首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
2.
We have assessed the functional interactions of two pure receptor proteins with three different pure guanine nucleotide regulatory proteins in phosphatidylcholine vesicles. The receptor proteins are the guinea pig lung beta-adrenergic receptor (beta AR) and the retinal photon receptor rhodopsin. The guanine nucleotide regulatory proteins were the stimulatory (Ns) and inhibitory (Ni) proteins of the adenylate cyclase system and transducin (T), the regulatory protein from the light-activated cyclic GMP phosphodiesterase system in retinal rod outer segments. The insertion of Ns with beta AR in lipid vesicles increases the extent of binding of [35S] GTP gamma S to Ns and in parallel, the total GTPase activity. However, there is little change in the actual rate of catalytic turnover of GTPase activity (defined as mol of Pi released/min/mol of Ns-guanine nucleotide complexes). Enhancement of this turnover rate requires the beta-agonist isoproterenol and is accounted for by an isoproterenol-promoted increase in the rate and extent of [35S]GTP gamma S binding to Ns. The co-insertion of the beta AR with Ni or transducin results in markedly lower stimulation by isoproterenol of both the GTPase activity and [35S]GTP gamma S binding to these nucleotide regulatory proteins indicating that their preferred order of interaction with beta AR is Ns much greater than Ni greater than T. This contrasts with the preferred order of interaction of these different nucleotide regulatory proteins with light-activated rhodopsin which we find to be T approximately equal to Ni much greater than Ns. Nonetheless the fold stimulation of GTPase activity and [35S]GTP gamma S binding in T, induced by light-activated rhodopsin, is significantly greater than the "fold" stimulation of these activities in Ni. This reflects the greater intrinsic ability of Ni to hydrolyze GTP and bind guanine nucleotides (at 10 mM MgCl2, 100-200 nM GTP or [35S] GTP gamma S) compared to T. The maximum turnover numbers for the rhodopsin-stimulated GTPase in both Ni and T are similar to those obtained for isoproterenol-stimulated activity in Ns. This suggests that the different nucleotide regulatory proteins are capable of a common upper limit of catalytic efficiency which can best be attained when coupled to the appropriate receptor.  相似文献   

3.
The mechanism by which Ns and Ni, the stimulatory and inhibitory regulatory components of adenylyl cyclases, regulate the activity of the catalytic component (C) of adenylyl cyclase was investigated using cyc-S49 cell membranes which contain a functional inhibitory regulatory protein (Ni) but not the active subunit of the stimulatory regulatory protein (Ns). To this end, purified Ns protein was preactivated (Ns) in solution with guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) and Mg2+, and then added to cyc- membranes under conditions where Ni was either unactivated or activated (Ni) by GTP gamma S and Mg2+. Activation of Ni in cyc- membranes resulted in a lowered expression of Ns activity under all conditions tested. Upon dilution of the reactants (Ns and cyc- membranes) the reconstituted activity declined in proportion to the dilution with an approximate t 1/2 of 30-45 min, being unaffected by activation of Ni. Postactivation of Ni after reconstitution of cyc- membranes with Ns resulted in a time-dependent decline in Ns activity to a level that was the same as that obtained when Ns was added to cyc- membranes with preactivated Ni. These data indicated that the effects of Ns on C are of a reversible type. The following indicated that Ns and Ni affect C activity in a noncompetitive manner: (a) the per cent reduction in Ns activity due to activation of Ni was constant and independent of the concentration of Ns, (b) double reciprocal plots of activities reconstituted in control and Ni-containing cyc- membranes versus Ns concentration were linear with an unaltered apparent Km for Ns, and (c) the onset of inhibition of C prereconstituted with Ns was much faster (approximate t 1/2 = 2-5 min) than expected if it were due to occupancy of a common site on C left vacant by Ns.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Platelet-activating factor (PAF, 2-acetyl-1-alkyl-sn-glycero-3-phosphocholine) and the stable thromboxane-receptor agonist U44069 (9 alpha, 11 beta-epoxymethanoprostaglandin H2) stimulated GTPase activity in platelet membranes in a dose-dependent fashion, yielding Ka values of 12 nM and 27 nM respectively. The degree of GTPase activation elicited by these agents was found to be additive with the GTPase activation due to either the stimulatory (Ns) or inhibitory (Ni) guanine nucleotide regulatory proteins when activated by prostaglandin E1 and adrenaline (+propranolol) respectively. Treatment of membranes with either cholera or pertussis toxins, which inhibited markedly the receptor-mediated stimulation of the GTPase activities of Ns and Ni respectively, had no or only a small effect, respectively, on the GTPase activity stimulated by PAF and U44069. It is suggested that PAF and U44069, which stimulate inositol phospholipid metabolism in platelets, exert actions through a guanine nucleotide regulatory protein which is distinct from Ns and Ni.  相似文献   

5.
Two peptides (Mr = 40,000 and 41,000) in membranes of rabbit heart are radiolabeled when the membranes are incubated in the presence of activated pertussis toxin and [32P]NAD+. The 41,000-Mr peptide appears to be the alpha subunit of the inhibitory regulatory protein of adenylate cyclase, Ni. The 40,000-Mr substrate for pertussis toxin in the heart was investigated. Purification of the stimulatory regulatory protein of adenylate cyclase, Ns, results in the co-purification of the alpha subunits of both Ns and Ni, the putative beta- (Mr = 35,000) and gamma- (Mr approximately equal to 15,000) subunits of Ns and Ni, and the additional 40,000-Mr peptide that is ADP-ribosylated by pertussis toxin. This 40,000-Mr substrate for pertussis toxin action appears to be a major N-protein of mammalian heart.  相似文献   

6.
Antisera were raised against the retinal guanine-nucleotide-binding protein (N-protein), transducin, purified from bovine rod outer segments. Sera obtained after repeated injections of antigen recognized all transducin subunits (alpha, beta and gamma). One antiserum, tested for cross-reactivity with non-retinal N-proteins, was found to cross-react with the beta subunits of the ubiquitously occurring N-proteins, Ns and Ni, but not with their respective alpha and gamma subunits. The antiserum also cross-reacted with the beta subunit of the recently identified N-protein, No, which has been found in high abundance in the central nervous system. These data support the similarity of the beta subunits of the N-proteins identified so far. Purification of N-proteins from porcine cerebral cortex without the use of activating ligands yielded fractions containing the isolated alpha subunit of No, free beta gamma complex, Ni, No and fractions containing both N-proteins in various proportions. The purity of the preparations was at least 80% as judged by Coomassie-blue-stained SDS gels. No pure Ns was obtained. Use of the transducin antibody during the course of the purification revealed that the beta subunits coeluted from a gel filtration column largely with the alpha subunits of Ni and No but were hardly detectable in fractions that were able to reconstitute Ns activity into membranes of an Ns-deficient cell line (S49 cyc- lymphoma cells). This indicates that in the central nervous system the concentrations of Ni and No are of magnitudes higher than that of Ns. Two-dimensional gel electrophoresis of N-proteins, purified from porcine cerebral cortex, resulted in the resolution of two major peptides in the 35-kDa region, which differed in their pI values and were identified as beta subunits by the use of the antiserum. Identical results were achieved using crude cholate extracts from membranes of the same tissue instead of purified proteins. The occurrence of different beta subunits may be explained by posttranslational N-protein modification.  相似文献   

7.
The retinal nucleotide regulatory protein, transducin, can substitute for the inhibitory guanine nucleotide-binding regulatory protein (Ni) in inhibiting adenylate cyclase activity in phospholipid vesicle systems. In the present work we have assessed the roles of the alpha (alpha T) and beta gamma (beta gamma T) subunit components in mediating this inhibition. The inclusion of either a preactivated alpha T . GTP gamma S (where GTP gamma S is guanosine 5'-O-(thiotriphosphate)) complex, or the beta gamma complex, in phospholipid vesicles containing the pure human erythrocyte stimulatory guanine nucleotide-binding regulatory protein (Ns) and the resolved catalytic moiety of bovine caudate adenylate cyclase (C) resulted in inhibition of the GppNHp-stimulated (where GppNHp is guanyl-5'-yl imidodiphosphate) activity (by approximately 30-60 and 90%, respectively, at 2 mM MgCl2). The inhibitions by both of these subunit species are specific for the Ns-stimulated activity with neither alpha T . GTP gamma S nor beta gamma T having any direct effect on the intrinsic activity of the catalytic moiety. Increasing the MgCl2 concentration in the assay incubations significantly decreases the inhibitions by both alpha T . GTP gamma S and beta gamma T. Similarly, when the pure hamster lung beta-adrenergic receptor is included in the lipid vesicles with Ns and C, the levels of inhibition of the GppNHp-stimulated activity by both alpha T . GTP gamma S and beta gamma T are reduced compared to those obtained in vesicles containing just Ns and C (but not stimulatory receptor). These inhibitions are reduced still further under conditions where the agonist stimulation of adenylate cyclase activity is maximal, i.e. when stimulating with isoproterenol plus GTP. In these cases the alpha T . GTP gamma S inhibitory effects are completely eliminated and the inhibitions observed with holotransducin can be fully accounted for by the beta gamma T complex. The ability of the beta-adrenergic receptor to relieve these inhibitions suggests that the receptor may remain coupled to Ns (or alpha s) during the activation of the regulatory protein and the stimulation of adenylate cyclase. These results also suggest that under physiological conditions the beta gamma subunit complex is primarily responsible for mediating the inhibition of adenylate cyclase activity.  相似文献   

8.
The stimulatory and inhibitory regulatory components of adenylyl cyclase (Ns and Ni), purified to apparent homogeneity without the use of regulatory ligands such as Mg, NaF, and guanyl-5'-yl imidodiphosphate, were tested for GTPase activity by incubating them with [gamma-32P]GTP and measuring 32Pi liberation using a charcoal adsorption assay to separate hydrolyzed from nonhydrolyzed radioactivity. We found that Ni is capable of hydrolyzing GTP. The activity was shown to be due to Ni itself and not to presence of one of its minor contaminants by correlating activity with abundance of the 40,000 Da alpha i subunit throughout the last stages of purification and by showing co-migration on a sucrose density gradient of the GTP-hydrolyzing activity with the alpha i, beta, and gamma subunits of Ni and not with any one of three minor contaminants present in the preparation tested. Preparations of Ns, free of detectable Ni, exhibited less than 10% the capacity to hydrolyze GTP, as compared to Ni on an equal protein basis. The basic properties of the GTP-hydrolyzing activity of Ni were determined. The activity is dependent on Mg ion (apparent Km = 5 to 15 nM), and is rapidly lost upon incubation with Mg2+ in the absence of GTP. MgGTP and free GTP serve equally well as substrate (apparent Km about 40 nM). Isotopic dilution studies indicate that the GTP binding site has a relative affinity for guanine nucleotides in the order GTP = GTP gamma S greater than GDP = GMP-P(NH)P greater than GDP beta S with the highest difference (GTP versus GDP beta S) being about 10-fold. NaF inhibited GTP hydrolysis by Ni at concentrations at which it activates Ni in intact membranes.  相似文献   

9.
S Kassis 《Biochemistry》1985,24(20):5666-5672
Exposure of HeLa cells to 5 mM sodium butyrate, but not 0.6 mM, resulted in a more efficient coupling between their beta-adrenergic receptors and the guanine nucleotide binding stimulatory (Ns) component of adenylate cyclase. Both concentrations of the fatty acid, however, caused an increase in receptor number. beta receptors from control and butyrate-treated cells had the same affinity for isoproterenol. Modulation of this affinity by GTP was greatly enhanced, however, in cells treated with 5 mM butyrate compared to untreated and 0.6 mM butyrate treated cells. The concentration of isoproterenol required to half-maximally stimulate adenylate cyclase (Kact) was reduced in cells treated with 5 mM butyrate. In addition, the Kact for GTP in the presence, but not the absence, of isoproterenol was reduced. The effect of butyrate on the coupling between beta receptors and Ns was analyzed in detail by monitoring the activation of Ns by guanine 5'-O-(3-thiotriphosphate) (GTP gamma S) in a two-step assay. In the absence of isoproterenol, Ns from control and 5 mM butyrate treated cells was activated to the same extent with the same time course and Kact for GTP gamma S. In the presence of isoproterenol, Ns from 5 mM butyrate treated cells was activated more rapidly and extensively than Ns from control cells. The Kact for both GTP gamma S and isoproterenol also was reduced. The rate of agonist-mediated activation of Ns was strongly dependent on temperature, which accentuated the differences between 5 mM butyrate treated and control cells. At 4 degrees C, the difference in rate was 8.8-fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Ns and Ni, the regulatory proteins affecting adenylyl cyclase, and transducin, the guanine nucleotide-binding protein from rod outer segments of the eye, are structurally and functionally related proteins. Of these, the alpha subunits are between 39 and 42 kDa in mass, beta subunits are all of 35 kDa in mass, and gamma subunits are much smaller, of approximately 5-8 kDa in mass. We compared, by two-dimensional peptide mapping of iodinated peptides, the beta and gamma subunits of human erythrocyte Ns, human erythrocyte Ni, the beta gamma complex derived from purification of bovine brain N proteins, and frog and bovine eye transducins. We found that gamma subunits in human erythrocyte Ns and Ni and in bovine brain beta gamma complex are indistinguishable by this approach. In contrast, gamma subunits associated with frog and bovine transducin differed markedly between each other and from N protein-associated gamma. beta subunits, on the other hand, yielded essentially indistinguishable peptide maps regardless of whether derived from N proteins or from transducin and regardless also of species of origin: human versus bovine versus frog. These results suggest that the gamma subunit may impart functional heterogeneity of this family of proteins which is evident in the N proteins on the one hand and the transducin proteins on the other.  相似文献   

11.
J Olate  R Anker  J E Allende 《FEBS letters》1985,185(1):170-176
Treatment of Xenopus laevis membranes with the 2',3'-dialdehyde of GTP (dial GTP) drastically inhibits their adenylyl cyclase activity. Optimal inhibition is obtained by treatment with 1 mM dial GTP for 1h at 32 degrees C. Using guanyl-5'-yl imidodiphosphate, F-, forskolin and Mn2+ as activators of the enzyme it can be concluded that dial GTP preferentially reacts with the stimulatory subunit (Ns) and slightly with the catalytic subunit. Dial GTP treatment greatly reduces the inhibition of adenylyl cyclase by progesterone. Pure exogenous Ns stimulates the enzyme but does not restore progesterone inhibition. Treatment with dial [alpha-32P]GTP labels several membrane proteins some of which have similar Mr to Ns and Ni.  相似文献   

12.
Guanine nucleotide-binding stimulatory regulatory protein of adenylate cyclase system, Ns, in rat erythrocytes was activated by the treatment with guanylyl 5'-imidodiphosphate or NaF-AlCl3 in the presence of Mg2+. The activation was counterbalanced to the basal state either by the removal of Mg2+ or by the addition of beta(gamma)-subunit of N protein of this system. The depression from the activated state was markedly protected by the coexistence of forskolin at the time of the deactivation depending on the dose of forskolin. EC50 of forskolin for the stabilizing effect was much lower than that for the stimulation of adenylate cyclase activity. These data indicate that forskolin has an effect on the interaction between Ns and catalytic unit of adenylate cyclase system in addition to the direct effect on the catalytic unit.  相似文献   

13.
The inhibitory regulatory component of adenylate cyclase (Ni) was highly purified from rat brain synaptic membranes. A low Km GTPase activity was always associated with Ni through the purification, and the recovery of GTPase activity correlated well with that of Ni. Purified Ni was hardly ADP-ribosylated by islet-activating protein (IAP). A heat-labile factor in the fraction of the stimulative regulatory component (Ns) restored ADP-ribosylation and also activated the GTPase about 2-fold. NaF which was reported to interact with Ni markedly reduced GTPase activity. The purified Ni fraction inhibited adenylate cyclase only in the presence of a heat-stable factor found in the partially purified regulatory component. GTPase and inhibitory activities were weak in myelin which contained only a small amount of Ni. These findings support the view that GTPase activity is an intrinsic activity of Ni and some factors are necessary for the function of Ni.  相似文献   

14.
cyc- S49 cell membranes contain an adenylyl cyclase activity which is stimulated by forskolin and inhibited by guanine nucleotides and NaF. These inhibitory effects are mediated by an inhibitory guanine nucleotide-binding regulatory component (Ni) affecting the adenylyl cyclase catalytic unit (Hildebrandt, J. D., Sekura, R. D., Codina, J., Iyengar, R., Manclark, C. R., and Birnbaumer, L. (1983) Nature (Lond.) 302, 706-709). Since cyc- S49 cells do not contain a stimulatory guanine nucleotide-binding regulatory component (Ns), these membranes were used to study the requirements and kinetics of activation of Ni in the absence of Ns. Activation of Ni by guanyl-5'-yl imidodiphosphate was time-dependent (i.e. hysteretic) and pseudo-irreversible. Although GTP and guanosine 5'-(beta-thio)diphosphate could prevent the inhibition caused by guanyl-5'-yl imidodiphosphate if added simultaneously with it, they could not reverse the inhibited state induced by previous exposure to guanyl-5'-yl imidodiphosphate. Activation of Ni had an absolute requirement for Mg2+. Unlike the activation of Ns, however, which requires millimolar concentrations of Mg2+ in the absence of hormonal stimulation, activation of Ni requires only micromolar concentrations of the divalent cation. These results support the contention that hormones which activate Ni or Ns do so by altering different parameters of a similar activation mechanism.  相似文献   

15.
We describe the successful reconstitution of functional interactions between an inhibitory adenylate cyclase-coupled receptor and various nucleotide-binding regulatory proteins in phospholipid vesicles. The receptor is the alpha 2-adrenergic receptor (alpha 2AR) which has been partially purified (approximately 500-5000-fold) from human platelet membranes. The nucleotide-binding regulatory proteins include purified preparations of human erythrocyte Ni and Ns, bovine retinal transducin and the recently discovered bovine brain No. Addition of the physiologic ligand, epinephrine, to vesicles containing the alpha 2AR and Ni results in stimulation of the GTPase activity in Ni. This stimulation of GTPase activity by epinephrine is prevented in the presence of the alpha-adrenergic antagonist, phentolamine, which indicates that a functional reconstitution of the alpha 2AR and Ni has been established. The maximum turnover number for the alpha 2AR-mediated epinephrine-stimulated GTPase activity in Ni is similar to the maximal turnover numbers obtained for the beta-adrenergic receptor-mediated isoproterenol-stimulated GTPase activity in Ns and the rhodopsin-mediated light-stimulated GTPase activity in transducin (0.5-1.5 mol of Pi released per min per mol of nucleotide regulatory protein). Functional similarities between the alpha 2AR and rhodopsin are observed in their interactions with the various nucleotide-binding regulatory proteins. Thus, both of these receptor proteins are capable of promoting the maximal activation of Ni and No while being much less effective in promoting the activation of Ns. However, there are differences between the alpha 2AR and rhodopsin in their interactions with transducin. Specifically, while rhodopsin will maximally activate transducin, the alpha 2AR is much less effective in promoting this activation (i.e. approximately 20% as effective as rhodopsin). Overall, these results suggest the following specificities of interaction: for rhodopsin, transducin approximately equal to Ni approximately equal to No much greater than Ns; while for alpha 2AR, Ni approximately equal to No greater than transducin greater than or equal to Ns.  相似文献   

16.
Monoclonal antibodies (Mabs) directed against retinal arrestin (S-antigen) were used to detect and characterize this protein in choroid plexus (CP) of quails maintained during eight days, either under long-day photoperiods or in constant darkness. Immunocytochemistry and Western blotting confirmed the presence and the distribution of an arrestin-like protein in quail CP. Arrestin-like immunoreactivities in CP were compared with those obtained with Mabs to beta 36-subunit of G proteins (G beta), alpha-subunit of transducin and rhodopsin. Rhodopsin-like and transducin-like proteins could not be detected in choroidal cells, whereas intense positive reactions were observed with anti-G beta and anti-arrestin Mabs. The strongest immunoreactivities were found in choroidal ependymocytes of the lateral and IIIrd ventricles. In CP epithelial cells lining the IVth ventricle, very weak or no immunoreactivity could be detected with Mabs to arrestin, while Mab against G beta subunit always provided a positive reaction. In quails maintained in constant darkness, arrestin- and G beta-immunoreactivities of CP epithelial cells displayed changes in cellular distribution and intensity (decrease or disappearance of the immunoreactions). The strong arrestin-like immunoreaction located in the apical region of ependymocytes suggests the preferential association of the protein with choroidal microvilli and a possible role in cerebrospinal fluid production assumed by CP cells.  相似文献   

17.
The adenylate cyclase coupled inhibitory nucleotide regulatory protein (Ni) and the bovine retinal nucleotide regulatory protein transducin (T) appear to share some common functional properties since their GTPase activity is stimulated to similar extents by the retinal photoreceptor rhodopsin. In the present work, we sought to assess whether these functional similarities might extend to their interaction with adenylate cyclase. This necessitated the development of reconstitution systems in which guanine nucleotide regulatory protein mediated inhibition of adenylate cyclase activity could be demonstrated and characterized in a lipid milieu. In the absence of the pure human erythrocyte stimulatory nucleotide regulatory protein (Ns), the insertion into phospholipid vesicles of either pure Ni from human erythrocytes or pure bovine T with the resolved catalytic moiety of bovine caudate adenylate cyclase (C) does not establish GppNHp inhibition of either Mg2+- or forskolin-stimulated adenylate cyclase. However, the coinsertion into lipid vesicles of either Ni or T with Ns and resolved C results in an inhibition of Ns(GppNHp) stimulatable C activity. As is the case in intact membranes, the reconstituted inhibition of the Ns-stimulated C activity extends into the steady-state phase of time courses of activity. This inhibition is highly sensitive to the MgCl2 concentration. At 2 mM MgCl2, the inhibition is greater than 80% while at 50 mM MgCl2 it is only approximately 20%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Human platelet membrane proteins were phosphorylated by exogenous, partially purified Ca2+-activated phospholipid-dependent protein kinase (protein kinase C). The phosphorylation of one of the major substrates for protein kinase C (Mr = 41 000) was specifically suppressed by the beta subunit of the inhibitory guanine-nucleotide-binding regulatory component (Gi, Ni) of adenylate cyclase. The free alpha subunit of Gi (Mr = 41 000) also served as an excellent substrate for the kinase (greater than 0.5 mol phosphate incorporated per mol of subunit), but the Gi oligomer (alpha X beta X gamma) did not. Treatment of cyc- S49 lymphoma cells, which are deficient in Gs/Ns (the stimulatory component) but contain functional Gi/Ni, with the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate, a potent activator of protein kinase C, did not alter stimulation of adenylate cyclase catalytic activity by forskolin, whereas the Gi/Ni-mediated inhibition of the cyclase by the hormone, somatostatin, was impaired in these membranes. The results suggest that the alpha subunit of the inhibitory guanine-nucleotide-binding regulatory component of adenylate cyclase may be a physiological substrate for protein kinase C and that the function of the component in transducing inhibitory hormonal signals to adenylate cyclase is altered by its phosphorylation.  相似文献   

19.
Two GTP-binding trimeric proteins (referred to as alpha 41 beta gamma and alpha 39 beta gamma based on the kilodalton molecular weights of their alpha-subunits) were purified from rat brain as the specific substrates of the ADP-ribosylation reaction catalyzed by islet-activating protein, pertussis toxin, and resolved irreversibly into alpha- and beta gamma-subunits by incubation with guanosine 5'-O-(thiotriphosphate) (GTP gamma S). Some of these resolved subunits interacted directly with the adenylate cyclase catalyst partially purified from rat brain in a detergent-containing solution, resulting in inhibition of the cyclase activity as follows. 1) GTP gamma S-bound alpha 41 inhibited the catalyst, but GTP gamma S-bound alpha 39 did not; the inhibition was competitive with GTP gamma S-bound alpha-subunit of Ns, the GTP-binding protein involved in activation of adenylate cyclase. 2) beta gamma from either alpha 41 beta gamma or alpha 39 beta gamma inhibited the catalyst in a manner not competitive with the activator such as forskolin or the alpha-subunit of Ns. 3) The ADP-ribosylation of alpha 41 beta gamma by islet-activating protein did not exert any influence on the subsequent GTP gamma S-induced resolution and the ability of the resolved GTP gamma S-bound alpha 41 to inhibit the catalyst. 4) The beta gamma-induced inhibition of the catalyst was additive to the inhibition caused by GTP gamma S-bound alpha 41. Thus, the direct inhibition of the catalyst by beta gamma or GTP gamma S-bound alpha 41 is a likely mechanism involved in receptor-mediated inhibition of adenylate cyclase, in addition to the previously proposed indirect inhibition due to the reduction of the concentration of the active alpha-subunit of Ns by reassociation with beta gamma.  相似文献   

20.
Adenylate cyclase activity in bovine cerebellar membranes is regulated by calmodulin, forskolin, and both stimulatory (Ns) and inhibitory (Ni) guanine nucleotide-binding components. The susceptibility of the enzyme to chymotrypsin proteolysis was used as a probe of structure-function relationships for these different regulatory pathways. Pretreatment of membranes with low concentrations of chymotrypsin (1-2 micrograms/ml) caused a three- to fourfold increase in basal adenylate cyclase activity and abolished the Ca2+-dependent activation of the enzyme by calmodulin. In contrast, the stimulation of the enzyme by GTP plus isoproterenol was strongly potentiated after protease treatment, an effect that mimics the synergistic activation of adenylate cyclase by Ns and calmodulin in unproteolyzed membranes. Limited proteolysis revealed low- and high-affinity components in the activation of adenylate cyclase by forskolin. The low-affinity component was readily lost on proteolysis, together with calmodulin stimulation of the enzyme. The activation via the high-affinity component was resistant to proteolysis and nonadditive with the Ns-mediated activation of the enzyme, suggesting that both effectors utilize a common pathway. The inhibitory effect of low concentrations (10(-7) M) of guanyl-5'-yl imidodiphosphate [Gpp(NH)p] on forskolin-activated adenylate cyclase was retained after limited proteolysis of the membranes, indicating that the proteolytic activation does not result from an impairment of the Ni subunit. Moreover, in the rat cerebellum, proteolysis as well as calmodulin was found to enhance strongly the inhibitory effect of Gpp(NH)p on basal adenylate cyclase activity. Our results suggest that calmodulin and Ns/Ni interact with two structurally distinct but allosterically linked domains of the enzyme. Both domains appear to be involved in the mode of action of forskolin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号