首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
During the development of hypertrophy, cardiac myocytes increase organization of the sarcomere, a highly ordered contractile unit in striated muscle cells. Several hypertrophic agonists, such as angiotensin II, phenylephrine, and endothelin-1, have been shown to promote the sarcomere organization. However, the signaling pathway, which links extracellular stimuli to sarcomere organization, has not been clearly demonstrated. Here, we demonstrate that myosin light chain kinase specifically mediates agonist-induced sarcomere organization during early hypertrophic response. Acute administration of a hypertrophic agonist, phenylephrine, or angiotensin II, causes phosphorylation of myosin light chain 2v both in cultured cardiac myocytes and in the adult heart in vivo. We also show that both sarcomere organization and myosin light chain 2v phosphorylation are dependent on the activation of Ca2+/calmodulin pathway, a known activator of myosin light chain kinase. These results define a new and specific role of myosin light chain kinase in cardiac myocytes, which may provide a rapid adaptive mechanism in response to hypertrophic stimuli.  相似文献   

11.
12.
13.
The adult heart responds to stress signals by hypertrophic growth, which is often accompanied by activation of a fetal cardiac gene program and eventual cardiac demise. We showed previously that histone deacetylase 9 (HDAC9) acts as a suppressor of cardiac hypertrophy and that mice lacking HDAC9 are sensitized to cardiac stress signals. Here we report that mice lacking HDAC5 display a similar cardiac phenotype and develop profoundly enlarged hearts in response to pressure overload resulting from aortic constriction or constitutive cardiac activation of calcineurin, a transducer of cardiac stress signals. In contrast, mice lacking either HDAC5 or HDAC9 show a hypertrophic response to chronic beta-adrenergic stimulation identical to that of wild-type littermates, suggesting that these HDACs modulate a specific subset of cardiac stress response pathways. We also show that compound mutant mice lacking both HDAC5 and HDAC9 show a propensity for lethal ventricular septal defects and thin-walled myocardium. These findings reveal central roles for HDACs 5 and 9 in the suppression of a subset of cardiac stress signals as well as redundant functions in the control of cardiac development.  相似文献   

14.
Cardiac hypertrophy is positively regulated by MicroRNA miR-23a   总被引:1,自引:0,他引:1  
  相似文献   

15.
16.
17.
18.
19.
Left ventricle hypertrophy is induced by a number of stimuli and can lead to cardiomyopathy and heart failure. The hypertrophic response is achieved by enlargement of the cardiac myocytes and is regulated by multiple signaling pathways, with the D-type cyclins playing a crucial role. Induction of cyclin D in adult cardiac myocytes leads to activation of cyclin-dependent kinases 4 and 6 and a partial progress through the cell cycle. Therefore, these pathways are attractive therapeutic target for treatment of heart failure and hypertrophy. We discuss the activity of cyclin D and other cell cycle regulatory proteins in left ventricle hypertrophy and whether the hypertrophic signaling pathways converge at the D-type cyclins.  相似文献   

20.
Left ventricle hypertrophy is induced by a number of stimuli and can lead to cardio-myopathy and heart failure. The hypertrophic response is achieved by enlargement of the cardiac myocytes and is regulated by multiple signaling pathways, with the D-type cyclins playing a crucial role. Induction of cyclin D in adult cardiac myocytes leads to activation of cyclin-dependent kinases 4 and 6 and a partial progress through the cell cycle. Therefore, these pathways are attractive therapeutic target for treatment of heart failure and hypertrophy. We discuss the activity of cyclin D and other cell cycle regulatory proteins in left ventricle hypertrophy and whether the hypertrophic signaling pathways converge at the D-type cyclins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号