他引:1  
研究了16g/L甘露醇处理对小麦细胞再分化,细胞IAA氧化酶,IAA过氧化酶,谷胱甘肽转移酶和过氧化物酶活性的影响,结果表明,甘露醇处理使小麦细胞再生能力明显降低,引起细胞蛋白质含量,IAA过氧化物酶和GSP活性明显降低,但使细胞IAA氧化格格不入产POD活性明显增高。  相似文献   

6.
通过组织化学染色、电镜观察、酶活性分析对水分胁迫诱导玉米叶片质外体产生H2O2进行了研究。结果表明:水分胁迫能够诱导玉米叶片内源ABA的积累,ABA参与了水分胁迫诱导的玉米叶片H2O2的产生,质膜NADPH氧化酶、细胞壁过氧化物酶(POD)以及质外体多胺氧化酶(PAO)是水分胁迫诱导玉米细胞在质外体产生H2O2的来源,其中质膜NADPH氧化酶是主要来源;内源ABA的积累参与了水分胁迫激活的质膜NADPH氧化酶、细胞壁POD和质外体PAO活性的提高。研究认为,水分胁迫诱导玉米细胞在质外体产生H2O2可能是由于水分胁迫下内源ABA的积累通过激活质膜NADPH氧化酶、细胞壁POD以及质外体PAO的活性而实现的。  相似文献   

7.
干旱期间春小麦叶片多胺含量与作物抗旱性的关系   总被引:8,自引:0,他引:8  
使用两种抑制剂MCBG(抑制SAMDC活性)和AOA(抑制ACC合成酶活性)研究了干旱期间两个春小麦品种8139(抗旱性较弱)和504(抗旱性较强)叶片多胺(Put、Spd和Spm)含量、RWC水平、SOD和POD活性以及MDA含量的变化,并由此探讨了不同类别多胺与作物抗旱性的关系以及多胺与乙烯在作物对干旱胁迫响应过程中对共同前体SAM的竞争趋向及其生理意义。  相似文献   

8.
外源精胺对水分胁迫下小麦幼苗保护酶活性的影响   总被引:3,自引:0,他引:3  
通过营养液培养试验,研究了水分胁迫下外源精胺(Spm)对抗旱性不同的小麦品种幼苗叶片质膜相对透性及保护酶活性的影响.结果表明:水分胁迫下,小麦叶片的质膜相对透性、M DA含量增加、SOD、CAT和POD活性上升,外源精胺处理可延缓水分胁迫下小麦叶片质膜相对透性和M DA含量上升,提高了SOD、CAT、POD酶活性的上升幅度;并且对抗旱性弱的品种保护酶活性增幅高于抗旱性强的品种.因此,外源精胺处理对抗旱性弱的品种缓解水分胁迫作用大于抗旱性强的品种.  相似文献   

9.
ABA诱导玉米叶质外体H2O2积累的机制   总被引:6,自引:0,他引:6  
通过组织化学染色和电镜观察并结合酶活性分析表明,ABA可通过诱导玉米(Zea mays L、)叶片质膜NADPH氧化酶、细胞壁POD及质外体PAO活性的升高,使其质外体产生H2O2;其中质膜NADPH氧化酶起主要作用。  相似文献   

10.
以甜菜胞质雄性不育系212A、2033A、2034A及其相应保持系212B、2033B、2034B为材料,对营养生长期4个阶段叶片的细胞色素氧化酶(COD)、过氧化物酶(POD)、过氧化氢酶(CAT)以及ATP酶的活性进行分析比较,以探讨甜菜胞质雄性不育与能量代谢的关系.结果显示:(1)在甜菜营养生长期的4个阶段,不育系的COD活性均显著低于其保持系,表明不育系的呼吸强度和产生的能量均低于其保持系;(2)不育系ATP酶活性低于保持系,但差异不显著,且不育系和保持系的ATP酶活性随生长进程变化平缓,说明在营养生长期二者对能量的消耗接近;(3)POD和CAT的活性在营养生长期总体为不育系显著高于其保持系,说明不育系体内H2O2含量增加.研究认为,营养生长期能量亏缺是甜菜胞质雄性不育的主要原因之一.  相似文献   

11.
Changes in IAA oxidase, and in cytoplasmic and ionically wall-bound peroxidase activities were studied in the developing fibres of three cotton cultivars ( Gossypium hirsutum L. cv. Gujarat-67, cv. Khandwa-2 and G. herbaceum L. cv. Digvijay), designated as long, medium and short staple cultivars, respectively. In all the three cultivars IAA oxidase activity was low during the fibre elongation phase, while the activity increased significantly during the secondary thickening phase. The increase in IAA oxidase activity in the three cultivars showed close correspondence with their respective total period of elongation. No relationship between cytoplasmic peroxidase activity and fibre development was discernible. The ionically bound wall peroxidase activity, however, recorded low levels during the elongation phase and higher levels during the secondary thickening phase. The role of wall peroxidase in cessation of elongation growth is discussed.  相似文献   

12.
Changes of soluble and ionically bound peroxidase and indoleacetic acid (IAA) oxidase activities were followed during peach seed development. Soluble peroxidase activity was located mainly in the embryo plus endosperm tissue, whereas wall ionically bound activities were found predominantly in the integument tissue. The different peroxidase isoenzymes present in the extracts were characterized by polyacrylamide gel electrophoresis and isoelectric focusing; the main soluble isoenzyme of embryo plus endosperm tissue was an anionic isoperoxidase of R F 0.07. Basic ionically bound isoenzymes were located only in the integument tissue, but two soluble anionic isoenzymes of R F 0.23 and 0.51 were also present in this tissue. In parallel, peroxidase protein content was estimated specifically using polyclonal antibodies. The kinetic data and the changes of seed IAA oxidase activity during fruit development suggested that basic peroxidase isoenzymes from ionically bound extracts of integument might be involved in IAA degradation. Received September 11, 1997; accepted October 21, 1997  相似文献   

13.
Parthenocarpic peach fruit (Prunus persica L. Batsch., cv. Redhaven) were induced with 1-(3-chlorophthalimide)-cyclohexane carboxamide (AC 94377). The activities of soluble, and ionically and covalently bound peroxidase and indole-3-acetic acid (IAA) oxidase in the pericarp of both seeded and parthenocarpic fruit were determined from 21–43 days after anthesis. Seedless fruit grew faster during early stage I and ceased growth earlier than seeded fruit. Total peroxidase and IAA oxidase activities increased with development on both types of fruit, but higher values were found in seedless fruit. The ionic fraction showed the greatest increase for both enzyme activities. Isoperoxidase profile showed new cationic isoenzymes and higher levels of the less anionic isoenzymes in the pericarp of seedless fruit, whereas the seeded fruit contained higher levels of the more acidic isoperoxidases.  相似文献   

14.
Ke D  Saltveit ME 《Plant physiology》1988,88(4):1136-1140
Russet spotting (RS) is a physiological disorder induced in iceberg lettuce (Lactuca sativa L.) by exposure to parts per million levels of ethylene at 5 ± 2°C. Ethylene induced phenylalanine ammonia-lyase and ionically bound peroxidase activities that correlated with development of RS symptoms. The ethylene-treated tissue had significantly higher lignin content than air control tissue with lignification localized in walls of RS-affected cells. Ethylene also caused the accumulation of the flavonoids (+)catechin and (−)epicatechin and the chlorogenic acid derivatives 3-caffeoyl-quinic acid, 3,5-dicaffeoylquinic acid, and 4,5-dicaffeoylquinic acid. These soluble phenolic compounds were readily oxidized to brown substances by polyphenol oxidase isolated from RS tissue. Ethylene substantially increased ionically bound indole-3-acetic acid (IAA) oxidase activity, while IAA application greatly reduced ethylene-induced phenylalanine ammonia-lyase, peroxidase, and IAA oxidase activities, soluble phenolic content, and RS development.  相似文献   

15.
16.
This study examined the impacts of elevated CO2 or O3 on indole-3-acetic acid (IAA) content, activities of IAA oxidase (IAAO) and peroxidase (POD) in Ginkgo biloba leaves. Plants grown in open-top chambers were exposed to ambient atmosphere (control; C), elevated CO2 and elevated O3 from 1 June to 30 September. An increase in IAA content and decrease in IAAO and POD activities were observed in plants exposed to elevated CO2 compared with C. Elevated O3 had no significant effect on IAA content and IAAO activity, but increased POD activity during the early days. When trees pre-exposed to elevated CO2 were transferred to elevated O3 or C, the increase in IAAO activity resulted in the decrease in IAA content. When trees pre-exposed to elevated O3 were transferred to elevated CO2 or C, IAA content, IAAO and POD activities showed no significant changes. The influence of POD activity on the IAA activity was low.  相似文献   

17.
The present work was carried out with the aim of studying the effect of salinity stress on growth and IAA oxidizing system (i.e. peroxidase and IAA oxidase) in vigna (Vigna unguiculata L.) seedlings. The seedlings were treated with two concentrations of sodium chloride (NaCl) 0.1 M and 0.25 M. Length, fresh and dry weight were the parameters considered for growth. Salinity effect was distinct in fresh weight and dry weight of different organs. Peroxidase and IAA oxidase activities were measured at different time intervals for both cytoplasmic and wall bound fractions. Peroxidase activity was maximum at higher stress conditions bringing about the hypocotyl growth restriction. Thus there was a clear inverse correlation between elongation and peroxidase activity. IAA oxidase activity also showed a similar trend for both cytoplasmic and wall bound fractions. The role of IAA oxidizing system in defense mechanism in response to salinity stress is discussed.  相似文献   

18.
Twelve-day-old seedlings of pea (Pisum sativum L.) that were treated for 4 days by 20 and 100 micromol/l Cd(NO3)2 or CuSO4 showed a growth reduction in all organs. From root protein extracts, the activities of guaiacol peroxidase (GPX; EC 1.11.1.7), ascorbate peroxidase (APX; EC 1.11.1.11), coniferyl alcohol peroxidase (CAPX), NADH oxidase, and indole-3-acetic acid (IAA) oxidase were measured in covalently--and ionically--[symbol: see text] bound cell wall, soluble, and microsomal membrane fractions. With the exception of 20 micromol/l Cu, metal treatments enhanced GPX activity in all fractions. Only IAA oxidase activity was metal-elevated in the covalently bound cell wall fraction, while the ionic one showed Cd stimulation for all assayed enzymic activities. These effects were not entirely observed in Cu-treated plants, since APX and IAA oxidase activities were only enhanced in this fraction. However, soluble extract showed stimulation of APX activity, while in the microsomal fraction metal exposure also increased the activities of CAPX and NADH oxidase. Differential responses of root cell fractions to the presence of cadmium and copper ions are discussed in regard to the contribution of their enzymic capacities in antioxidant, lignification, and auxin degradation pathways. Comparisons between metals and dose effects are also underlined.  相似文献   

19.
Isoperoxidases were detected in resistant Rossol and susceptible Roma VF tomato roots uninfected and infected by Meloidogyne incognita. Syringaldazine, guaiacol, p-phenylenediamine-pyrocatechol (PPD-PC), and indoleacetic acid (IAA) were used as substrates, and the corresponding peroxidative activities were detected either in cytoplasmic or in cell wall fractions, except for IAA oxidase, which was measured in soluble and microsomal fractions. Isoperoxidase activities and cellular locations were induced differently in resistant and susceptible cultivars by nematodes. Nematode infestation markedly enhanced syringaldazine oxidase activity in cell walls of the resistant cultivar. This isoperoxidase is involved in the last step of lignin deposition in plants. Conversely, the susceptible cultivar reacted to M. incognita infection with an increase in cytoplasmic PPD-PC oxidase activity, which presumedly is involved in ethylene production; no changes in cell wall isoperoxidases were observed. IAA oxidase was inhibited in susceptible plants after nematode inoculation, whereas in resistant plants this activity increased in the soluble fraction and decreased in the microsomal fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号