首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two tetrameric secondary alcohol dehydrogenases (ADHs), one from the mesophile Clostridium beijerinckii (CBADH) and the other from the extreme thermophile Thermoanaerobacter brockii (TBADH), share 75% sequence identity but differ by 26 °C in thermal stability. To explore the role of linear segments of these similar enzymes in maintaining the thermal stability of the thermostable TBADH, a series of 12 CBadh and TBadh chimeric genes and the two parental wild-type genes were expressed in Escherichia coli, and the enzymes were isolated, purified and characterized. The thermal stability of each chimeric enzyme was approximately exponentially proportional to the content of the amino acid sequence of the thermophilic enzyme, indicating that the amino acid residues contributing to the thermal stability of TBADH are distributed along the whole protein molecule. It is suggested that major structural elements of thermal stability may reside among the nine discrepant amino acid residues between the N-terminal 50-amino acid residues of TBADH and CBADH.  相似文献   

2.
Summary Two tetrameric secondary alcohol dehydrogenases (ADHs), one from the mesophileClostridium beijerinckii (CBADH) and the other from the extreme thermophileThermoanaerobacter brockii (TBADH), share 75% sequence identity but differ by 26°C in thermal stability. To explore the role of linear segments of these similar enzymes in maintaining the thermal stability of the thermostable TBADH, a series of 12 CBadh and TBadh chimeric genes and the two parental wild-type genes were expressed inEscherichia coli, and the enzymes were isolated, purified and characterized. The thermal stability of each chimeric enzyme was approximately exponentially proportional to the content of the amino acid sequence of the thermophilic enzyme, indicating that the amino acid residues contributing to the thermal stability of TBADH are distributed along the whole protein molecule. It is suggested that major structural elements of thermal stability may reside among the nine discrepant amino acid residues between the N-terminal 50-amino acid residues of TBADH and CBADH.  相似文献   

3.
A comparison of the three-dimensional structures of the closely related mesophilic Clostridium beijerinckii alcohol dehydrogenase (CBADH) and the hyperthermophilic Thermoanaerobacter brockii alcohol dehydrogenase (TBADH) suggested that extra proline residues in TBADH located in strategically important positions might contribute to the extreme thermal stability of TBADH. We used site-directed mutagenesis to replace eight complementary residue positions in CBADH, one residue at a time, with proline. All eight single-proline mutants and a double-proline mutant of CBADH were enzymatically active. The critical sites for increasing thermostability parameters in CBADH were Leu-316 and Ser-24, and to a lesser degree, Ala-347. Substituting proline for His-222, Leu-275, and Thr-149, however, reduced thermal stability parameters. Our results show that the thermal stability of the mesophilic CBADH can be moderately enhanced by substituting proline at strategic positions analogous to nonconserved prolines in the homologous thermophilic TBADH. The proline residues that appear to be crucial for the increased thermal stability of CBADH are located at a beta-turn and a terminating external loop in the polypeptide chain. Positioning proline at the N-caps of alpha-helices in CBADH led to adverse effects on thermostability, whereas single-proline mutations in other positions in the polypeptide had varying effects on thermal parameters. The finding presented here support the idea that at least two of the eight extra prolines in TBADH contribute to its thermal stability.  相似文献   

4.
Peretz M  Bogin O  Tel-Or S  Cohen A  Li G  Chen JS  Burstein Y 《Anaerobe》1997,3(4):259-270
Proteins play a pivotal role in thermophily. Comparing the molecular properties of homologous proteins from thermophilic and mesophilic bacteria is important for understanding the mechanisms of microbial adaptation to extreme environments. The thermophile Thermoanaerobacter (Thermoanaerobium) brockii and the mesophile Clostridium beijerinckii contain an NADP(H)-linked, zinc-containing secondary alcohol dehydrogenase (TBADH and CBADH) showing a similarly broad substrate range. The structural genes encoding the TBADH and the CBADH were cloned, sequenced, and highly expressed in Escherichia coli. The coding sequences of the TB adh and the CB adh genes are, respectively, 1056 and 1053 nucleotides long. The TB adh gene encoded an amino acid sequence identical to that of the purified TBADH. Alignment of the deduced amino acid sequences of the TB and CB adh genes showed a 76% identity and a 86% similarity, and the two genes had a similar preference for codons with A or T in the third position. Multiple sequence alignment of ADHs from different sources revealed that two (Cys-46 and His-67) of the three ligands for the catalytic Zn atom of the horse-liver ADH are preserved in TBADH and CBADH. Both the TBADH and CBADH were homotetramers. The substrate specificities and thermostabilities of the TBADH and CBADH expressed inE. coli were identical to those of the enzymes isolated from T. brockii and C. beijerinckii, respectively. A comparison of the amino acid composition of the two ADHs suggests that the presence of eight additional proline residues in TBADH than in CBADH and the exchange of hydrophilic and large hydrophobic residues in CBADH for the small hydrophobic amino acids Pro, Ala, and Val in TBADH might contribute to the higher thermostability of the T. brockii enzyme.  相似文献   

5.
The present study demonstrates the comparative thermal, conformational and kinetic stabilities of the three closely related enzymes; the mesophilic yeast alcohol dehydrogenase (YADH), horse liver alcohol dehydrogenase (HLADH), and the extreme-thermophilic Thermoanaerobacter brockii alcohol dehydrogenase (TBADH). The mid-point unfolding temperatures for TBADH and HLADH were at least 10 °C and 6 °C higher, respectively, than that of YADH. When YADH was completely inactivated by thermal stress, the residual activities of HLADH and TBADH were 70% and 100%, respectively. The optimum temperature (Topt) activities of HLADH and TBADH were at least 40 °C and 55 °C higher, respectively, than that of YADH. Due to the higher rigidity of HLADH and TBADH, the enzymatic activation energies of HLADH and TBADH were higher than that of YADH. Geometric X-ray analysis indicated a comparatively higher coil (turn and loop) percentage in TBADH and HLADH than in YADH. Pairwise alignment for TBADH/HLADH exhibited a similarity score approximately 2.5-fold greater than that of the TBADH/YADH pair. Multiple alignments made with ClustalW revealed a higher number of conserved proline residues in the two most stable enzymes (HLADH/TBADH). These extra prolines tend to occur in surface loops and are likely to be responsible for the increased stability of TBADH and HLADH, by loop rigidification.  相似文献   

6.
We have studied the stability and reassociation behaviour of native molecules of Rapana venosa hemocyanin and its two subunits, termed RvH1 and RvH2. In the presence of different concentrations of Ca(2+) and Mg(2+) ions and pH values, the subunits differ not only in their reassociation behaviour, but also in their formation of helical tubules and multidecamers. RvH1 revealed a greater stability at higher pH values compared to RvH2. Overall, the stability of reassociated RvH and its structural subunits was found to be pH-dependent. The increasing stability of native Hc and its subunits, shown by pH-induced CD transitions (acid and alkaline denaturation), can be explained with the formation of quaternary structure. The absence of a Cotton effect at temperatures 20-40 degrees C in the pH-transition curves of RvH2 indicates that this subunit is stabilized by additional "factors", e.g.: non-ionic/hydrophobic stabilization and interactions of carbohydrate moieties. A similar behaviour was observed for the T-transition curves in a wide pH interval for RvH and its structural subunits. At higher temperatures, many of the secondary structural elements are preserved especially at neutral pH, even at extreme high temperatures above 90 degrees C the protein structures resemble a "globule state".  相似文献   

7.
Adenylate kinases (ADKs) from four closely related methanogenic members of the Archaea (the mesophile Methanococcus voltae (MVO), the thermopile Methanococcus thermolithotrophicus (MTH), and the extreme thermopiles Methanococcus igneus (MIG) and Methanococcus jannaschii (MJA)) were characterized for their resistance to thermal denaturation. Despite possessing between 68 and 81% sequence identity, the methanococcal ADKs significantly differed in their stability against thermal denaturation, with melting points ranging from 69 to 103 degrees C. The high sequence identity between these organisms allowed regions of the MVO and MJA ADKs to be exchanged, producing chimeric ADKs with significantly altered thermal stability. Up to a 20 degrees C increase or decrease in stability was achieved for chimeric ADKs, whereas 88% of the original protein sequence was maintained. Based on our previous structural modeling studies, we conclude that cooperative interactions within the hydrophobic protein core play an integral role in determining the differences in structural stability observed between the methanococcal ADKs. From comparisons of the effects of temperature on protein unfolding and optimal enzymatic activity, we also conclude that thermostability and enzymatic temperature optima are influenced differently by molecular modifications and thus that the protein flexibility required for activity and stability, respectively, is not unconditionally linked within the methanococcal ADKs.  相似文献   

8.
The crystal structures of adenylate kinases from the psychrophile Bacillus globisporus and the mesophile Bacillus subtilis have been solved and compared with that from the thermophile Bacillus stearothermophilus. This is the first example we know of where a trio of protein structures has been solved that have the same number of amino acids and a high level of identity (66-74%) and yet come from organisms with different operating temperatures. The enzymes were characterized for their own thermal denaturation and inactivation, and they exhibited the same temperature preferences as their source organisms. The structures of the three highly homologous, dynamic proteins with different temperature-activity profiles provide an opportunity to explore a molecular mechanism of cold and heat adaptation. Their analysis suggests that the maintenance of the balance between stability and flexibility is crucial for proteins to function at their environmental temperatures, and it is achieved by the modification of intramolecular interactions in the process of temperature adaptation.  相似文献   

9.
As part of a program to discover improved glycoside hydrolase family 12 (GH 12) endoglucanases, we have studied the biochemical diversity of several GH 12 homologs. The H. schweinitzii Cel12A enzyme differs from the T. reesei Cel12A enzyme by only 14 amino acids (93% sequence identity), but is much less thermally stable. The bacterial Cel12A enzyme from S. sp. 11AG8 shares only 28% sequence identity to the T. reesei enzyme, and is much more thermally stable. Each of the 14 sequence differences from H. schweinitzii Cel12A were introduced in T. reesei Cel12A to determine the effect of these amino acid substitutions on enzyme stability. Several of the T. reesei Cel12A variants were found to have increased stability, and the differences in apparent midpoint of thermal denaturation (T(m)) ranged from a 2.5 degrees C increase to a 4.0 degrees C decrease. The least stable recruitment from H. schweinitzii Cel12A was A35S. Consequently, the A35V substitution was recruited from the more stable S. sp. 11AG8 Cel12A and this T. reesei Cel12A variant was found to have a T(m) 7.7 degrees C higher than wild type. Thus, the buried residue at position 35 was shown to be of critical importance for thermal stability in this structural family. There was a ninefold range in the specific activities of the Cel12 homologs on o-NPC. The most and least stable T. reesei Cel12A variants, A35V and A35S, respectively, were fully active. Because of their thermal tolerance, S. sp. 11AG8 Cel12A and T. reesei Cel12A variant A35V showed a continual increase in activity over the temperature range of 25 degrees C to 60 degrees C, whereas the less stable enzymes T. reesei Cel12A wild type and the destabilized A35S variant, and H. schweinitzii Cel12A showed a decrease in activity at the highest temperatures. The crystal structures of the H. schweinitzii, S. sp. 11AG8, and T. reesei A35V Cel12A enzymes have been determined and compared with the wild-type T. reesei Cel12A enzyme. All of the structures have similar Calpha traces, but provide detailed insight into the nature of the stability differences. These results are an example of the power of homolog recruitment as a method for identifying residues important for stability.  相似文献   

10.
The crystal structures of thermophilic xylanases from Chaetomium thermophilum and Nonomuraea flexuosa were determined at 1.75 and 2.1 A resolution, respectively. Both enzymes have the overall fold typical to family 11 xylanases with two highly twisted beta-sheets forming a large cleft. The comparison of 12 crystal structures of family 11 xylanases from both mesophilic and thermophilic organisms showed that the structures of different xylanases are very similar. The sequence identity differences correlated well with the structural differences. Several minor modifications appeared to be responsible for the increased thermal stability of family 11 xylanases: (a) higher Thr : Ser ratio (b) increased number of charged residues, especially Arg, resulting in enhanced polar interactions, and (c) improved stabilization of secondary structures involved the higher number of residues in the beta-strands and stabilization of the alpha-helix region. Some members of family 11 xylanases have a unique strategy to improve their stability, such as a higher number of ion pairs or aromatic residues on protein surface, a more compact structure, a tighter packing, and insertions at some regions resulting in enhanced interactions.  相似文献   

11.

Background

Previous studies have shown that microRNA precursors (pre-miRNAs) have considerably more stable secondary structures than other native RNAs (tRNA, rRNA, and mRNA) and artificial RNA sequences. However, pre-miRNAs with ultra stable secondary structures have not been investigated. It is not known if there is a tendency in pre-miRNA sequences towards or against ultra stable structures? Furthermore, the relationship between the structural thermodynamic stability of pre-miRNA and their evolution remains unclear.

Results

We investigated the correlation between pre-miRNA sequence conservation and structural stability as measured by adjusted minimum folding free energies in pre-miRNAs isolated from human, mouse, and chicken. The analysis revealed that conserved and non-conserved pre-miRNA sequences had structures with similar average stabilities. However, the relatively ultra stable and unstable pre-miRNAs were more likely to be non-conserved than pre-miRNAs with moderate stability. Non-conserved pre-miRNAs had more G+C than A+U nucleotides, while conserved pre-miRNAs contained more A+U nucleotides. Notably, the U content of conserved pre-miRNAs was especially higher than that of non-conserved pre-miRNAs. Further investigations showed that conserved and non-conserved pre-miRNAs exhibited different structural element features, even though they had comparable levels of stability.

Conclusions

We proposed that there is a correlation between structural thermodynamic stability and sequence conservation for pre-miRNAs from human, mouse, and chicken genomes. Our analyses suggested that pre-miRNAs with relatively ultra stable or unstable structures were less favoured by natural selection than those with moderately stable structures. Comparison of nucleotide compositions between non-conserved and conserved pre-miRNAs indicated the importance of U nucleotides in the pre-miRNA evolutionary process. Several characteristic structural elements were also detected in conserved pre-miRNAs.
  相似文献   

12.
The relationship between primary sequence and collagen triple-helix formation is relatively well characterized, while higher levels of structural assembly from these sequences is poorly understood. To address this gap, a new collagen-like triblock peptide design was used to study the relationship between amino acid sequence and supramolecular assembly. Four collagen-like peptides with the sequence (Glu)(5)(Gly-Xaa-Hyp-Gly-Pro-Hyp)(6)(Glu)(5) and corresponding to Xaa = alanine, proline, serine, or valine, and an analogous peptide without the glutamic acid end blocks, were solubilized in water at high concentrations (20-150 mg/mL) and analyzed in optical polarizing microscopy and transmission electron microscopy. Some of the peptides self-assembled into supramolecular structures, the nature of which was determined by the core collagen-like sequence. The globular end blocks appeared necessary for these short triple-helix-forming peptides to spontaneously organize into supramolecular structures in solution and also provided enhanced thermal stability based on CD analysis. The results indicate a strong dependence of the peptide triblock assembly behavior on the identity of the guest residue Xaa; nematic order when Xaa was valine, no organization when Xaa was serine, and banded spherulites displaying a cholesteric-like twist when Xaa was proline or alanine. According to these results, the identity of the amino acid in position Xaa of the triplet Gly-Xaa-Yaa dramatically determined the type of supramolecular assembly formed by short triple helices based on collagen-triblock like sequences. Moreover, the structural organization observed for these collagen-triblock peptides was analogous to some assemblies observed for native collagen in vivo and in vitro. The amino acid sequence in the native collagen proteins may therefore be a direct determinant of the different supramolecular architectures found in connective tissues.  相似文献   

13.
Molecular modeling of proteins is confronted with the problem of finding homologous proteins, especially when few identities remain after the process of molecular evolution. Using even the most recent methods based on sequence identity detection, structural relationships are still difficult to establish with high reliability. As protein structures are more conserved than sequences, we investigated the possibility of using protein secondary structure comparison (observed or predicted structures) to discriminate between related and unrelated proteins sequences in the range of 10%-30% sequence identity. Pairwise comparison of secondary structures have been measured using the structural overlap (Sov) parameter. In this article, we show that if the secondary structures likeness is >50%, most of the pairs are structurally related. Taking into account the secondary structures of proteins that have been detected by BLAST, FASTA, or SSEARCH in the noisy region (with high E: value), we show that distantly related protein sequences (even with <20% identity) can be still identified. This strategy can be used to identify three-dimensional templates in homology modeling by finding unexpected related proteins and to select proteins for experimental investigation in a structural genomic approach, as well as for genome annotation.  相似文献   

14.
The combination of high-resolution atomic force microscopy (AFM) imaging and single-molecule force-spectroscopy was employed to unfold single bacteriorhodopsins (BR) from native purple membrane patches at various physiologically relevant temperatures. The unfolding spectra reveal detailed insight into the stability of individual structural elements of BR against mechanical unfolding. Intermittent states in the unfolding process are associated with the stepwise unfolding of alpha-helices, whereas other states are associated with the unfolding of polypeptide loops connecting the alpha-helices. It was found that the unfolding forces of the secondary structures considerably decreased upon increasing the temperature from 8 to 52 degrees C. Associated with this effect, the probability of individual unfolding pathways of BR was significantly influenced by the temperature. At lower temperatures, transmembrane alpha-helices and extracellular polypeptide loops exhibited sufficient stability to individually establish potential barriers against unfolding, whereas they predominantly unfolded collectively at elevated temperatures. This suggests that increasing the temperature decreases the mechanical stability of secondary structural elements and changes molecular interactions between secondary structures, thereby forcing them to act as grouped structures.  相似文献   

15.
While a considerable amount of literature deals with the structural energetics of water-soluble proteins, relatively little is known about the forces that determine the stability of membrane proteins. Similarly, only a few membrane protein structures are known at atomic resolution, although new structures have recently been described. In this article, we review the current knowledge about the structural features of membrane proteins. We then proceed to summarize the existing literature regarding the thermal stability of bacteriorhodopsin, cytochrome-c oxidase, the band 3 protein, Photosystem II and porins. We conclude that a fundamental difference between soluble and membrane proteins is the high thermal stability of intrabilayer secondary structure elements in membrane proteins. This property manifests itself as incomplete unfolding, and is reflected in the observed low enthalpies of denaturation of most membrane proteins. By contrast, the extramembranous parts of membrane proteins may behave much like soluble proteins. A brief general account of thermodynamics factors that contribute to the stability of water soluble and membrane proteins is presented.  相似文献   

16.
17.
A correlation was found between the thermal stability of alpha-chymotrypsin and the coefficient Ks of the Sechenov equation as a quantitative measure of the "salting-in" or "salting-out" capacity of solutes. At high temperatures, an increase in the concentration of "salting-in" agents (KSNC, GuHCl, urea, formamide) resulted in thermal stabilization of alpha-chymotrypsin. The maximal (about 100-fold) stabilizing effect in concentrated solutions of salting-in agents was comparable with those induced by covalent modification with hydrophilic reagents or immobilization. Conversely, an increase in the concentration of "salting-out" agents stabilized the enzyme only marginally at high temperatures. An additivity of solutes' action on the thermal stability of the protein has been demonstrated. The observed correlation was explained in terms of the solutes' action on the reversible conformational transition of the enzyme native form into a much more stable form existing at high temperatures.  相似文献   

18.
Detailed structural analysis of protein necessitates investigation at primary, secondary and tertiary levels, respectively. Insight into protein secondary structures pave way for understanding the type of secondary structural elements involved (α-helices, β-strands etc.), the amino acid sequence that encode the secondary structural elements, number of residues, length and, percentage composition of the respective elements in the protein. Here we present a standalone tool entitled "ExSer" which facilitate an automated extraction of the amino acid sequence that encode for the secondary structural regions of a protein from the protein data bank (PDB) file. AVAILABILITY: ExSer is freely downloadable from http://code.google.com/p/tool-exser/  相似文献   

19.
Miyazono K  Sawano Y  Tanokura M 《Proteins》2005,61(1):196-205
To elucidate the structural basis for the high stability of acylphosphatase (AcP) from Pyrococcus horikoshii OT3, we determined its crystal structure at 1.72 A resolution. P. horikoshii AcP possesses high stability despite its approximately 30% sequence identity with eukaryotic enzymes that have moderate thermostability. The overall fold of P. horikoshii AcP was very similar to the structures of eukaryotic counterparts. The crystal structure of P. horikoshii AcP shows the same fold betaalphabetabetaalphabeta topology and the conserved putative catalytic residues as observed in eukaryotic enzymes. Comparison with the crystal structure of bovine common-type AcP and that of D. melanogaster AcP (AcPDro2) as representative of eukaryotic AcP revealed some significant characteristics in P. horikoshii AcP that likely play important roles in structural stability: (1) shortening of the flexible N-terminal region and long loop; (2) an increased number of ion pairs on the protein surface; (3) stabilization of the loop structure by hydrogen bonds. In P. horikoshii AcP, two ion pair networks were observed one located in the loop structure positioned near the C-terminus, and other on the beta-sheet. The importance of ion pairs for structural stability was confirmed by site-directed mutation and denaturation induced by guanidium chloride.  相似文献   

20.
Methods of stabilization and formulation of proteins are important in both biopharmaceutical and biocatalysis industries. Polymers are often used as modifiers of characteristics of biological macromolecules to improve the biochemical activity and stability of proteins or drug bioavailability. Green fluorescent protein (GFP) shows remarkable structural stability and high fluorescence; its stability can be directly related to its fluorescence output, among other characteristics. GFP is stable under increasing temperatures, and its thermal denaturation is highly reproducible. Relative thermal stability was undertaken by incubation of GFP at varying temperatures and GFP fluorescence was used as a reporter for unfolding. At 80°C, DEAE-dextran did not have any effect on GFP fluorescence, indicating that it does not confer stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号