首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of decompression on the structure of Methanococcus jannaschii, an extremely thermophilic deep-sea methanogen, was studied in a novel high-pressure, high-temperature bioreactor. The cell envelope of M. jannaschii appeared to rupture upon rapid decompression (ca. 1 s) from 260 atm of hyperbaric pressure. When decompression from 260 atm was performed over 5 min, the proportion of ruptured cells decreased significantly. In contrast to the effect produced by decompression from hyperbaric pressure, decompression from a hydrostatic pressure of 260 atm did not induce cell lysis.  相似文献   

2.
The deep-sea archaeon Methanococcus jannaschii was grown at 86 degrees C and under 8, 250, and 500 atm (1 atm = 101.29 kPa) of hyperbaric pressure in a high-pressure, high-temperature bioreactor. The core lipid composition of cultures grown at 250 or 500 atm, as analyzed by supercritical fluid chromatography, exhibited an increased proportion of macrocyclic archaeol and corresponding reductions in aracheol and caldarchaeol compared with the 8-atm cultures. Thermal analysis of a model core-lipid system (23% archaeol, 37% macrocyclic archaeol, and 40% caldarchaeol) using differential scanning calorimetry revealed no well-defined phase transition in the temperature range of 20 to 120 degrees C. Complementary studies of spin-labeled samples under 10 and 500 atm in a special high-pressure, high-temperature electron paramagnetic resonance spectroscopy cell supported the differential scanning calorimetry phase transition data and established that pressure has a lipid-ordering effect over the full range of M. jannaschii's growth temperatures. Specifically, pressure shifted the temperature dependence of lipid fluidity by ca. 10 degrees C/500 atm.  相似文献   

3.
4.
目的:研究高压氧预处理对减压病大鼠肺组织的影响及其意义。方法:SD大鼠30只,随机分为正常对照(CN)组,高压氧预处理(HBO)组,减压(DCS)组,减压组采用20min匀速升压至7.0ATA,停留20min使大鼠充分换气,2min内快速减压常压方案。减压24h后观察肺组织中谷胱甘肽过氧化物酶(GPx)、丙二醛(MDA)、超氧化物歧化酶(SOD)的变化;并通过HE染色观察肺组织病理学变化。结果:减压组肺泡腔不够完整,肺泡破裂融合,肺泡壁增厚,有中度炎性细胞浸润,高压氧组与减压组相比,病理改变明显减轻;与对照组相比,单纯减压使大鼠肺组织GPx、MDA升高,SOD降低,高压氧预处理组GPx、MDA降低,SOD降低升高;高压氧组与减压组相比GPx、MDA下降,SOD升高(P<0.05)。结论:高压氧预处理对减压病大鼠肺组织具有一定的保护作用。  相似文献   

5.
Using a new approach, we estimated the physical strength of the cell envelopes of three species of gram-negative, gas vacuolate bacteria (Microcyclus aquaticus, Prosthecomicrobium pneumaticum, and Meniscus glaucopis). Populations of cells were slowly (0.5 to 2.9 h) saturated with argon, nitrogen, or helium to final pressures up to 100 atm (10, 132 kPa). The gas phases of the vesicles remained intact and, upon rapid (1 to 2 s) decompression to atmospheric pressure, expanded and ruptured the cells; loss of colony-forming units was used as an index of rupture. Because the cell envelope is the cellular component most likely to resist the expanding intracellular gas phase, its strength can be estimated from the minimum gas pressures that produce rupture. The viable counts indicated that these minimum pressures were between 25 and 50 atm; the majority of the cell envelopes were ruptured at pressures between 50 and 100 atm. Cells in which the gas vesicles were collapsed and the gas phases were effectively dissolved by rapid compression tolerated decompression from much higher gas saturations. Cells that do not normally possess gas vesicles (Escherichia coli) or that had been prevented from forming them by addition of L-lysine to the medium (M. aquaticus) were not harmed by decompression from gas saturation pressures up to 300 atm.  相似文献   

6.
We describe a high-pressure reactor system suitable for simultaneous hyperbaric and hydrostatic pressurization of bacterial cultures at elevated temperatures. For the deep-sea thermophile ES4, the growth rate at 500 atm (1 atm = 101.29 kPa) and 95 degrees C under hydrostatic pressure was ca. three times the growth rate under hyperbaric pressure and ca. 40% higher than the growth rate at 35 atm.  相似文献   

7.
We describe a high-pressure reactor system suitable for simultaneous hyperbaric and hydrostatic pressurization of bacterial cultures at elevated temperatures. For the deep-sea thermophile ES4, the growth rate at 500 atm (1 atm = 101.29 kPa) and 95 degrees C under hydrostatic pressure was ca. three times the growth rate under hyperbaric pressure and ca. 40% higher than the growth rate at 35 atm.  相似文献   

8.
A system for applying hydrostatic pressures up to 10,000 atm upon cell suspensions for time intervals from a few seconds to several minutes is described. The K+ content of toad red blood cells was used as an indication of the degree of membrane injury induced by the hyperbaric condition. It is practically not affected for pressures up to 2000 atm in experiments lasting 3 or 10 min. falling markedly for pressures of 5000 or 8000 atm. The duration of the applied pressure and its intensity are additive regarding the magnitude of the baroinjury. Glycerol, a cryoprotective agent. at 4.0 M, confers partial but significant baroprotection, which is characterized by a smaller decline of the cell K+ content of the glycerol-treated cells in comparison to the untreated cells, submitted to the same conditions of pressure and time. Baroinjury is compatible with a reversible mechanism. However, irreversible membrane damage occurs for a pressure of 8000 atm applied for 10 min. Baroinjury is discussed in terms of alterations of the lipid leaflet or of membrane proteins, and the mechanism of baroprotection in terms of stabilization of membrane components, under the effect of high pressure, by the association of glycerol with the proteins or the phosphate head groups of phospholipids.  相似文献   

9.
A probabilistic model was used to predict decompression sickness (DCS) outcome in pigs during exposures to hyperbaric H(2) to quantify the effects of H(2) biochemical decompression, a process in which metabolism of H(2) by intestinal microbes facilitates decompression. The data set included 109 exposures to 22-26 atm, ca. 88% H(2), 9% He, 2% O(2), 1% N(2), for 0.5-24 h. Single exponential kinetics described the tissue partial pressures (Ptis) of H(2) and He at time t: Ptis = integral (Pamb - Ptis). tau(-1) dt, where Pamb is ambient pressure and tau is a time constant. The probability of DCS [P(DCS)] was predicted from the risk function: P(DCS) = 1 - e(-r), where r = integral (Ptis(H(2)) + Ptis(He) - Thr - Pamb). Pamb(-1) dt, and Thr is a threshold parameter. Inclusion of a parameter (A) to estimate the effect of H(2) metabolism on P(DCS): Ptis(H(2)) = integral (Pamb - A - Ptis(H(2))). tau(-1) dt, significantly improved the prediction of P(DCS). Thus lower P(DCS) was predicted by microbial H(2) metabolism during H(2) biochemical decompression.  相似文献   

10.
Tetrahymena was grown at up to 260 atm to see if the bilayer-ordering effect of pressure increased the proportion of unsaturated fatty acids in the membrane lipids. Both whole cells and microsomes showed no such change in their fatty acid composition. The most striking effect was seen in the former which showed a pressure-dependent increase in the proportion of C16:0 in relation to C16:Δ9. Homeoviscous adaptation to pressure does not appear to occur in this cell.  相似文献   

11.
The effects of high oxygen pressure on pyruvate dehydrogenase (pyruvate: lipoate oxidoreductase (decarboxylating and acceptor-acylating), EC 1.2.4.1) activity, tissue concentration of ATP, and CO2 production from glucose were studied in rat brain cortical slices. The increase in pyruvate dehydrogenase activity and the lowering of cellular ATP, occurring during potassium-induced depolarization at 1 atm of oxygen, were reversed by increasing the oxygen pressure to 5 atm. When brain slices were incubated at 1 atm oxygen with [U-14C]glucose, a high potassium medium approximately doubled the production of 14CO2. Oxygen at 5 atm abolished this potassium-dependent increase in 14CO2 production with no significant effect on glucose oxidation in normal Krebs-Ringer phosphate medium. Adding 4 atm helium to 1 atm oxygen did not interfere with the ability of potassium ions to activate pyruvate dehydrogenase, lower ATP, or increase glucose oxidation. The results show that toxic effects of hyperbaric oxygen, not manifest in "resting" tissue, may be revealed during stress such as potassium depolarization. The site of the toxic effects of oxygen is probably the cell membrane where excess oxygen appears to interfere with the action of the sodium pump, calcium transport or other processes stimulated by increased concentrations of extracellular potassium.  相似文献   

12.
The immobilization stress and oxygen effect under pressure of 0.8 atm (hyperbaric oxygenation) considerably activate lipid peroxidation both in the blood serum and rat liver mitochondria. Inhibition and partial separation of oxidative phosphorylation being more pronounced with intensification of lipid peroxidation are simultaneously observed.  相似文献   

13.
We describe the properties of a hyperthermophilic, barophilic protease from Methanococcus jannaschii, an extremely thermophilic deep-sea methanogen. This enzyme is the first protease to be isolated from an organism adapted to a high-pressure-high-temperature environment. The partially purified enzyme has a molecular mass of 29 kDa and a narrow substrate specificity with strong preference for leucine at the P1 site of polypeptide substrates. Enzyme activity increased up to 116(deg)C and was measured up to 130(deg)C, one of the highest temperatures reported for the function of any enzyme. In addition, enzyme activity and thermostability increased with pressure: raising the pressure to 500 atm increased the reaction rate at 125(deg)C 3.4-fold and the thermostability 2.7-fold. Spin labeling of the active-site serine revealed that the active-site geometry of the M. jannaschii protease is not grossly different from that of several mesophilic proteases; however, the active-site structure may be relatively rigid at moderate temperatures. The barophilic and thermophilic behavior of the enzyme is consistent with the barophilic growth of M. jannaschii observed previously (J. F. Miller et al., Appl. Environ. Microbiol. 54:3039-3042, 1988).  相似文献   

14.
1. Two species of benthic fish from 900 m depths (90 atm pressure), Trachyscorpia cristulata echinata and Synaphobranchus kaupi, are shown to be adapted to their normal, high ambient pressure. 2. Their condition improves when they are restored to their normal pressure after experiencing decompression in a trawl and they undergo convulsions at 150 atm. 3. This contrasts with the response of shallow water species (Salmo salar, Pleuronectes platessa, Anguilla anguilla and Gadus morhua) which convulse at 93-114 atm and become immobilized and rigid at 150 atm.  相似文献   

15.
O R Brown  D Boehme  F Yein 《Microbios》1978,23(93-94):175-192
The growth-inhibitory effect of 4.2 atm of hyperbaric oxygen for Escherichia coli was strongly influenced by available nutrients. A pattern of protection was achieved with various carbohydrate intermediates which was consistent with oxygen-induced poisoning of fructose-1,6-diphosphatase and of enzymes required in the pentose shunt and for converting galactose into glucose. Two of these sites have not been investigated further, but direct evidence was obtained that purified fructose-1,6-diphosphatase was inactivated in vitro by superoxide anion, but not by molecular oxygen at hyperbaric pressure (4.2 atm). Poisioning of fructose-1,6-diphosphatase by metabolically generated oxygen radicals, such as superoxide ion, would have deleterious effects for E. coli in media where synthesis of glucose by reverse glycolysis is required, and presumably for cells of higher organisms, including man.  相似文献   

16.
The effects of high oxygen pressure on pyruvate dehydrogenase (pyruvate: lipoate oxidoreductase (decarboxylating and acceptor-acylating), EC 1.2.4.1) activity, tissue concentration of ATP, and CO2 production from glucose were studied in rat brain cortical slices. The increase in pyruvate dehydrogenase activity and the lowering of cellular ATP, occurring during potassium-induced depolarization at 1 atm of oxygen, were reversed by increasing the oxygen pressure to 5 atm. When brain slices were incubated at 1 atm oxygen with [U-14C]glucose, a high potassium medium approximately doubled the production of 14CO2. Oxygen at 5 atm abolished this potassium-dependent increase in 14CO2 production with no significant effect on glucose oxidation in normal Krebs-Ringer phosphate medium. Adding 4 atm helium to 1 atm oxygen did not interfere with the ability of potassium ions to activate pyruvate dehydrogenase, lower ATP, or increase glucose oxidation. The results show that toxic effects of hyperbaric oxygen, not manifest in “resting” tissue, may be revealed during stress such as potassium depolarization. The site of the toxic effects of oxygen is probably the cell membrane where excess oxygen appears to interfere with the action of the sodium pump, calcium transport or other processes stimulated by increased concentrations of extracellular potassium.  相似文献   

17.
The marine archaebacterium Methanococcus jannaschii was studied at high temperatures and hyperbaric pressures of helium to investigate the effect of pressure on the behavior of a deep-sea thermophile. Methanogenesis and growth (as measured by protein production) at both 86 and 90°C were accelerated by pressure up to 750 atm (1 atm = 101.29kPa), but growth was not observed above 90°C at either 7.8 or 250 atm. However, growth and methanogenesis were uncoupled above 90°C, and the high-temperature limit for methanogenesis was increased by pressure. Substantial methane formation was evident at 98°C and 250 atm, whereas no methane formation was observed at 94°C and 7.8 atm. In contrast, when argon was substituted for helium as the pressurizing gas at 250 atm, no methane was produced at 86°C. Methanogenesis was also suppressed at 86°C and 250 atm when the culture was pressurized with a 4:1 mix of H2 and CO2, although limited methanogenesis did occur when the culture was pressurized with H2.  相似文献   

18.
A cost effective, simple, portable hyperbaric chamber was constructed from polyvinyl chloride to aid in the collection of adult rockfishes Sebastes sp. to hold as broodstock. This system was designed to recompress fishes quickly once brought to the surface on hook and line, and to allow for decompression over a period of days. The hyperbaric chamber is capable of continuous stable operation at <1 033 515 N m−2 and can accommodate fishes up to 91·4 cm in length and 26·8 cm in diameter. Pressure in the chamber is maintained by a Goulds Booster pump that delivers continuous pressure and supplies sea water at a rate of 3·8 to 7·6 l min−1 to as many as four chambers. The hyperbaric chamber operated very effectively and allowed successful decompression of 12 cowcod Sebastes levis captured at depths of 90·2 to 146·3 m.  相似文献   

19.
In H(2) biochemical decompression, H(2)-metabolizing intestinal microbes remove gas stored in tissues of animals breathing hyperbaric H(2), thereby reducing decompression sickness (DCS) risk. We hypothesized that increasing intestinal perfusion in pigs would increase the activity of intestinal Methanobrevibacter smithii, lowering DCS incidence further. Pigs (Sus scrofa, 17-23 kg, n = 20) that ingested caffeine (5 mg/kg) increased O(2) consumption rate in 1 atm air by ~20% for at least 3 h. Pigs were given caffeine alone or caffeine plus injections of M. smithii. Animals were compressed to 24 atm (20.5-23.1 atm H(2), 0.3-0.5 atm O(2)) for 3 h, then decompressed and observed for signs of DCS. In previous studies, DCS incidence in animals without caffeine treatment was significantly (P < 0.05) lower with M. smithii injections (7/16) than in controls (9/10). However, contrary to our hypothesis, DCS incidence was marginally higher (P = 0.057) in animals that received caffeine and M. smithii (9/10) than in animals that received caffeine but no M. smithii (4/10). More information on gas kinetics is needed before extending H(2) biochemical decompression to humans.  相似文献   

20.
The rate of cell division of Tetrahymena growing in an observational high pressure vessel was measured at selected pressures of helium, hydrogen and at high hydrostatic pressure. Pressures greater than 100 atm reduced the rate of division, but the gases inhibited division to a lesser degree than pure hydrostatic pressure. Hydrogen's effect was distinguishable from that of hydrostatic pressure at 130 atm or more, while helium's effect appeared at 175 atm. These inert gases probably counteract the action of pressure by stabilising apolar pressure-labile targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号