共查询到20条相似文献,搜索用时 0 毫秒
1.
Affibody molecules constitute a class of engineered binding proteins based on the 58-residue three-helix bundle Z domain derived from staphylococcal protein A (SPA). Affibody proteins are selected as binders to target proteins by phage display of combinatorial libraries in which typically 13 side-chains on the surface of helices 1 and 2 in the Z domain have been randomized. The Z(Taq):anti-Z(Taq) affibody-affibody complex, consisting of Z(Taq), originally selected as a binder to Taq DNA polymerase, and anti-Z(Taq), selected as binder to Z(Taq), is formed with a dissociation constant K(d) approximately 100 nM. We have determined high-precision solution structures of free Z(Taq) and anti-Z(Taq), and the Z(Taq):anti-Z(Taq) complex under identical experimental conditions (25 degrees C in 50 mM NaCl with 20 mM potassium phosphate buffer at pH 6.4). The complex is formed with helices 1 and 2 of anti-Z(Taq) in perpendicular contact with helices 1 and 2 of Z(Taq). The interaction surface is large ( approximately 1670 A(2)) and unusually non-polar (70 %) compared to other protein-protein complexes. It involves all varied residues on anti-Z(Taq), most corresponding (Taq DNA polymerase binding) side-chains on Z(Taq), and several additional side-chain and backbone contacts. Other notable features include a substantial rearrangement (induced fit) of aromatic side-chains in Z(Taq) upon binding, a close contact between glycine residues in the two subunits that might involve aliphatic glycine Halpha to backbone carbonyl hydrogen bonds, and four hydrogen bonds made by the two guanidinium N(eta)H(2) groups of an arginine side-chain. Comparisons of the present structure with other data for affibody proteins and the Z domain suggest that intrinsic binding properties of the originating SPA surface might be inherited by the affibody binders. A thermodynamic characterization of Z(Taq) and anti-Z(Taq) is presented in an accompanying paper. 相似文献
2.
3.
Nine neurodegenerative diseases, including Huntington's disease, are associated with the aggregation of proteins containing expanded polyglutamine sequences. The end result of polyglutamine aggregation is a beta-sheet-rich deposit. There exists evidence that an important intermediate in the aggregation process involves intramolecular beta-hairpin structures. However, little is known about the starting state, monomeric polyglutamine. Most experimental studies of monomeric polyglutamine have concluded that the backbone is completely disordered. However, such studies are hampered by the inherent tendency for polyglutamine to aggregate. A recent computational study suggested that the glutamine residues in polyglutamine tracts have a significant propensity to adopt the left-handed polyproline II (P(II)) helical conformation. In this work, we use NMR spectroscopy to demonstrate that glutamine residues possess a high propensity to adopt the P(II) conformation. We present circular dichroism spectra that indicate the presence of significant amounts of P(II) helical structure in short glutamine tracts. These data demonstrate that the propensity to adopt the P(II) structure is retained for glutamine repeats of up to at least 15 residues. Although other structures, such as alpha-helices and beta-sheets, become possible at greater lengths, our data indicate that glutamine residues in monomeric polyglutamine have a significant propensity to adopt the P(II) structure, although not necessarily in long contiguous helical stretches. We note that we have no evidence to suggest that the observed P(II) helical structure is a precursor to polyglutamine aggregation. Nonetheless, increased understanding of monomeric polyglutamine structures will aid our understanding of the aggregation process. 相似文献
4.
Structural basis for ubiquitin recognition by SH3 domains 总被引:1,自引:0,他引:1
The SH3 domain is a protein-protein interaction module commonly found in intracellular signaling and adaptor proteins. The SH3 domains of multiple endocytic proteins have been recently implicated in binding ubiquitin, which serves as a signal for diverse cellular processes including gene regulation, endosomal sorting, and protein destruction. Here we describe the solution NMR structure of ubiquitin in complex with an SH3 domain belonging to the yeast endocytic protein Sla1. The ubiquitin binding surface of the Sla1 SH3 domain overlaps substantially with the canonical binding surface for proline-rich ligands. Like many other ubiquitin-binding motifs, the SH3 domain engages the Ile44 hydrophobic patch of ubiquitin. A phenylalanine residue located at the heart of the ubiquitin-binding surface of the SH3 domain serves as a key specificity determinant. The structure of the SH3-ubiquitin complex explains how a subset of SH3 domains has acquired this non-traditional function. 相似文献
5.
Xiuling Li Songbai Yang Zhonglin Tang Kui Li Max F. Rothschild Bang Liu Bin Fan 《Animal genetics》2014,45(3):329-339
Due to the direction, intensity, duration and consistency of genetic selection, especially recent artificial selection, the production performance of domestic pigs has been greatly changed. Therefore, we reasoned that there must be footprints or selection signatures that had been left during domestication. In this study, with porcine 60K BeadChip genotyping data from both commercial Large White and local Chinese Tongcheng pigs, we calculated the extended haplotype homozygosity values of the two breeds using the long‐range haplotype method to detect selection signatures. We found 34 candidate regions, including 61 known genes, from Large White pigs and 25 regions comprising 57 known genes from Tongcheng pigs. Many selection signatures were found on SSC1, SSC4, SSC7 and SSC14 regions in both populations. According to quantitative trait loci and network pathway analyses, most of the regions and genes were linked to growth, reproduction and immune responses. In addition, the average genetic differentiation coefficient FST was 0.254, which means that there had already been a significant differentiation between the breeds. The findings from this study can contribute to further research on molecular mechanisms of pig evolution and domestication and also provide valuable references for improvement of their breeding and cultivation. 相似文献
6.
采用多种NMR分析技术,首次对百合甾体皂苷(25R,26R)-26-甲氧基螺甾烷-5-烯-3β-α-L-鼠李糖-(1→2)-[β-D-葡萄糖-(1→6)]-β-D-葡萄糖苷的1H和13C NMR信号进行了全归属,特别是应用选择性的1D TOCSY和1D NOESY核磁共振分析技术,对该化合物1中的氢谱信号严重重叠的糖链进行了详细的分析,提出了一套对甾体皂苷糖链信号进行全归属的核磁共振法.在确认其结构的基础上,建立了核磁共振法(1H NMR)测定该化合物1的纯度,给出了完整的实验条件,线性回归系数为0.9998,重复性实验RSD为0.58%,稳定性实验RSD为0.24%,操作简单、快速准确,且不需要其它对照品,是中药化学对照品纯度研究的一个有益补充. 相似文献
7.
Predicting the experimental unfolding rates of two-state proteins and models describing the unfolding rates of these proteins is quite limited because of the complexity present in the unfolding mechanism and the lack of experimental unfolding data compared with folding data. In this work, 25 two-state proteins characterized by Maxwell et al. (Protein Sci 2005;14:602–616) using a consensus set of experimental conditions were taken, and the parameter long-range order (LRO) derived from their three-dimensional structures were related with their experimental unfolding rates ln(k(u)). From the total data set of 30 proteins used by Maxwell et al. (Protein Sci 2005;14:602–616), five slow-unfolding proteins with very low unfolding rates were considered to be outliers and were not included in our data set. Except all beta structural class, LRO of both the all-alpha and mixed-class proteins showed a strong inverse correlation of r = -0.99 and -0.88, respectively, with experimental ln(k(u)). LRO shows a correlation of -0.62 with experimental ln(k(u)) for all-beta proteins. For predicting the unfolding rates, a simple statistical method has been used and linear regression equations were developed for individual structural classes of proteins using LRO, and the results obtained showed a better agreement with experimental results. 相似文献
8.
9.
Chiarparin E Pelupessy P Cutting B Eykyn TR Bodenhausen G 《Journal of biomolecular NMR》1999,13(1):61-65
A novel one-dimensional NOE experiment is presented where a selected proton is excited by two-way heteronuclear cross- polarization between protons and nitrogen-15 or carbon-13. The utility of the method is demonstrated for a sample of 15N labeled human ubiquitin. Inter- and intra-residue NOEs are clearly observed in a very time-effective manner. The signal intensities can be easily normalized. 相似文献
10.
The exchange-transferred NOE method to determine the three-dimensional structure of peptides bound to proteins, or other macromolecular systems, is becoming increasingly important in drug design efforts and for large or multicomponent assemblies, such as membrane receptors, where structural analysis of the full system is intractable. The exchange-transferred nuclear Overhauser effect spectroscopy (etNOESY) method allows the determination of the bound-state conformation of the peptide from the intra-molecular NOE interactions between ligand protons. Because only ligand–ligand NOEs are generally observable, the etNOESY method is restricted to fewer NOEs per residue than direct protein structure determination. In addition, the averaging of relaxation rates between free and bound states affects the measured cross-peak intensities, and possibly the accuracy of distance estimates. Accordingly, the study reported here was conducted to examine the conditions required to define a reliable structure. The program CORONA was used to simulate etNOE data using a rate-matrix including magnetic relaxation and exchange rates for two peptide–protein complexes derived from the reference complex of cAMP-dependent protein kinase ligated with a 24-residue inhibitor peptide. The results indicate that reasonably accurate peptide structures can be determined with relatively few NOE interactions when the interactions occur between non-neighboring residues. The reliability of the structural result is suggested from the pattern of NOE interactions. A structure with an accuracy of approximately 1.3 Å rms difference for the main-chain atoms can be obtained when etNOE interactions between non-neighboring residues occur over the length of the peptide. The global precision is higher (approximately 0.9 Å rms difference) but is not correlated to global accuracy. A local definition of precision along the backbone appears to be a good indicator of the local accuracy. 相似文献
11.
Matousek WM Ciani B Fitch CA Garcia-Moreno B Kammerer RA Alexandrescu AT 《Journal of molecular biology》2007,374(1):206-219
Ion pairs are ubiquitous in X-ray structures of coiled coils, and mutagenesis of charged residues can result in large stability losses. By contrast, pKa values determined by NMR in solution often predict only small contributions to stability from charge interactions. To help reconcile these results we used triple-resonance NMR to determine pKa values for all groups that ionize between pH 1 and 13 in the 33 residue leucine zipper fragment, GCN4p. In addition to the native state we also determined comprehensive pKa values for two models of the GCN4p denatured state: the protein in 6 M urea, and unfolded peptide fragments of the protein in water. Only residues that form ion pairs in multiple X-ray structures of GCN4p gave large pKa differences between the native and denatured states. Moreover, electrostatic contributions to stability were not equivalent for oppositely charged partners in ion pairs, suggesting that the interactions between a charge and its environment are as important as those within the ion pair. The pH dependence of protein stability calculated from NMR-derived pKa values agreed with the stability profile measured from equilibrium urea-unfolding experiments as a function of pH. The stability profile was also reproduced with structure-based continuum electrostatic calculations, although contributions to stability were overestimated at the extremes of pH. We consider potential sources of errors in the calculations, and how pKa predictions could be improved. Our results show that although hydrophobic packing and hydrogen bonding have dominant roles, electrostatic interactions also make significant contributions to the stability of the coiled coil. 相似文献
12.
Kwan AH Macindoe I Vukasin PV Morris VK Kass I Gupte R Mark AE Templeton MD Mackay JP Sunde M 《Journal of molecular biology》2008,382(3):708-720
Class I hydrophobins are fungal proteins that self-assemble into robust amphipathic rodlet monolayers on the surface of aerial structures such as spores and fruiting bodies. These layers share many structural characteristics with amyloid fibrils and belong to the growing family of functional amyloid-like materials produced by microorganisms. Although the three-dimensional structure of the soluble monomeric form of a class I hydrophobin has been determined, little is known about the molecular structure of the rodlets or their assembly mechanism. Several models have been proposed, some of which suggest that the Cys3-Cys4 loop has a critical role in the initiation of assembly or in the polymeric structure. In order to provide insight into the relationship between hydrophobin sequence and rodlet assembly, we investigated the role of the Cys3-Cys4 loop in EAS, a class I hydrophobin from Neurospora crassa. Remarkably, deletion of up to 15 residues from this 25-residue loop does not impair rodlet formation or reduce the surface activity of the protein, and the physicochemical properties of rodlets formed by this mutant are indistinguishable from those of its full-length counterpart. In addition, the core structure of the truncation mutant is essentially unchanged. Molecular dynamics simulations carried out on the full-length protein and this truncation mutant binding to an air-water interface show that, although it is hydrophobic, the loop does not play a role in positioning the protein at the surface. These results demonstrate that the Cys3-Cys4 loop does not have an integral role in the formation or structure of the rodlets and that the major determinant of the unique properties of these proteins is the amphipathic core structure, which is likely to be preserved in all hydrophobins despite the high degree of sequence variation across the family. 相似文献
13.
Greenfield NJ Huang YJ Swapna GV Bhattacharya A Rapp B Singh A Montelione GT Hitchcock-DeGregori SE 《Journal of molecular biology》2006,364(1):80-96
Tropomyosin is a coiled-coil protein that binds head-to-tail along the length of actin filaments in eukaryotic cells, stabilizing them and providing protection from severing proteins. Tropomyosin cooperatively regulates actin's interaction with myosin and mediates the Ca2+ -dependent regulation of contraction by troponin in striated muscles. The N-terminal and C-terminal ends are critical functional determinants that form an "overlap complex". Here we report the solution NMR structure of an overlap complex formed of model peptides. In the complex, the chains of the C-terminal coiled coil spread apart to allow insertion of 11 residues of the N-terminal coiled coil into the resulting cleft. The plane of the N-terminal coiled coil is rotated 90 degrees relative to the plane of the C terminus. A consequence of the geometry is that the orientation of postulated periodic actin binding sites on the coiled-coil surface is retained from one molecule to the next along the actin filament when the overlap complex is modeled into the X-ray structure of tropomyosin determined at 7 Angstroms. Nuclear relaxation NMR data reveal flexibility of the junction, which may function to optimize binding along the helical actin filament and to allow mobility of tropomyosin on the filament surface as it switches between regulatory states. 相似文献
14.
Michel E Damberger FF Ishida Y Fiorito F Lee D Leal WS Wüthrich K 《Journal of molecular biology》2011,408(5):922-931
The Bombyx mori pheromone-binding protein (BmorPBP) undergoes a pH-dependent conformational transition from a form at basic pH, which contains an open cavity suitable for ligand binding (BmorPBPB), to a form at pH 4.5, where this cavity is occupied by an additional helix (BmorPBPA). This helix α7 is formed by the C-terminal dodecapeptide 131-142, which is flexibly disordered on the protein surface in BmorPBPB and in its complex with the pheromone bombykol. Previous work showed that the ligand-binding cavity cannot accommodate both bombykol and helix α7. Here we further investigated mechanistic aspects of the physiologically crucial ejection of the ligand at lower pH values by solution NMR studies of the variant protein BmorPBP(1-128), where the C-terminal helix-forming tetradecapeptide is removed. The NMR structure of the truncated protein at pH 6.5 corresponds closely to BmorPBPB. At pH 4.5, BmorPBP(1-128) maintains a B-type structure that is in a slow equilibrium, on the NMR chemical shift timescale, with a low-pH conformation for which a discrete set of 15N-1H correlation peaks is NMR unobservable. The full NMR spectrum was recovered upon readjusting the pH of the protein solution to 6.5. These data reveal dual roles for the C-terminal tetradecapeptide of BmorPBP in the mechanism of reversible pheromone binding and transport, where it governs dynamic equilibria between two locally different protein conformations at acidic pH and competes with the ligand for binding to the interior cavity. 相似文献
15.
A reliable automated approach for assignment of NOESY spectra would allow more rapid determination of protein structures by NMR. In this paper we describe a semi-automated procedure for complete NOESY assignment (SANE, Structure Assisted NOE Evaluation), coupled to an iterative procedure for NMR structure determination where the user is directly involved. Our method is similar to ARIA [Nilges et al. (1997) J. Mol. Biol., 269, 408–422], but is compatible with the molecular dynamics suites AMBER and DYANA. The method is ideal for systems where an initial model or crystal structure is available, but has also been used successfully for ab initio structure determination. Use of this semi-automated iterative approach assists in the identification of errors in the NOE assignments to short-cut the path to an NMR solution structure. 相似文献
16.
The applicability of homonuclear gradient enhanced NMR experiments is demonstrated in the structure determination of steroid derivatives using stigmasterol as a model compound. High resolution 1H NMR spectra of steroids very often display well resolved multiplets usually in the low-field region, and these signals can be used as starting points in several selective NMR experiments to study scalar (J coupling), and dipolar (NOE) interactions. Selective excitation was carried out using a double pulsed-field gradient spin-echo sequence (DPFGSE) in which 180 degrees Gaussian pulses are sandwiched between sine shaped z-gradients. Scalar interactions were studied by homonuclear DPFGSE-COSY, DPFGSE-relay-COSY and DPFGSE-TOCSY experiments, while DPFGSE-NOESY was used to monitor spatial environment of the selectively excited proton. These methods provided unambiguous assignments for signals of the main skeleton and the side-chain of the steroid molecule. In addition, they allowed determination of the conformationally important homonuclear proton-proton coupling constants (J). 相似文献
17.
Dantas G Corrent C Reichow SL Havranek JJ Eletr ZM Isern NG Kuhlman B Varani G Merritt EA Baker D 《Journal of molecular biology》2007,366(4):1209-1221
Recent efforts to design de novo or redesign the sequence and structure of proteins using computational techniques have met with significant success. Most, if not all, of these computational methodologies attempt to model atomic-level interactions, and hence high-resolution structural characterization of the designed proteins is critical for evaluating the atomic-level accuracy of the underlying design force-fields. We previously used our computational protein design protocol RosettaDesign to completely redesign the sequence of the activation domain of human procarboxypeptidase A2. With 68% of the wild-type sequence changed, the designed protein, AYEdesign, is over 10 kcal/mol more stable than the wild-type protein. Here, we describe the high-resolution crystal structure and solution NMR structure of AYEdesign, which show that the experimentally determined backbone and side-chains conformations are effectively superimposable with the computational model at atomic resolution. To isolate the origins of the remarkable stabilization, we have designed and characterized a new series of procarboxypeptidase mutants that gain significant thermodynamic stability with a minimal number of mutations; one mutant gains more than 5 kcal/mol of stability over the wild-type protein with only four amino acid changes. We explore the relationship between force-field smoothing and conformational sampling by comparing the experimentally determined free energies of the overall design and these focused subsets of mutations to those predicted using modified force-fields, and both fixed and flexible backbone sampling protocols. 相似文献
18.
R Kaptein E R Zuiderweg R M Scheek R Boelens W F van Gunsteren 《Journal of molecular biology》1985,182(1):179-182
A procedure is described to determine the three-dimensional structure of biomolecules from nuclear magnetic resonance data. This procedure combines model building with a restrained molecular dynamics algorithm, in which distance information from nuclear Overhauser effects is incorporated in the form of pseudo potentials. The method has been applied to the N-terminal DNA-binding domain or headpiece (amino acid residues 1 to 51) of the lac repressor from Escherichia coli, for which no crystal structure is available. The relative orientation of the three helices of the headpiece is similar to that of the three homologous helices found in the cI repressor of bacteriophage lambda. 相似文献
19.
Comparing Y-chromosomal and mitochondrial haplotype variation is a promising approach to independently investigate paternal and maternal evolutionary histories in wild mammal populations. However, the difficulty of developing male-specific genetic markers, because of its distinctive genetic architecture and the general low level of polymorphisms observed on the Y chromosome, hampers usually an effective application of this approach. Here, we present a further method of the established Y chromosome conserved anchored tagged sequences strategy to develop Y-chromosomal markers by screening introns of male-specific region (MSY) genes for sequence polymorphisms. By applying long-template PCR using target species-specific primers, adequate sequence information of several kb in size can be obtained. We applied this method in the snow vole (Chionomys nivalis) and obtained 12.4 kb of male-specific sequence data for nine males representing four populations in the Swiss Alps. A total of 28 single nucleotide polymorphisms, four indels (> 1 bp) and one polymorphic microsatellite were identified in introns of the SMCY and DBY genes. Based on this information, we developed a Y-chromosomal genotyping assay and identified four different paternal lineages within one local snow vole population. The method we present is straightforward and as such will probably be suitable to detect adequate Y-chromosomal diversity in a wide range of mammalian species. 相似文献
20.
Conditions for separation of enantiomers of a mandelic acid derivative, methyl 2-phenyl-2-(tetrahydropyranyloxy) acetate (the analyte) were studied. Because of the presence of two chiral carbons, the analyte consists of four stereoisomers stable at ambient temperature. Chiral HPLC of the analyte resulted in four peaks, using an (S,S)-Whelk-O1 column with the mobile phase consisting of hexane and the t-butyl methyl ether (TBME). It was found that TBME dramatically changed the retention of the isomers, though it produced the best enantioseparation on (S,S)-Whelk-O1. The amount of TBME in the mobile phase influenced the degree of retention shift; 5% (v/v) TBME gave a bigger shift than 8% (v/v) and 10% (v/v). 2-Propanol did not produce the same results. The chiral separation was also tried on cellulose tris (3, 5-dimethyl phenylcarbamate) (CDMPC), but only three peaks were seen, indicating some but not full enantiomer resolution. 相似文献