首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metathesis of [(η33−C10H16)Ru(Cl) (μ−Cl)]2 (1) with [R3P) (Cl)M(μ-Cl)]2 (M = Pd, Pt), [Me2NCH2C6H4Pd(μ-Cl)]2 and [(OC)2Rh(μ-Cl)]2 affords the heterobimetallic chloro bridged complexes (η33-C10H16) (Cl)Ru(μ-Cl)2M(PR3)(Cl) (M = Pd, Pt), (η33-C10H16) (Cl)Ru(μ-Cl)2PdC6H4CH2NMe2 and (η33-C10H16) (Cl)Ru(μ-Cl)2Rh(CO)2, respectively. Complex 1 reacts with [Cp*M(Cl) (μ-Cl)]2 (M = Rh, Ir), [p-cymene Ru(Cl) (μ-Cl]2 and [(Cy3P)Cu(μ-Cl)]2 to give an equilibrium of the heterobimetallic complexes and of educts. The structures of (η33-C10H16)Ru(μ-Cl)2Pd(PR3) (Cl) (R = Et, Bu) and of one diastereoisomer of (η33-C10H16)Ru(μ-Cl)2IrCp*(Cl) were determined by X-ray diffraction.  相似文献   

2.
Treatment of MHCl(CO)(PPh3)3 (M=Ru, Os) with (CH2=CH)SnR3 is a good general route to the coordinatively unsaturated osmium and ruthenium stannyl complexes M(SnR3)Cl(CO)(PPh3)2 (1: M=Ru, R=Me; 2: M=Ru, R = n-butyl; 3: M=Ru, R = p-tolyl; 4: M=Os, R=Me). These coordinatively unsaturated complexes readily add CO and CN-p-tolyl to form the coordinatively saturated compounds M(SnR3)Cl(CO)L(PPh3)2 (5: M=Ru, R=Me, L=CO; 6: M=;Ru, R = n-butyl, L=CO; 7: M=Ru, R = p-tolyl, L=CO; 8: M=Os, R=Me, L=CO; 9: M=Ru, R=Me, L=CN-p-tolyl; 10: M=Ru, R = n-butyl, L=CN-p-tolyl; 11: M=Os, R=Me, L=CN-p-tolyl). In addition, the chloride ligand in Ru(SnR3)Cl(CO)(PPh3)2 proves to be labile and treatment with the potentially bidentate anionic ligands, dimethyldithiocarbamate or diethyldithiocarbamate, affords the coordinatively saturated compounds Ru(SnR3)(η2-S2CNR′2)(CO)(PPh3)2 (12: R=Me, R′ = Me; 13: R=Me, R′ = Et; 14: R = n-butyl, R′ = Me; 15: R = p-tolyl, R′ = Me; 16: R = p-tolyl, R′ = Et). Chloride is also displaced by carboxylates forming the six-coordinate compounds Ru(SnR3)(η2-O2CR′)(CO)(PPh3)2 (17: R=Me, R′ = H; 18: R=Me, R′ = Me; 19: R=Me, R′ = Ph; 20: R = n-butyl, R′ = Me; 21: R = p-tolyl, R′ = Me). IR and 1H NMR spectral data for all the new compounds and 31P and 119Sn NMR spectral data for selected compounds are reported.  相似文献   

3.
The first η2-olefinic monocarbon metallacarbone closo-2-(Ph3P)-1-N,2-[μ-(η2-CH2CH=Ch2)]-1-N-(σ-CH2CH=CH2)-2,1- RhCB10H10 has been prepared by the reaction of the dimeric anion {[Ph3PRhB10H10CNH2]2-μ-H}[PPN]+ with allyl bromide and characterized by a combination of spectroscopic methods and a single-crystal X-ray diffraction study. The variable temperature 1H and 13C NMR studies revealed the fluxional behavior of the η2-olefinic complex in CD2Cl2 solution which is associated with the allyl side-chain exchange process.  相似文献   

4.
Addition of (Cp*2YH)2 (4) to 2-methyl-1,4-pentadiene produced the yttrium-alkyl-alkene chelate complex Cp*2YCH2CH2CH2C(CH3)=CH2 (2) in which a disubstituted alkene is complexed to the metal center. Evidence for coordination of the alkene unit of 2 comes from the 1H and 13C NMR chemical shifts of the vinyl units and from observation of nOe effects between Cp* protons and vinyl hydrogens. The disubstituted alkene ligand of 2 is weakly bound, and evidence for an equilibrium with substantial amounts of complex 3 with a free alkene was obtained from variable temperature 1H NMR spectroscopy.  相似文献   

5.
The kinetics in heptane of displacement of the alkene ligands ethene and methyl acrylate from Ru(CO)42-alkene) by P(OEt)3 have been measured. The reactions occur by reversible dissociation of the alkenes, and activation parameters are compared with those for dissociation of CO from Ru(CO)5 and for reactions of the corresponding Os complexes. A linear free energy relationship for ligand dissociation from Ru(CO)5, Ru(CO)4(C2H4) and Ru(CO)4(MA) has a gradient close to unity, indicating virtually complete bond breaking in the transition states. Competition parameters for reactions of what is probably a solvated Ru(CO)4S intermediate have been measured for the alkenes and P(OEt)3, and for eleven other P-donor nucleophiles. Correlations with the electronic and steric properties of the P-donors show negligible dependence on the electron donicity of the nucleophiles and a small but significant dependence on their sizes. The sizes were quantified by Tolman cone angles or by ‘cone angle equivalents’ derived directly from Brown's ligand repulsion energies (Er). These correlations compared with those, reported elsewhere, for reactions of the probably solvated intermediates Co2(CO)52-C2Ph2) and H3Re3(CO)11 formed by ligand dissociative processes. In all cases the discrimination between nucleophiles by the intermediates is weak confirming their high reactivity and the borderline nature of the mechanisms of these bimolecular reactions between Id and Ia.  相似文献   

6.
Preparations by the high dilution method are reported for seven macrocyclic thioether-esters and thioether-thioesters (L1–;L7). Yields in these reactions between thiodiglycolyl dichloride and appropriate ,ω-diols or dithiols range from 10 to 51%. The compounds are characterized by 1H and 13C NMR, IR and high resolution mass spectroscopy. They react with salts of Pd(II), Pt(II) and Ag(I) to form complexes of which MX2·L2, (M = Pt, X = Cl; M = Pd, X = Cl, Br, I, SCN), [Pd(L2)2][CF3SO3]2·H2O and [Ag(L5)2][CF3SO3]·C2H5OH have been isolated and characterized by elemental analysis, IR and NMR spectroscopy. NMR spectra indicate reversible dissociation of the ligand occurs in dimethyl sulfoxide solvent for PdCl2·L2 but not for the Pt analogue. For PtCl2·L2, spectra indicate that the ligand is undergoing a conformational ‘wag’ about its pair of equivalent sulfurs. These remain bound to the metal while the unique sulfur moves from the apical position of the coordination sphere to a non-coordinated situation. Simultaneously, inversions at the bound sulfurs are occurring.  相似文献   

7.
Crystal structures of Co2(CO)6(dppm) (1) and Co2(CO)5(CHCO2Et)(dppm) (2) (dppm = Ph2PCH2PPh2) show asymmetry with respect to the orientation of the phenyl groups in 1 and owing to the bridging ethoxycarbonylcarbene ligand in 2. The effect of this asymmetry was recognized in the solid-state 31P NMR spectra of 1 and 2 and in the solid-state and solution 13C NMR spectra of 2 as well, but not in the solid-state and solution 13C NMR spectra of 1. In CH2Cl2 solution under an atmosphere of 13CO, the CO ligands of both complexes exchange with 13CO. The overall rate of 13CO exchange at 10 °C was found to be kobs = 0.107 × 10−3 s−1 for 1 and kobs = 0.243 × 10−3 s−1 for 2. Two-layered ONIOM(B3LYP/6-31G(d):LSDA/LANL2MB) studies revealed fluxional behavior of 1 with rather small barriers of activation of the rearrangements. Four possible isomers have been computed for 2, close to each other energetically.  相似文献   

8.
Isocyanato and isothiocyanatopolypyridineruthenium complexes, [Ru(NCX)Y(bpy)(py)2]n+ (bpy=2,2′-bipyridine, PY=pyridine; X=O, Y=NO2 for n=0, and Y=py for n=1; X=S, Y=NO2 for n=0, Y=NO for n=2, and Y=py for n=1), were synthesized by the reaction of polypyridineruthenium complexes with potassium cyanate or sodium thiocyanate salt. Isocyanatoruthenium(II) complexes, [Ru(NCO)(NO2)(bpy)(py)2] and [Ru(NCO)(bpy)(py)3]+, react under acidic conditions to form the corresponding ammineruthenium complexes, [Ru(NO)(NH3)(bpy)(py)2]3+. The molecular structures of [Ru(NCO)(bpy)(py)3]ClO4, [Ru(NCS)(NO)(bpy)(py)2](PF6)2 and [Ru(NO)(NH3)(bpy)(py)2](PF6)3 were determined by X-ray crystallography.  相似文献   

9.
The dialkyl-μ-ethylidene-μ-methylene-bis (pentamethylcyclopentadienyl)-dirhodium complexes [{(C5Me5)Rh}2(μ-CH2)(μ-CHMe) (R)2] (4, P=Me; 5, Et; 6, n-Bu; 7, CH=CH2; and 8, Z-CH=CHMe) have been prepared from RMgBr and [{(C5Me5)Rh}2(μ-CH2)(μ-CHMe)(X)2] (2, X=Cl; 3, X=Br). Structures deduced from the NMR spectra show that the dialkyl complexes can exist in one trans and two cis forms. The decomposition of the dimethyl complex 4 is compared with that of the related di-μ-methylene complex; it reacts readily (30°C, MeCN solution) in the presence of one-electron oxidisers to give propene and methane and a little ethene and some butenes. Mass-spectrometric analysis of the 13C labelling in the organics originating from [{(C5Me5)Rh}2(μ-CH2)(μ-CHMe) (13CH3)2] shows that methane derives from the Rh---Me, ethene half from the ethylidene and half from coupling of Rh-methyl and a bridging methylene, while the propene arises almost entirely from the ethylidene and a rhodium methyl. The butenes come from coupling of ethylidene, methylene and a Rh-methyl, but only quite small amounts are formed; thus C+C coupling is the major decomposition path for the μ-ethylidenes, in contrast to the di-μ-methylene complexes where C+C+C coupling predominates. The divinyl complex [{(C5Me5)Rh}2(μ-CH2)(μ-CHMe) (CH=CH2)2] also underwent internal C+C coupling on reaction with AgBF4 in MeCN to give a mixture of the allyl and methylallyl cations [(C5Me5)Rh(η3-CH2CHCHR)(MeCN)]+(10, R=H; 11, R=Me).  相似文献   

10.
Kinetic and activation parameter data for the reactions of cct-Ru(H)2(CO)2(PPh3)2 (1) (cct = cis, cis, trans) in THF with thiols, CO and PPh3 to give cct-RuH(SR)(CO)2(PPh3)2, Ru(CO)3(PPh3)2 and Ru(CO)2(PPh3)2, respectively, reveal a common, rate-determining step, the initial dissociation of H2 from 1; the activated complex probably resembles the corresponding Ru(η2-H2) species. Reaction of Ru(H)2(dppm)2 (2) (as a cis/trans mixture, DPPM = bis(diphenylphosphino)methane) with thiols initially generated cis- and trans- RuH(SR) (dppm)2 with a rate that depends on both the type and concentration of thiol. The higher basicity of the hydride ligands in 2 (versus 1), which is demonstrated by deuterium exchange with CD3OD, gives rise in the thiol reaction to an initial protonation step prior to loss of H2. A species detected in the thiol reaction is possibly [RuH(η2-H2 (dppm)2]2, the anticipated intermediate for this reaction and for the hydrogen exchange with alcohol. A longer reaction of 2 with PhCH2SH gives solely cis-Ru(SCH2Ph)2(dppm)2.  相似文献   

11.
Analogy with the isolable oxo cluster [Fe3(CO)93-O)]2−, which is structurally interesting and synthetically useful, prompted the present attempt to synthesize its ruthenium analog. Although the high reactivity of [Ru3(CO)93-O)]2− (I) prevented its isolation, the reaction of this species with [M(CO)3(NCCH3)]+, where M = Mn or Re, yields [PPN][MRu3(CO)1223-NC(μ-O)CH3]. The high nucleophilicity of the oxo ligand in [Ru3(CO)93-O)]2− (I) appears to be responsible for the conversion of acetonitrile to an acetamidediato ligand and for the instability of I. The crystal structure of [PPN][MnRu3(CO)1223-NC(μ-O)CH3)]] reveals a hinged butterfly array of metal atoms in which the acetamidediato ligand bridges the two wings with μ3-N bonding to an Mn and two Ru atoms, and μ-O bonding to an Ru atom.  相似文献   

12.
The first examples of binary palladium(II) derivatives of unsaturated carboxylic acids are reported. It was found that the interaction of Pd3(μ-OAc)6 with the ,β-unsaturated 1-methylcrotonic (tiglic) and crotonic acids leads to the corresponding carboxylates of composition Pd3[μ-O2CC(R′) = CHMe]6, where R′ = Me (1) or H (2). The new compounds have been characterized by elemental analysis, solid and solution IR, 1H and 13C NMR, and ESI mass spectrometry. The crystal structure of 1 has been determined. This molecule displays a central Pd3 cyclic core with Pd–Pd distances of 3.093–3.171 Å. Each Pd–Pd bond is bridged by a pair of carboxylate ligands, one above and the other below the Pd3 plane, providing a square planar coordination for each Pd atom in an approximate D3h overall symmetry arrangement. Solution spectroscopic data show that the bridging η112 interaction of the carboxylates of 1 and 2 is readily displaced, with a change of the ligand to the terminal (η1) coordination mode.  相似文献   

13.
The reversible equilibrium conversion under H2 of [RuCl(dppb) (μ-Cl)]2 (1) to generate (η2-H2) (dppb) (μ-Cl)3RuCl(dppb) in CH2Cl2 (dppb = Ph2P(CH2)4PPh2) has been studied at 0–25 °C by UV-Vis and 31P{1H} NMR spectroscopy, and by stoppe kinetics; the equilibrium constant and corresponding thermodynamic parameters, and the forward and reverse rate constants at 25 °C have been determined. A measured ΔH° value of 0 kJ mol−1 allows for an estimation of an exothermicity of 60 kJ mol−1 for binding an η2-H2 at an Ru(II) centre; a ΔS° value of 60 J mol−1 K−1 indicates that in solution 1 contain s coordinated CH2Cl2. The kinetic and thermodynamic data are compared to those obtained from a previously studied hydrogenation of styrene catalyzed by 1. Preliminary findings on related systems containing Ph2P(CH2)3PPh2 and (C6H11)2P(C6H11)2 are also noted.  相似文献   

14.
Cis(or trans)-[RuCl2(CO)2(PPh3)2] react with two and one equivalents of AgBF4 to give the recently reported [Ru(CO)2(PPh3)2][BF4]2·CH2Cl2 (1) and novel [RuCl(CO)2(PPh3)2][BF4] · 1/2 CH2Cl2 (2), respectively. Cis-[RuCl2(CO)2(PPh3)2] also reacts with two equivalents of AgBF4 in the presence of CO to give [Ru(CO)3(PPh3)2][BF4]2 (3). Reactions of 1 and 2 with NaOMe and CO at 1 atm produce the carbomethoxy species [Ru(COOMe)2(CO)2(PPh3)2] (4) and [RuCl(COOMe)(CO)2(PPh3)2] (5), respectively. Complex 4 can also be formed from the reaction of 3 with NaOMe and CO. Alternatively, 4 is formed from cis-[RuCl2(CO)2(PPh3)2] with NaOMe and CO at elevated pressure (10 atm); if these reactants are refluxed under 1 atm of CO, [Ru(CO)3(PPh3)2] is the product. The reaction of [RuCl(CO)3(PPh3)2][AlCl4] with NaOMe provides an alternative route to the preparation of 5, but the product is contaminated with [RuCl2(CO)2(PPh3)2]. Compounds 1. 2, 4 and 5 have been characterised by IR, 1H NMR and analysis, whilst the formulation of 3 is proposed from spectroscopic data only. This account also examines the reactivity of [Ru(CO)2(PPh3)2][BF4]2 · CH2Cl2 with NaBH4, conc. HCl, KI and, finally, MeCOONa in the presence of CO. The products of these reactions, namely cis-[RuH2(CO)2(PPh3)2], cis-[RuCl2(CO)2(PPh3)2], cis-[RuI2(CO)2(PPh3)2] and [Ru(OOCMe)2(CO)2(PPh3)2], have been identified by comparison of their spectra with previous literature.  相似文献   

15.
Cobalt(III) complexes with a thiolate or thioether ligand, t-[Co(mp)(tren)]+ (2), t-[Co(mtp)(tren)]2+ (1Me) and t-[Co(mta)(tren)]2+ (2Me), (mp = 3-mercaptopropionate, MA = 3-(methylthio)propionate and MTA = 2-(methylthio)acetate) have been prepared in aqueous solutions. The crystal structures of 1, 2, 1Me and 2Me were determined by X-ray diffraction methods. The crystal data are as follows, t-[Co(mp)(tren)]ClO4 (1CIO4): monoclinic, P21/n, A = 10.877(8), B = 11.570(4), c = 12.173(7) Å, β = 92.20(5)°, V = 1531(1) Å3, Z = 4 and R = 0.060; t-[Co(ma)(tren)]Cl·3H2O (2Cl·3H2O): monoclinic, P21/n, a = 7.7688(8), B = 27.128(2), C = 7.858(1) Å, β = 100.63(1)°, V = 1627.7(3) Å3, Z = 4 and R = 0.066; (+)465CD-t-[Co(mtp)(tren)](ClO4)2 ((+)465CD-1Me(ClO4)2): orthorhombic, P212121, A = 10.6610(7), B = 11.746(1), C = 15.555(1) Å, V = 1947.9(3) Å3, Z = 4 and R = 0.068; (+)465CD-t-[Co(mta)(tren)](ClO4)2 ((+)465CD-2Me(ClO4)2): orthorhombic, P212121, a = 10.564(1), B = 11.375(1), C = 15.434(2) Å, V = 1854.7(4) Å3, Z = 4 and R = 0.047. All central Co(III) atoms have approximately octahedral geometry, coordinated by four N, one O, and one S atoms. All of the complexes are only isomer, of which the sulfur atom in the didentate-O,S ligands are located at the trans position to the tertiary amine nitrogen atom of tren. 1 and 1Me contain six-membered chelate ring, and 2 and 2Me do five-membered chelate ring in the didentate ligand. The chirality of the asymmetric sulfur donor atom in (+)465CD-1Me is the S configuration and that in (+)465CD-2Me is the R one. The 1H NMR, 13C NMR and electronic absorption spectral behaviors and electrochemical properties of the present complexes are discussed in relation to their stereochemistries.  相似文献   

16.
Reactions of Cr(CO)36-BT), in which the Cr is π-coordinated to the benzene ring of benzo[b]thiophene (BT), with Cp′(CO)2Re(THF), where Cp′ = η5-C5H5 or η5-C5Me5, give the products Cp′(CO)2Re(η262-BT)Cr(CO)3 in which the Cr remains coordinated to the benzene ring and Re is bound to the C(2)=C(3) double bond. An X-ray diffraction study of Cp(CO)2Re(η262-BT)Cr(CO)3 (3) provides details of the geometry. This structure contrasts with that of the Cp′(CO)2Re(BT) complexes that exist as mixtures of isomers in which the BT is coordinated to the Re through either the double bond (2,3-η2) or the sulfur (η1(S)). Thus, the electron-withdrawing Cr(CO)3 group in 3 stabilizes the 2,3-η2 mode of BT coordination to the Cp′(CO)2Re fragment. Implications of these results for catalytic hydrodesulfurization of BT are discussed. Crystal data for 3: triclinic, space group .  相似文献   

17.
Using thermal and photochemical methods a series of new chromium complexes has been prepared: (ν6-p-C6H4F2)Cr(CO)3; (ν6-C6H5CF3)Cr(CO)3; [m-C6H4(CF3)2]Cr(CO)3; (ν6-C6H5F)Cr(CO)2H(SiCl3); (ν6-C6H5F)Cr(CO)2(SiCl3)2; (p-C6H4F2)Cr(CO)2-H(SiCl3); (C6H5CF3)Cr(CO)2H(SiCl3(p-C6H4F2)Cr(CO)2(SiCl3)2; C6H5CF3)Cr(CO)2(SiCl3)2; [m-C6H4(CF3)2]Cr(CO)2-H(SiCl3); [m-C6H4(CF3)2]Cr(CO)2(SiCl3)2. Two compounds were structurally characterized by X-ray diffraction. These data combined with IR and 1H NMR have allowed assessment of some of the electronic and steric effects. The Cr-arene bond is considerably longer in the Cr(II) derivatives than in the Cr(0) species. Also the Cr center, as might be expected, is less electron rich in the Cr(II) dicarbonyl disilyl derivatives. The ν6-p-C6H4F2 ligands are slightly folded so that the C---F carbons are moved further away from the Cr center. Comparison of structural and electronic effects is made with a series of similar chromium compounds reported in the literature. These new (arene)Cr(II) derivatives possess more labile ν6-arene ligands, which promise a rich chemistry at the chromium center.  相似文献   

18.
Several novel dimers of the composition [M2Cl4(trans-dppen)2] (M=Ni (1), Pd (2), Pt (3)) containing trans-1,2-bis(diphenylphosphino)ethene (trans-dppen) have been prepared and characterized by X-ray diffraction methods, NMR spectroscopy (195Pt{1H}, 31P{1H}), elemental analyses, and melting points. The intramolecular [2+2] photocycloaddition of the two diphosphine-bridges in 3 produces [Pt2Cl4(dppcb)] (4), where dppcb is the new tetradentate phosphine cis,trans,cis-1,2,3,4-tetrakis(diphenylphosphino)cyclobutane. Neither 1 nor the free diphosphine trans-dppen shows this reaction. In the case of 2 the photocycloaddition is slower than in 3. This difference can be explained by the shorter distance between the two aliphatic double bonds in 3 than in 2, but also different transition probabilities within ground and excited states of the used metals could be involved. Furthermore, variable-temperature 31P{1H} NMR spectroscopy of 2 or 3 reveals a negative activation entropy of 2 for the [2+2] photocycloaddition, but a positive of 3. The removal of chloride from 4 by precipitating AgCl with AgBF4, and subsequent treatment with 2,2′-bipyridine (bipy) or 1,10-phenanthroline (phen) leads to [Pt2(dppcb)(bipy)2](BF4)4 (5) and [Pt2(dppcb)(phen)2](BF4)4 (6), respectively. In an analogous reaction of 4 with PMe2Ph or PMePh2, [Pt2(dppcb)(PMe2Ph)4](BF4)4 (7) and [Pt2(dppcb)(PMePh2)4](BF4)4 (8) are formed. Complexes 1–8 show square–planar coordinations, where the compounds 4–8 have also been characterized by the above mentioned methods together with fast atom bombardment mass spectrometry (7, 8). The crystal structure of 4 reveals two conformations, which arise from an energetic competition between the sterical demands of dppcb and an ideal square–planar environment of Pt(II). The free tetraphosphine dppcb can be obtained easily from 4 by treatment with NaCN. It has been characterized fully by the above methods including 13C{1H} and 1H NMR spectroscopy. The X-ray structure analysis shows the pure MMMP-enantiomer in the solid crystal, which is therefore optically active. This chirality is induced by a conformation of dppcb, where all four PPh2 groups are non-equivalent. Variable-temperature 31P{1H} NMR spectroscopy of dppcb confirms this explanation, since the single signal at room temperature is split into two doublets at 183 K. The goal of this article is to demonstrate the facile production of a new tetradentate phosphine from a diphosphine precursor via Pt(II) used as a template.  相似文献   

19.
Trans-dihydroxo-[tetrakis(2,6-dichlorophenyl)porphinato]ruthenium(IV) ([Ru(OH)2(TDCPP)]) was prepared by meta-chloroperbenzoic acid oxidation of [Ru(CO)(TDCPP)] in dichloromethane-toluene, and its crystal structure is reported. Crystal data for [Ru(OH)2(TDCPP)]·2toluene:C44H22N4O2Cl8Ru·2C7H8, orthorhombic, space group Pbca a = 13.149(1), B = 19.893(2), C = 21.093(2)Å, U = 55.17.3(2) Å3, Z = 4. The short axial Ru---O bond distance, 1.790(7) Å, is in the range expected for a double Ru(IV)-oxygen bond. Both hydroxo ligands are approximately located in the mean plane of two opposite dichlorophenyl groups. Full-matrix least-squares refinement of positional and thermal parameters, using 2368 unique reflections with F > 2.5 σ (F) led to R(F) = 0.063; Rw = 0.066.  相似文献   

20.
The reactions of Ru(NH3)5py2+, Ru(NH3)4bpy2+, Ru2(NH3)10pz5+, RuRh(NH3)10pz5+ and Ru(NH3)5pz2+ with bromine are first-order in ruthenium and first-order in bromine. The rates decrease with increasing bromide ion concentration and, except for Ru(NH3)5pz2+, are independent of hydrogen ion concentration. The reactions are postulated to proceed via outer-sphere, one-electron transfer from Ru(II) to Br2 with the formation of Br2 as a reactive intermediate. The bromide inhibition is ascribed to the formation of Br3 which is unreactive in outer-sphere reactions because of the barrier imposed by the need to undergo reductive cleavage. The reaction of Ru(NH3)5pz2+ is inhibited by hydrogen ions. The hydrogen ion dependence shows that Ru(NH3)5pzH3+ has a pKa of 2.49 and is at least 500 times less reactive than Ru(NH3)5pz2+. The reaction of Ru2(NH3)10pz4+ with bromine is biphasic. The second phase has a rate identical to that of the Ru2(NH3)10pz5+-Br2 reaction. A detailed analysis shows that the reaction of Ru2(NH3)10pz4+ with bromine proceeds by a sequence of one-electron steps, Br2 being produced as an intermediate. A linear free energy relationship between rate constants and equilibrium constants, obeyed for all the reactions studied, provides an estimate of 1.5 × 102 M−1 s−1 for the self-exchange rate constant of the Br2/Br2 couple.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号