首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MD-2, a eukaryotic accessory protein, is an essential component for the molecular pattern recognition of bacterial endotoxins. MD-2 interacts with lipid A of endotoxins [lipopolysaccharide (LPS) or lipooligosaccharide (LOS)] to activate human toll-like receptor (TLR) 4. The structure of lipid A influences the subsequent activation of human TLR4 and the immune response, but the basis for the discrimination of lipid A structures is unclear. A recombinant human MD-2 (rMD-2) protein was produced in the Pichia pastoris yeast expression system. Human embryonic kidney (HEK293) cells were transfected with human TLR4 and were stimulated with highly purified LOS (0.56 pmol) from Neisseria meningitidis or LPS from other structurally defined bacterial endotoxins in the presence or absence of human rMD-2. Human rMD-2 restored, in a dose-dependent manner, interleukin (IL-8) responsiveness to LOS or LPS in TLR4-transfected HEK293 cells. The interaction of endotoxin with human rMD-2 was then assessed by enzyme-linked immunosorbent assays. Wild-type meningococcal LOS (Wt m LOS) bound human rMD-2, and binding was inhibited by an anti-MD-2 antibody to MD-2 dose-dependently (P < 0.005). Wt m LOS or meningococcal KDO(2)-lipid A had the highest binding affinity for human rMD-2; unglycosylated meningococcal lipid A produced by meningococci with defects in the 3-deoxy-d-manno-2-octulosonic acid (KDO) biosynthesis pathway did not appear to bind human rMD-2 (P < 0.005). The affinity of meningococcal LOS with a penta-acylated lipid A for human rMD-2 was significantly less than that for hexa-acylated LOS (P < 0.05). The hierarchy in the binding affinity of different lipid A structures for human rMD-2 was directly correlated with differences in TLR4 pathway activation and cytokine production by human macrophages.  相似文献   

2.
The lipid A of Gram-negative bacteria plays a major role in the pathogenesis of bacterial infections. Lipid A diversity is observed both in the number and length of fatty-acid side chains and in the presence of terminal phosphate residues and associated modifications. In this report, we describe a new sample preparation method based on microwave-assisted enzymatic digestion and detergent-free mild hydrolysis, in conjunction with a MALDI-time-of-flight (TOF)/TOF analysis, to determine the structures of lipid A from Helicobacter pylori. The total time for sample preparation and mass spectrometric analysis is within 2 h and applicable to profiling the lipid A structures from dried bacterial cells on as little as 1 μg. The reliability of the technique was further demonstrated through the analysis of the lipid A from bacterial cells of different H. pylori strains. The phosphorylation and acylation patterns of lipid A could be elucidated using material from a single colony. Furthermore, we found unusual heptaacyl lipid A species present in H. pylori mutant that have not been previously reported, although the abundance was relatively low. The present study provides the first characterization of the lipid A component from a single bacterial colony sample by mass spectrometry.  相似文献   

3.
Cardiolipin (CL) is an anionic tetraacylphospholipid found in mammalian tissues, inner membrane of mitochondria and in the cytoplasmic membrane of Gram-positive and -negative bacteria. Lipid A is the principal structural component responsible for the range of biological activities of lipopolysaccharides. Here we report a MALDI-MS-based method for the sensitive simultaneous analysis of CL and lipid A from Helicobacter pylori cells. The sensitivity was demonstrated by the analysis of CL and lipid A from a single bacterial colony of in vitro grown H. pylori strain NCTC 11637 (ATCC 43504). We then characterized the CL and lipid A structures in H. pylori cells grown under three different conditions, on agar-horse blood plates, in liquid culture and ex vivo. The results revealed the presence of high amounts of myristic (C14:0) and 19-carbon cyclopropane (C19:0cyc) fatty acids. Alterations in CL structure were observed in H. pylori cells cultivated on plates as compared with the bacteria grown in broth culture. Furthermore, significant changes in lipid A acylation pattern were detected in H. pylori cells during formation of coccoids. In contrast, structural analysis of CL from ex vivo H. pylori cells recovered from the stomachs of infected Mongolian gerbils demonstrated only minor changes in acyl chain combination. This is the first report of simultaneous analysis of CL and lipid A from ex vivo cells of H. pylori.  相似文献   

4.
Free flow electrophoresis was shown to be a useful tool to enrich for mutants conditionally defective in lipid A synthesis. The method was based on the observation that electrophoretic mobility of bacterial cells is dependent on the structure of lipopolysaccharides and is influenced by lesions in the synthesis of the O-specific chains as well as by lesion in the synthesis of the complete 3-deoxy-D-manno-octulosonic acid (dOclA) lipid A region. Using this procedure a new mutant conditionally defective in dOclA-8-P synthesis was isolated (mutant Ts5). Following a shift to nonpermissive conditions it accumulates a mixture of at least two equally represented lipid A precursor structures. One is made up of glucosamine, phosphate and 3-hydroxymyristic acid in a molar ratio 1.0:1.0:2.0 and lacks dOclA and the nonhydroxylated fatty acids lauric, myristic and palmitic acid. The precursor preparation derived from mutant Ts5 thus differs from previously described lipid A intermediates by the relatively high substitution by palmitic acid. The implications of the above findings to the biosynthesis of lipid A are discussed.  相似文献   

5.
Glycomics, the study of microbial polysaccharides and genes responsible for their formation, requires the continuous development of rapid and sensitive methods for the identification of glycan structures. In this study, methods for the direct analysis of sugars from 108 to 1010 cells are outlined using the human gastrointestinal pathogen, Campylobacter jejuni. Using capillary-electrophoresis coupled with sensitive electrospray mass spectrometry, we demonstrate variability in the lipid A component of C. jejuni lipooligosaccharides (LOSs). In addition, these sensitive methods have permitted the detection of phase-variable LOS core structures that were not observed previously. High resolution magic angle spinning (HR-MAS) NMR was used to examine capsular polysaccharides directly from campylobacter cells and showed profiles similar to those observed for purified polysaccharides analyzed by solution NMR. This method also exhibited the feasibility of campylobacter serotyping, mutant verification, and preliminary sugar analysis. HR-MAS NMR examination of growth from individual colonies of C. jejuni NCTC11168 indicated that the capsular glycan modifications are also phase-variable. These variants show different staining patterns on deoxycholate-PAGE and reactivity with immune sera. One of the identified modifications was a novel -OP=O(NH2)OMe phosphoramide, not observed previously in nature. In addition, HR-MAS NMR detected the N-linked glycan, GalNAc-alpha1,4-GalNAc-alpha1,4-[Glc-beta1,3-]GalNAc-alpha1,4-GalNAc-alpha1,4-GalNAc-alpha1,3-Bac, where Bac is 2,4-diacetamido-2,4,6-trideoxy-d-glucopyranose, in C. jejuni and Campylobacter coli. The presence of this common heptasaccharide in multiple campylobacter isolates demonstrates the conservation of the N-linked protein glycosylation pathway in this organism and describes the first report of HR-MAS NMR detection of N-linked glycans on glycoproteins from intact bacterial cells.  相似文献   

6.
Endotoxins [lipopolysaccharides (LPSs)] are part of the outer cell membrane of Gram-negative bacteria. Their biological activities are associated mainly with the lipid component (lipid A) and even more specifically with discrete aspects of their fine structure. The need for a rapid and small-scale analysis of lipid A motivated us to develop a procedure that combines direct isolation of lipids A from bacterial cells with sequential release of their ester-linked fatty acids by a mild alkali treatment followed by MALDI-MS analysis. This method avoids the multiple-step LPS extraction procedure and lipid A isolation. The whole process can be performed in a working day and applied to lyophilized bacterial samples as small as 1 mg. We illustrate the method by applying it to the analysis of lipids A of three species of Citrobacter that were found to be identical. On the other hand, when applied to two batches of Bordetella bronchiseptica strain 4650, it highlighted the presence, in one of them, of hitherto unreported hexosamine residues substituting the lipid A phosphate groups, possibly a new camouflage opportunity to escape a host defense system.  相似文献   

7.
The organization of lipids within biological membranes is poorly understood. Some studies have suggested lipids group into microdomains within cells, but the evidence remains controversial due to non-native imaging techniques. A recently developed NanoSIMS technique indicated that sphingolipids group into microdomains within membranes of human fibroblast cells. We extended this NanoSIMS approach to study the localization of hopanoid lipids in bacterial cells by developing a stable isotope labeling method to directly detect subcellular localization of specific lipids in bacteria with ca. 60 nm resolution. Because of the relatively small size of bacterial cells and the relative abundance of hopanoid lipids in membranes, we employed a primary 2H-label to maximize our limit of detection. This approach permitted the analysis of multiple stable isotope labels within the same sample, enabling visualization of subcellular lipid microdomains within different cell types using a secondary label to mark the growing end of the cell. Using this technique, we demonstrate subcellular localization of hopanoid lipids within alpha-proteobacterial and cyanobacterial cells. Further, we provide evidence of hopanoid lipid domains in between cells of the filamentous cyanobacterium Nostoc punctiforme. More broadly, our method provides a means to image lipid microdomains in a wide range of cell types and test hypotheses for their functions in membranes.  相似文献   

8.
Lipopolysaccharide (LPS) is the major cell surface molecule of gram-negative bacteria, deposited on the outer leaflet of the outer membrane bilayer. LPS can be subdivided into three domains: the distal O-polysaccharide, a core oligosaccharide, and the lipid A domain consisting of a lipid A molecular species and 3-deoxy-D-manno-oct-2-ulosonic acid residues (Kdo). The lipid A domain is the only component essential for bacterial cell survival. Following its synthesis, lipid A is chemically modified in response to environmental stresses such as pH or temperature, to promote resistance to antibiotic compounds, and to evade recognition by mediators of the host innate immune response. The following protocol details the small- and large-scale isolation of lipid A from gram-negative bacteria. Isolated material is then chemically characterized by thin layer chromatography (TLC) or mass-spectrometry (MS). In addition to matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS, we also describe tandem MS protocols for analyzing lipid A molecular species using electrospray ionization (ESI) coupled to collision induced dissociation (CID) and newly employed ultraviolet photodissociation (UVPD) methods. Our MS protocols allow for unequivocal determination of chemical structure, paramount to characterization of lipid A molecules that contain unique or novel chemical modifications. We also describe the radioisotopic labeling, and subsequent isolation, of lipid A from bacterial cells for analysis by TLC. Relative to MS-based protocols, TLC provides a more economical and rapid characterization method, but cannot be used to unambiguously assign lipid A chemical structures without the use of standards of known chemical structure. Over the last two decades isolation and characterization of lipid A has led to numerous exciting discoveries that have improved our understanding of the physiology of gram-negative bacteria, mechanisms of antibiotic resistance, the human innate immune response, and have provided many new targets in the development of antibacterial compounds.  相似文献   

9.
The physicochemical characteristics and in vitro biological activity of various synthetic hexaacyl phospholipid dimers were compared with the respective behavior of bacterial endotoxins (lipopolysaccharide, LPS). The structural variations of the synthetic amphiphiles include different stereochemical (R,S) configurations about their ester- and amide-linkages for the acyl chains and differences in the length of the serine backbone spacer. The temperature of the gel to liquid crystalline phase transition of the acyl chains (T(c)) lies between 10 and 15 degrees C for the compounds with the shortest backbone and decreases rapidly for the compounds with longer backbones. The phase transition enthalpies (8-16 kJ x mol(-1)) are considerably lower than those of lipid A from hexaacyl endotoxins (28-35 kJ x mol(-1)). In contrast, the dependence of T(c) on Mg(2+) and water content shows a behavior typical for endotoxins: a significant increase with increasing Mg(2+) and decreasing water concentrations. The aggregate structure is sensitively dependent not only on the length of the backbone spacer but also on the different stereochemical variations. It can be directly correlated with the biological activity of the compounds. Thus, as with natural lipid A, the capacity to induce cytokine production in mononuclear cells is directly related to the affinity to form nonlamellar cubic or inverted hexagonal H(II) aggregate structures. Together with the data on the transport and intercalation of the dimers into phospholipid liposomes mediated by the lipopolysaccharide-binding protein (LBP), our conformational concept of endotoxicity and cell activation can be applied to these non-LPS structures: endotoxically active compounds incorporate into membranes of immune cells and cause conformational changes at the site of signaling proteins such as Toll-like receptors or K(+)-channels due to their conical molecular shape.  相似文献   

10.
A new method was established for fine visualization of bacterial subcelluar filamentous structures by freezing the bacterial cells to displace cytoplasmic matrix granules to the periphery. This method was successfully applied in immunoelectron microscopy and electron microscopic tomography, and should be applicable for further studies of bacterial architecture and nanotransportation.  相似文献   

11.
A novel method, laser interference microscopy, has been developed for studying the morphofunctional state of bacterial cells and the structure of bacterial communities. The following potentialities of the method are shown: rapid determination of the cell structure and subcellular structures (nucleus zone, vacuoles, lamellar structures) and the physiological state of the cell, as well as the study of the structure of bacterial communities (biofilm). The method does not require any additional preparation of cells before the investigation (fixation, staining, treatment with contrasting substances), which reduces the possible appearance of artifacts to a minimum and enables one to use laser interference microscopy for in vivo investigations.  相似文献   

12.
IL-1 induction-capacity of defined lipopolysaccharide partial structures   总被引:23,自引:0,他引:23  
Natural and synthetic lipid A as well as natural and synthetic oligosaccharide partial structures of LPS were examined in dose-response experiments to define the minimal structure necessary for IL-1 induction and release in cultures of human mononuclear cells. Wild type LPS (S. abortus equi) and rough mutant LPS was active in minimal-doses of 1 to 100 pg/ml, whereas synthetic heptaacyl and hexaacyl lipid A (Salmonella minnesota and Escherichia coli lipid A, respectively) induced IL-1 in minimal-doses of 100 to 1,000 pg/ml and 10 to 1,000 pg/ml, respectively. Nanogram amounts (0.1 to 10 ng/ml) of synthetic monodephospho partial structures of E. coli lipid A were necessary for IL-1 induction. Synthetic pentaacyl partial structures induced IL-1 very weakly. Synthetic tetraacyl and bisacyl partial structures lacking non-hydroxylated fatty acids were not active. Compared to LPS million-fold higher doses of natural and synthetic 3-deoxy-D-manno-octulosonic acid containing core oligosaccharides were necessary for IL-1 induction. Dose-response investigations with LPS and natural or synthetic partial structures established the following hierarchy in IL-1 induction-capacity: LPS greater than lipid A much greater than lipid A partial structures greater than core oligosaccharides greater than oligoacyl lipid A. Lipid A was shown here to be the portion of LPS mainly responsible for induction of IL-1 activity. The high potency of lipid A in inducing IL-1 release and the failure of the precursor Ia of lipid A to induce IL-1 production and release was also observed measuring intracellular IL-1 activity after freeze-thawing the cells. Levels of IL-1 beta mRNA in extracts of mononuclear cells correlated with biologic activity. In co-incubation experiments, precursor Ia of lipid A produced dose-dependent inhibition of production and release of IL-1 activity induced by lipid A or LPS, but not by Staphylococcus epidermidis or PHA. Incubation of cells with precursor Ia for 1h, followed by a medium change and further incubation of stimulus without precursor Ia of lipid A also resulted in inhibition. We conclude that lipid A is the main portion of LPS responsible for induction of IL-1, and that specific activation- and/or binding-mechanisms are involved in stimulation of cells with LPS and/or lipid A.  相似文献   

13.
The ability to translocate virulence proteins into host cells through a type III secretion apparatus (TTSS) is a hallmark of several Gram-negative pathogens including Shigella, Salmonella, Yersinia, Pseudomonas, and enteropathogenic Escherichia coli. In common with other types of bacterial secretion apparatus, the assembly of the TTSS complex requires the preceding formation of its integral outer membrane secretin ring component. We have determined at 1.5 A the structure of MxiM28-142, the Shigella pilot protein that is essential for the assembly and membrane association of the Shigella secretin, MxiD. This represents the first atomic structure of a secretin pilot protein from the several bacterial secretion systems containing an orthologous secretin component. A deep hydrophobic cavity is observed in the novel 'cracked barrel' structure of MxiM, providing a specific binding domain for the acyl chains of bacterial lipids, a proposal that is supported by our various lipid/MxiM complex structures. Isothermal titration analysis shows that the C-terminal domain of the secretin, MxiD525-570, hinders lipid binding to MxiM.  相似文献   

14.
Magainins are natural peptides that selectively kill bacteria at concentrations that are harmless to animal cells. Due to a positive charge and distinct hydrophobic moment, magainins in the alpha-helical conformation interact favorably with bacterial membrane lipids. These interactions lead to the formation of large openings in the membrane and to the cell's death. The openings (toroidal pores) are supramolecular structures consisting of lipid and peptide molecules. A computer model of the pore in a bacterial membrane was constructed (see Figure) for the study of the molecular basis for magainin selectivity and specificity. Details of the construction and the preliminary equilibration of the pore model are given in this paper.  相似文献   

15.
Buchaklian AH  Klug CS 《Biochemistry》2005,44(14):5503-5509
MsbA is an ABC transporter that transports lipid A across the inner membrane of Gram-negative bacteria such as Escherichia coli. Without functional MsbA present, bacterial cells accumulate a toxic amount of lipid A within their inner membranes. A crystal structure of MsbA was recently obtained that provides an excellent starting point for functional dynamics studies in membranes [Chang and Roth (2001) Science 293, 1793-1800]. Although a structure of MsbA is now available, several functionally important motifs common to ABC transporters are unresolved in the crystal structure. The Walker A domain, one of the ABC transporter consensus motifs that is directly involved in ATP binding, is located within a large unresolved region of the MsbA ATPase domain. Site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy is a powerful technique for characterizing local areas within a large protein structure in addition to detecting and following changes in local structure due to dynamic interactions. MsbA reconstituted into lipid membranes has been evaluated by EPR spectroscopy, and it has been determined that the Walker A domain forms an alpha-helical structure, which is consistent with the structure of this motif observed in other crystallized ABC transporters. In addition, the interaction of the Walker A residues with ATP before, during, and after hydrolysis was followed using SDSL EPR spectroscopy in order to identify the residues directly involved in substrate binding and hydrolysis.  相似文献   

16.
A two-step screening method is described to identify regularly arranged surface layers (S layers) on Gram-positive bacterial strains. A non-destructive release of S-layer sheets is achieved by enzymatic hydrolysis of the underlying peptidoglycan using lysozyme. The existence of regular S layers is then directly confirmed by scanning force microscopy or transmission electron microscopy. This method requires a minimal amount of bacterial cells and may be used as a `quick test' for demonstrating the presence of S layers.  相似文献   

17.
A rapid method for reconstitution of bacterial membrane proteins   总被引:2,自引:0,他引:2  
We have devised a simple method for the reconstitution of bacterial membrane proteins directly from small (1-20 ml) volumes of cell culture, thus eliminating the preparation of membrane vesicles. Cells are subjected to simultaneous lysozyme digestion and osmotic lysis, and after brief centrifugation ghosts are solubilized in 1.2% octyl-beta-D-glucopyranoside (octylglucoside) in the presence of added carrier lipid and an osmolyte. Aliquots of the clarified supernatant are suitable for reconstitution, as documented by using extracts from three different Gram-negative cells to recover both inorganic phosphate (Pi)-linked antiport and oxalate:formate exchange activities in proteoliposomes. These proteoliposomes are physically stable, non-leaky and can sustain a membrane potential and, because functional porins do not reconstitute, the artificial system has transport characteristics similar to those found when proteoliposomes are obtained using standard methods. This method should become an important tool for the screening and characterization of large numbers of strains, both wild-type and mutant.  相似文献   

18.
Lipids are hydrophobic molecules which play critical functions in cells, in particular, they are essential constituents of membranes, whereas bacterial toxins are mainly hydrophilic proteins. All bacterial toxins interact first with their target cells by recognizing a surface receptor, which is either a lipid or a lipid derivative, or another compound but in a lipid environment. Most bacterial toxins are PFTs (pore-forming toxins) which oligomerize and insert into the lipid bilayer. A common mechanism of action involves the formation of a beta-barrel structure, resulting from the assembly of individual beta-hairpin(s) from individual monomers. An essential step for intracellular active toxins is to translocate their enzymatic part into the cytosol. Some toxins use a translocation mechanism based on pore formation similar to that of PFTs, others undergo a yet unclear 'chaperone' process.  相似文献   

19.
The fluid mosaic model of membrane structure has been revised in recent years as it has become evident that domains of different lipid composition are present in eukaryotic and prokaryotic cells. Using membrane binding fluorescent dyes, we demonstrate the presence of lipid spirals extending along the long axis of cells of the rod-shaped bacterium Bacillus subtilis. These spiral structures are absent from cells in which the synthesis of phosphatidylglycerol is disrupted, suggesting an enrichment in anionic phospholipids. Green fluorescent protein fusions of the cell division protein MinD also form spiral structures and these were shown by fluorescence resonance energy transfer to be coincident with the lipid spirals. These data indicate a higher level of membrane lipid organization than previously observed and a primary role for lipid spirals in determining the site of cell division in bacterial cells.  相似文献   

20.
Sphingobacterium spiritivorum has five unusual sphingophospholipids (SPLs). Our previous study determined the complete chemical structures of these SPLs. The compositions of the long-chain bases/fatty acids in the ceramide portion, isoheptadecasphingosine/isopentadecanoate or isoheptadecasphingosine/2-hydroxy isopentadecanoate, are characteristic. The immune response against bacterial lipid components is considered to play important roles in microbial infections. It is reported that several bacterial sphingolipids composed of ceramide are recognized by CD1-restricted T and NKT cells and that a non-peptide antigen is recognized by γδ T cells. In this study, we demonstrated that these bacterial SPLs activated murine bone marrow macrophages (BMMs) via Toll-like receptor (TLR) 4 but not TLR2, although they slightly activated CD1d-restricted NKT and γδT cells. Interestingly, this TLR 4-recognition pathway of bacterial SPLs involves the fatty acid composition of ceramide in addition to the sugar moiety. A non-hydroxy fatty acid composed of ceramide was necessary to activate murine BMMs. The bacterial survival was significantly higher in TLR4-KO mice than in TLR2-KO and wild-type mice. The results indicate that activation of the TLR4-dependent pathway of BMMs by SPLs induced an innate immune response and contributed to bacterial clearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号