首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic AMP formation from ATP was stimulated by unpurified and partially purified soluble hepatic guanylate cyclase in the presence of nitric oxide (NO) or compounds containing a nitroso moiety such as nitroprusside, N-methyl-N-nitro-N-nitrosoguanidine (MNNG), nitrosyl ferroheme, and S-nitrosothiols. Cyclic AMP formation was undetectable in the absence of NO or nitroso compounds and was not stimulated by fluoride or glucagon, indicating the absence of adenylate cyclase activity. The nitroso compounds failed to activate, whereas fluoride or glucagon activated, adenylate cyclase in washed rat liver membrane fractions. Cyclic GMP formation from GTP was markedly stimulated by the soluble hepatic fraction in the presence of NO or nitroso compounds. Cyclic AMP formation by partially purified guanylate cyclase was competitively inhibited by GTP and cyclic GMP formation is well-known to be competitively inhibited by ATP. Therefore, it appears that activated guanylate cyclase, rather than adenylate cyclase, was responsible for the formation of cyclic AMP from ATP. Formation of cyclic AMP of cyclic GMP was enhanced by thiols, inhibited by hemoproteins and oxidants, and required the addition of either Mg2+ or Mn2+. Further, several nitrosyl ferroheme compounds and S-nitrosothiols stimulated the formation of both cyclic AMP and cyclic GMP by the soluble hepatic fraction. These observations support the view that soluble guanylate cyclase is capable, under certain well-defined conditions, of catalyzing the conversion of ATP to cyclic AMP.  相似文献   

2.
The 105 000 X g gupernatant fractions from homogenates of various rat tissues catalyzed the formation of both cyclic GMP and cyclic AMP from GTP and ATP, respectively. Generally cyclic AMP formation with crude or purified preparations of soluble guanylate cyclase was only observed when enzyme activity was increased with sodium azide, sodium nitroprusside, N-methyl-N'-nitro-N-nitrosoguanidine, sodium nitrite, nitric oxide gas, hydroxyl radical and sodium arachidonate. Sodium fluoride did not alter the formation of either cyclic nucleotide. After chromatography of supernatant preparations on Sephadex G-200 columns or polyacrylamide gel electrophoresis, the formation of cyclic AMP and cyclic GMP was catalyzed by similar fractions. These studies indicate that the properties of guanylate cyclase are altered with activation. Since the synthesis of cyclic AMP and cyclic GMP reported in this study appears to be catalyzed by the same protein, one of the properties of activated guanylate cyclase is its ability to catalyze the formation of cyclic AMP from ATP. The properties of this newly described pathway for cyclic AMP formation are quite different from those previously described for adenylate cyclase preparations. The physiological significance of this pathway for cyclic AMP formation is not known. However, these studies suggest that the effects of some agents and processes to increase cyclic AMP accumulation in tissue could result from the activation of either adenylate cyclase or guanylate cyclase.  相似文献   

3.
The 105 000 × g supernatant fractions from homogenates of various rat tissues catalyzed the formation of both cyclic GMP and cyclic AMP from GTP and ATP, respectively. Generally cyclic AMP formation with crude or purified preparations of soluble guanylate cyclase was only observed when enzyme activity was increased with sodium azide, sodium nitroprusside, N-methyl-N′-nitro-N-nitrosoguanidine, sodium nitrite, nitric oxide gas, hydroxyl radical and sodium arachidonate. Sodium fluoride did not alter the formation of either cyclic nucleotide. After chromatography of supernatant preparations on Sephadex G-200 columns or polyacrylamide gel electrophoresis, the formation of cyclic AMP and clycic GMP was catalyzed by similar fractions. These studies indicate that the properties of guanylate cyclase are altered with activation. Since the synthesis of cyclic AMP and cyclic GMP reported in this study appears to be catalyzed by the same protein, one of the properties of activated guanylate cyclase is its ability to catalyze the formation of cyclic AMP from ATP. The properties of this newly described pathway for cyclic AMP formation are quite different from those previously described for adenylate cyclase preparations. The physiological significance of this pathway for cyclic AMP formation is not known. However, these studies suggest that the effects of some agents and processes to increase cyclic AMP accumulation in tissue could result from the activation of either adenylate cyclase or guanylate cyclase.  相似文献   

4.
We investigated the effects of exogenous cyclic GMP and stimulants of endogenous cyclic GMP accumulation on L-form (hepatic) pyruvate kinase (ATP: pyruvate 2-O-phosphotransferase, EC 2.7.1.40) activity in isolated rat hepatocytes. Exogenous cyclic GMP (200 muM) reduced pyruvate kinase activity, but was less potent than exogenous cyclic AMP (50 muM) (Ki congruent to 120 muM vs. 30 muM, respectively), had a slower onset of action (1.0 vs. 0.3 min, respectively) and a less rapid maximal effect (5.0 vs. 1.0 min, respectively). Similar results were noted with dibutyryl cyclic GMP or dibutyryl cyclic AMP. 1.0 muM acetylcholine increased cyclic GMP concentrations in isolated hepatocytes from 233 +/- 16 to 447 +/- 3 pmol/g cell protein (P less than 0.001), but did not alter pyruvate kinase activity. Similar results were noted with carbamylcholine, NaN3 or acetylcholine plus eserine sulfate. The results suggest a differential effect of exogenous vs. endogenous cyclic GMP on L-form pyruvate kinase activity, and question the physiological relevance of observations with exogenous cyclic GMP in this system.  相似文献   

5.
Three agents that activate guanylate cyclase, sodium nitroprusside, nitroglycerin and sodium axide, were examined for their effects on cyclic GMP and cyclic AMP accumulation and muscle motility with several tissues. All of these agents, except nitroglycerin with ventricle preparations, increased cyclic GMP levels and did not alter cyclic AMP in incubations of preparations of bovine tracheal smooth muscle, guinea pig tracheal chains, taenia cecum, atria and ventricle, and rat liver and cerebral cortex. Increases in cyclic GMP with these agents occurred with relaxation of smooth muscle preparations and without alteration in the contractility of atrial preparations. These observations support the hypothesis that cyclic GMP accumulation in smooth muscle may be related to relaxation rather than contraction as proposed previously. Relaxation with these agents is not associated with alterations in cyclic AMP levels. Increases in cyclic GMP levels in atrial preparations can also occur without changes in contractile force or rate of contraction.  相似文献   

6.
Some enteric strains of Escherichia coli release a heat-stable enterotoxin which, in contrast to cholera and heat-labile E. coli enterotoxins, stimulates guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2). We have examined the tissue spcificity of its action and the relation of its action to those of the 8-bromo analogues of cyclic GMP and cyclic AMP. Heat-stable enterotoxin stimulated guanylate cyclase activity and increased cyclic GMP concentration throughout the small and large intestine. It increased transepithelial electric potential difference and short-circuit current in the jejunum, ileum and caecum but not in the duodenum or distal colon. This pattern of electrical responses was mimicked by 8-bromo-cyclic GMP. However, 8-bromo-cyclic AMP produced an electrical response in all intestinal segments. The enterotoxin failed to stimulate guanylate cyclase inliver, lung, pancreas or gastric antral mucosa. In the intestines, it stimulated only the particulate and not the soluble form of the enzyme. Preincubation of the toxin with intestinal membranes did not render it capable of stimulating pancreatic guanylate cyclase. Cytosol factors did not enhance the toxin's stimulation of intestinal guanylate cyclase. This study supports the role of cyclic GMP as intracellular mediator for heat-stable enterotoxin and suggests that the toxin affects a membrane-mediated mechanism for guanylate cyclase activation that is unique to the intestines.  相似文献   

7.
Light activation of cyclic GMP hydrolysis in rod outer segments is mediated by a G-protein which is active in the GTP-bound form. Substitution of GTP with a nonhydrolyzable GTP analogue is thought to leave the G-protein in a persistently activated state, thereby prolonging the hydrolysis of cyclic GMP. Restoration of cyclic GMP concentration in the cell also depends upon GTP since it is the substrate for guanylate cyclase, but little is known about the effects of GTP analogues on this enzyme. We report here the effects of the analogues of GTP and ATP as inhibitors and substrates of rod disk membrane guanylate cyclase. The rate of cyclic GMP synthesis from GTP in rod disk membranes was about 50 pmol min-1 (nmol of rhodopsin)-1. Analogues of GTP and adenine nucleotides competitively inhibited the cyclase activity. The order of inhibition, with magnesium as metal cofactor, was ATP greater than GMP-PNP greater than AMP-PNP approximately GTP-gamma-S; with manganese, AMP-PNP was more inhibitory than GTP-gamma-S. The inhibition constants, with magnesium as cofactor, were 0.65-2.0 mM for GTP-gamma-S, 0.4-0.8 mM for GMP-PNP, 1.5-2.3 mM for AMP-PNP, and 0.07-0.2 mM for ATP. The fraction of cyclase activity inhibited by analogues was similar at 1 and 0.03 microM calcium. Besides inhibition of cyclase, the analogues also served as its substrates. GTP-gamma-S substituted GTP with about 85% efficiency while GMP-PNP and ATP were about 5 and 7% as efficient, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The guanylate cyclase reaction was studied to determine the identity of the product(s) formed other than guanosine-3′,5′-monophosphate (cyclic GMP). Partially purified guanylate cyclase preparations from rat lung catalyzed the formation of nearly equal amounts of PP1 and of cyclic GMP from GTP. Column chromatography of the enzyme preparation on DEAE-Sephadex or Bio-Gel A-5m failed to separate the enzyme(s) involved in formation of cyclic GMP and of PP1. Nucleotide inhibitors of cyclic GMP formation also inhibited PP1 formation, and Ca2+, a stimulant of cyclic GMP formation in the presence of Mn2+, also stimulated PP1 formation. Detectable PP1 formation was not observed when ATP was present instead of GTP.The results show that guanylate cyclase, in vitro, catalyzes the formation of pyrophosphate from GTP concomitant with the synthesis of cyclic GMP.  相似文献   

9.
Some enteric strains of Escherichia coli release a heat-stable enterotoxin which, in contrast to cholera and heat-labile E. coli enterotoxins, stimulates guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2). We have exmined the tissue specificity of its action and the relation of its action to those of the 8-bromo analogues of cyclic GMP and cyclic AMP. Heat-stable enterotoxin stimulated guanylate cyclase activity and increased cyclic GMP oncentration throughout the small and large intestine. It increased transepithelial electric potential difference and short-circuit current in the jejunum, ileum and caecum but not in the duodenum or distal colon. This pattern of electrical responses was mimicked by 8-bromo-cyclic GMP. However, 8-bromo-cyclic AMP produced an electrical response in all intestinal segments. The enterotoxin failed to stimulate guanylate cyclase in liver, lung, pancreas or gastric antral mucosa. In the intestines, it stimulated only the particulate and not the soluble form of the enzyme. Preincubation of the toxin with intestinal membranes did not render it capable of stimulating pancreatic guanylate cyclase. Cytosol factors did not enhance the toxin's stimulation of intestinal guanylate cyclase. This study supports the role of cyclic GMP as intracellular mediator for heat-stable enterotoxin and suggests that the toxin affects a membrane-mediated mechanism for guanylate cyclase activation that is unique to the intestines.  相似文献   

10.
1. The activities of the enzymes involved in the metabolism of cyclic nucleotides were studied in sarcolemma prepared front guinea-pig heart ventricle; the enzyme activities reported here were linear under the assay conditions. 2. Adenylate cyclase was maximally activated by 3mM-NaF; NaF increased the Km for ATP (from 0.042 to 0.19 mM) but decreased the Ka for Mg2+ (from 2.33 to 0.9 mM). In the presence of saturating Mg2+ (15 mM), Mn2+ enhanced adenylate cyclase, whereas Co2+ was inhibitory. beta-Adrenergic amines (10-50 muM) stimulated adenylate cyclase (38+/-2%). When added to the assay mixture, guanyl nucleotides (GTP and its analogue, guanylyl imidophosphate) stimulated basal enzyme activity and enhanced the stimulation by isoproterenol. By contrast, preincubation of sarcolemma with guanylyl imidodiphosphate stimulated the formation of an 'activated' form of the enzyme, which did not reveal increased hormonal sensitivity. 3. The guanylate cyclase present in the membranes as well as in the Triton X-100-solubilized extract of membranes exhibited a Ka for Mn 2+ of 0.3 mM; Mn2+ in excess of GTP was required for maximal activity. Solubilized guanylate cyclase was activated by Mg2+ only in the presence of low Mn2+ concentrations; Ca2+ was inhibitory both in the absence and presence of low Mn2+. Acetylcholine as well as carbamolycholine stimulated membrane-bound guanylate cyclase. 4. Cylic nucleotide phosphodiesterase activities of sarcolemma exhibited both high-and low-Km forms with cyclic AMP and with cyclic GMP as substrate. Ca2+ ions increased the Vmax. of the cyclic GMP-dependent enzyme.  相似文献   

11.
Streptozotocin, 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) and N-methyl nitrosourea, compounds with both oncogenic and cytotoxic properties, increased guanylate cyclase activity in the 100 000 × g soluble fractions of rat renal cortex and liver 35- to 65-fold over basal values. Particulate enzyme activities of these tissues were increased 2- to 4-fold by a maximally effective concentration of the nitrosoureas. In the presence of the cyclic nucleotide phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine, maximally effective concentrations of these nitrosoureas increased cyclic GMP accumulation of hepatic and renal cortical slices to peak levels 7- to 10-fold over control in 30 min. By contrast, with the structurally related carcinogen N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) peak increases occurred in 5–10 min and were 40- to 70-fold over control levels in renal cortex and liver, respectively. Unlike the Ca2+-dependent actions of cholinergic stimuli on cyclic GMP, the nitrosoureas and MNNG increased cyclic GMP in either the presence or absence of extracellular Ca2+. Moreover, while basal soluble guanylate cyclase of renal cortex was highly Mn2+-dependent and decreased 85% when either Mg2+ or Ca2+ was employed as sole divalent cation in reaction mixtures, the actions of nitrosoureas on enzyme activity were well expressed with either Mn2+ or Mg2+, but not with Ca2+, as sole divalent cation. Improved utilization of Mg2+ by guanylate cyclase in the presence of nitrosoureas would favor enhanced enzyme activity under cellular conditions where Mg2+ is abundant. In the presence of maximally stimulatory concentrations of streptozotocin or BCNU, high concentrations of Mg2+ or Mn2+ further increased soluble guanylate cyclase, suggesting important differences in metal and nitrosourea stimulation of enzyme activity.Preincubation of supernatant fractions with nitrosoureas plus dithiothreitol inhibited the action of the N-nitroso compounds to increase renal cortical guanylate cyclase. Glutathione and cysteine were also inhibitory, but less effective than dithiothreitol. Initial incubation of nitrosoureas with dithiothreitol in buffer alone similarly suppressed the subsequent action of the N-nitroso compounds on guanylate cyclase, and implicated direct chemical interactions. Prior incubation of renal cortical supernatant fractions with the SH blockers N-ethylmaleimide or maleimide significantly suppressed guanylate cyclase activation mediated by streptozotocin or BCNU. Direct drug interactions seemed unlikely, since effects of the inhibitors were optimally expressed by initial exposure of the supernatant fraction of tissue to the SH blockers and were not potentiated by a 30 min preincubation of the SH blockers and nitrosoureas in buffer alone.Thus, nitrosoureas activate and alter the metal requirements of soluble guanylate cyclase and increase cellular cyclic GMP in the presence or absence of extracellular Ca2+. Activation of soluble guanylate cyclase by nitrosoureas may involve an interaction of these agents with tissue SH groups, and possibly SH to SS transformation. Stimulation of the guanylate cyclase system by nitrosoureas could be related to the oncogenic actions of these agents.  相似文献   

12.
Cyclic GMP formation and inositol phospholipid hydrolysis were studied in rat brain slices to determine if the two processes have common origins. Muscarinic cholinergic stimulation enhanced [3H]inositol phosphate ([ 3H]IP) accumulation from slices prelabelled with [3H]inositol but did not affect cyclic GMP formation in the cortex, striatum, or cerebellum. An elevated level of extracellular K+ stimulated accumulation of both cyclic GMP and [3H]IP in cortex slices. The former, but not the latter, was reduced by lipoxygenase and phospholipase A2 inhibition. Calcium channel activation enhanced and blockade reduced K+-stimulated [3H]IP formation without affecting the cyclic GMP level, and there were differences in the Ca2+ requirements for the two responses. Thus, there is no support for the concept that guanylate cyclase activation inevitably accompanies inositol phospholipid breakdown, and the evidence presented demonstrates that K+ stimulation promotes cyclic GMP and [3H]IP accumulation by different transducing pathways.  相似文献   

13.
We used cultured rat lung fibroblasts to evaluate the role of particulate and soluble guanylate cyclase in the atrial natriuretic factor (ANF)-induced stimulation of cyclic GMP. ANF receptors were identified by binding of 125I-ANF to confluent cells at 37 degrees C. Specific ANF binding was rapid and saturable with increasing concentrations of ANF. The equilibrium dissociation constant (KD) was 0.66 +/- 0.077 nM and the Bmax. was 216 +/- 33 fmol bound/10(6) cells, which corresponds to 130,000 +/- 20,000 sites/cell. The molecular characteristics of ANF binding sites were examined by affinity cross-linking of 125I-ANF to intact cells with disuccinimidyl suberate. ANF specifically labelled two sites with molecular sizes of 66 and 130 kDa, which we have identified in other cultured cells. ANF and sodium nitroprusside produced a time- and concentration-dependent increase in intracellular cyclic GMP. An increase in cyclic GMP by ANF was detected at 1 nM, and at 100 nM an approx. 100-fold increase in cyclic GMP was observed. Nitroprusside stimulated cyclic GMP at 10 nM and at 1 mM a 500-600-fold increase in cyclic GMP occurred. The simultaneous addition of 100 nM-ANF and 10 microM-nitroprusside to cells resulted in cyclic GMP levels that were additive. ANF increased the activity of particulate guanylate cyclase by about 10-fold, but had no effect on soluble guanylate cyclase. In contrast, nitroprusside did not alter the activity of particulate guanylate cyclase, but increased the activity of soluble guanylate cyclase by 17-fold. These results demonstrate that rat lung fibroblasts contain ANF receptors and suggest that the ANF-induced stimulation of cyclic GMP is mediated entirely by particulate guanylate cyclase.  相似文献   

14.
Isolated fasciculata cells of rat adrenal cortex, when incubated with atrial natriuretic factor (ANF), stimulated the levels of cyclic GMP and corticosterone production in a concentration-dependent manner without a rise in the levels of cyclic AMP. The ANF-dependent elevation of cyclic GMP was rapid, with a detectable increment in 30 s. ANF also stimulated the particulate guanylate cyclase. These results not only indicate the coupling of cyclic GMP and corticosterone production with ANF signal, but also demonstrate that, like the ACTH signal, cyclic AMP is not the mediator of ANF-induced adrenocortical steroidogenesis.  相似文献   

15.
Adenylate, guanylate cyclase and protein kinases in a fibrous sarcoma originating from rat prostate have been studied. A decrease in levels of adenosine 3', 5'-monophosphate (cyclic AMP) and adenylate cyclase activities and an increase in levels of guanosine 3',5'-monophosphate (cyclic GMP) and guanylate cyclase activities were observed in the tumor tissue when compared with the normal prostatic tissue of rats. Protein kinases from the tumor and the prostate were both responsive to exogenous cyclic AMP, with an apparent Ka of 0.08 muM in the tumor and of 0.11 muM in the prostate. It is of interest that the protein kinases from the tumor responded to cyclic AMP to the same extent as was observed in the enzyme preparation from the prostate. The protein kinase from the tumor was more sensitive to cyclic GMP than that from the prostate, showing an apparent Ka of 0.88 muM in the tumor and of 4.85 muM in the prostate. This tumor has been characterized with an increase in guanylate cyclase activities with a subsequent rise in cellular cyclic GMP and an increased sensitivity of the protein kinase to cyclic GMP.  相似文献   

16.
1. The localisation and some of the properties of rabbit kidney cortex guanylate cyclase (GTP pyrophosphatase lyase (cyclizing) EC 4.6.1.2) have been studied. Upon fractionation of dissociated renal cortex, guanylate cyclase activity was preferentially enriched in fractions of pure glomeruli, where its specific activity was 44.5 times that measured in tubular fragments. Most, if not all, of the glomerular activity was found to be firmly membrane-bound, whereas the guanylate cyclase activity of the tubules was mainly soluble. Therefore, particulate guanylate cyclase activity could serve as marker enzyme for kidney glomeruli. 2. All hormones or hormone-like agents tested were without effect on kidney guanylate cyclase activity. Triton X-100 stimulated both glomerular and tubular activity. 3. Considering the high cyclic GMP forming capacity of kidney glomeruli, part of the cyclic GMP found in urine might be synthetized locally in these structures.  相似文献   

17.
The effects of sodium azide on guanylate cyclase activity of homogenates of rat renal cortex and on the guanosine 3':5'-monophosphate (cGMP) content of cortical slices were examined and compared to those of carbamylcholine and NaF. In complete Krebs-Ringer bicarbonate buffer containing 10 mM theophylline, tissue cGMP content was increased 5- to 6-fold by 0.05 mM carbamylcholine or 10 mM NaN3, and 3-fold by 10 mM NaF. Increases in cGMP were maximal in response to these concentrations of the agonists and occurred within 2 min. Exclusion of Ca2+ from the incubation media reduced basal cGMP by 50% in 20 min and abolished responses to carbamylcholine and NaF, while exclusion of Mg2+ was without effect. Analogous reductions in cGMP were observed in complete buffer containing 1 mM tetracaine, an agent which blocks movement of Ca2+ across and binding to biologic membranes. By contrast, exclusion of Ca2+ or addition of tetracaine did not alter relative cGMP responses to NaN3 (6-fold increase over basal), although levels were reduced in slices exposed to these buffers for 20 min. When slices were incubated without Ca2+ or with tetracaine for only 2 min prior to addition of agonists, basal cGMP did not decline. Under these conditions, both absolute and relative increases in cGMP in response to NaN3 were comparable to those of slices incubated throughout in complete buffer, while carbamylcholine and NaF effects on cGMP were abolished. NaN3 increased guanylate cyclase activity of whole homogenates (10- to 20-fold), and of the 100,000 X g soluble (20-fold) and particulate (4-fold) fractions of cortex. Prior incubation of slices with NaN3 in the presence or absence of Ca2+ or with Ca2+ plus tetracaine also markedly enhanced enzyme activity in homogenates and subcellular fractions subsequently prepared from these slices. In the presence of 3 mM excess MnCl2, NaN3 raised the apparent Km for MnGTP of soluble guanylate cyclase from 0.11 mM to 0.20 mM, and reduced enzyme dependence on Mn2+. Thus, when Mg2+ was employed as the sole divalent cation in the enzyme reaction mixture basal and NaN3-responsive activities were 7% and 30% of those seen with optimal concentrations of Mn2+, respectively. Under a variety of assay conditions where responses to NaN3 were readily detectable, alterations in guanylate cyclase activities could not be demonstrated in response to carbamylcholine or NaF. By contrast Ca2+ increased the guanylate cyclase activity 6- to 7-fold over basal under conditions of reduced Mn2+ (0.75 mM Mn2+/1 mM GTP). This latter effect of Ca2+ was shared by Mg2+ and not blocked by tetracaine. Carbamylcholine, NaF, Ca2+, and NaN3 all failed to alter cGMP phosphodiesterase activity in cortex. Thus, while carbamylcholine and NaF enhance renal cortical cGMP accumulation through actions which are dependent upon the presence of extracellular Ca2+, NaN3 stimulates cGMP generation in this tissue through an apparently distinct Ca2+-independent mechanism.  相似文献   

18.
We have recently found the calcium dependent glycogenolytic effect of pancreastatin on rat hepatocytes and the mobilization of intracellular calcium. To further investigate the mechanism of action of pancreastatin on liver we have studied its effect on guanylate cyclase, adenylate cyclase, and phospholipase C, and we have explored the possible involvement of GTP binding proteins by measuring GTPase activity as well as the effect of pertussis toxin treatment of plasma liver membranes on the pancreastatin stimulated GTPase activity and the production of cyclic GMP and myo-inositol 1,4,5-triphosphate. Pancreastatin stimulated GTPase activity of rat liver membranes about 25% over basal. The concentration dependency curve showed that maximal stimulation was achieved at 10?7 M pancreastatin (EC50 = 3 nM). This stimulation was partially inhibited by treatment of the membranes with pertussis toxin. The effect of pancreastatin on guanylate cyclase and phospholipase C were examined by measuring the production of cyclic GMP and myo-inositol 1,4,5-triphosphate respectively. Pancreastatin increased the basal activity of guanylate cyclase to a maximum of 2.5-fold the unstimulated activity at 30°C, in a time- and dose-dependent manner, reaching the maximal stimulation above control with 10?7 M pancreastatin at 10 min (EC50 = 0.6 nM). This effect was completely abolished when rat liver membranes had been ADP-ribosylated with pertussis toxin. On the other hand, adenylate cyclase activity was not affected by pancreastatin. Phospholipase C activity of rat liver membranes was rapidly stimulated (within 2–5 min) at 30°C by 10?7 M pancreastatin, reaching a maximum at 15 min. The dose response curve showed that with 10?7 M pancreastatin, maximal stimulation was obtained (EC50 = 3 nM). GTP (10?5 M) stimulated the membrane-bound phospholipase C as expected. However, the incubation of rat liver membranes with GTP partially inhibited the stimulation of phospholipase C activity produced by pancreastatin, whereas GTP enhanced the activation of phospholipase C by vasopressin. This inhibition by GTP was dose dependent and 10?5 M GTP obtained the maximal inhibition (about 40%). the inhibitory effect of GTP on the stimulatory effect of pancreastatin on phospholipase C activity was completely abolished when rat liver membranes had previously been ADP-ribosylated with pertussis toxin. The presence of 8-Br-cGMP mimics the effect of GTP, whereas GMP-PNP increased both basal and pancreastatin-stimulated phospholipase C, suggesting a role of the cyclic GMP as a feed-back regulator of the synthesis of myo-inositol 1,4,5-triphosphate. However, the pretreatment of membranes with pertussis toxin did not modify the production of myo-Inositol 1,4,5-triphosphate stimulated by pancreastatin. In conclusion, pancreastatin activates guanylate cyclase activity and phospholipase C involving different pathways, pertussis toxin-sensitive, and -insensitive, respectively. © 1994 Wiley-Liss, Inc.  相似文献   

19.
Effects of atriopeptin on particulate guanylate cyclase from rat adrenal   总被引:3,自引:0,他引:3  
Atriopeptin II activated particulate guanylate cyclase 5-10-fold in a concentration- and time-dependent fashion in crude membranes obtained from homogenates of rat adrenal cortex or medulla. Similar effects were observed with other atriopeptin analogs. Soluble guanylate cyclase and adenylate cyclase in these preparations were not activated. Accumulation of cyclic GMP in minces of adrenal cortex or medulla was increased 6-8-fold due to atriopeptin II activation of particulate guanylate cyclase. Several thiol-reactive agents blocked the activation of particulate guanylate cyclase, suggesting that free thiol groups on membrane proteins may be important in atriopeptin receptor-guanylate cyclase coupling.  相似文献   

20.
Guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2) was purified 2250-fold from the synaptosomal soluble fraction of rat brain. The specific activity of the purified enzyme reached 41 nmol cyclic GMP formed per min per mg protein at 37 degrees C. In the purified preparation, GTPase activity was not detected and cyclic GMP phosphodiesterase activity was less than 4% of guanylate cyclase activity. The molecular weight was approx. 480 000. Lubrol PX, hydroxylamine, or NaN3 activated the guanylate cyclase in crude preparations, but had no effect on the purified enzyme. In contrast, NaN3 plus catalase, N-methyl-N'-nitro-N-nitrosoguanidine or sodium nitroprusside activated the purified enzyme. The purified enzyme required Mn2+ for its activity; the maximum activity was observed at 3-5 mM. Cyclic GMP activated guanylate cyclase activity 1.4-fold at 2 mM, whereas inorganic pyrophosphate inhibited it by about 50% at 0.2 mM. Guanylyl-(beta,gamma-methylene)-diphosphonate and guanylyl-imidodiphosphate, analogues of GTP, served as substrates of guanylate cyclase in the purified enzyme preparation. NaN3 plus catalase or N-methyl-N'-nitro-N-nitrosoguanidine also remarkably activated guanylate cyclase activity when the analogues of GTP were used as substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号