首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This report summarizes the recent rapid development of research on neutral endopeptidase 24.11 (enkephalinase; NEP) and on two other metalloenzymes, meprin and endopeptidase 24.15. NEP cleaves a variety of active peptides, including enkephalins, at the amino side of hydrophobic amino acids. The cDNA for human, rat, and rabbit NEP has been cloned and the deduced protein sequences revealed a high degree of homology (93-94%). Site-directed mutagenesis proved that an active site glutamic acid is involved in catalysis and two active site histidines are responsible for binding the zinc cofactor. Although NEP was originally discovered in the kidney, it is widely distributed in the body including specific structures in the central nervous system, lung, male genital tract, and intestine and in neutrophils, fibroblasts, and epithelial cells. In tissues and cells NEP is bound to plasma membrane through a hydrophobic membrane-spanning domain near the NH2 terminus, but it is present in soluble form in urine and blood. In addition to enkephalins, NEP cleaves kinins, chemotactic peptide, atrial natriuretic factor (ANF), and substance P in vivo. NEP in the lung is a major inactivator of substance P, which constricts the airway smooth muscles. Because of the possible involvement of NEP in the metabolism of opioid peptides and the cardiac hormone ANF, orally active inhibitors have been synthesized. Compounds that inhibit both aminopeptidase and NEP were reported to prolong the analgesic effects of enkephalins. Other inhibitors given per os prolonged the renal effects of exogenous ANF. A newly synthesized specific inhibitor of NEP was also active in animal experiments as an analgesic. Studies on the structure and function of NEP should lead to further development of therapeutically applicable inhibitors.  相似文献   

2.
Using a cytofluorimetric assay, we found that immunocytes of the mollusc, Mytilus galloprovincialis, express CD10, a surface antigen known to be identical to neutral endopeptidase-24.11 (NEP). The spectrofluorimetric analysis demonstrates that the growth factors PDGF-AB and TGF-beta1 provoke an increase in NEP-like activity in membrane preparations from the immunocytes, but have no effect on the soluble form in the serum. On the other hand, computer-assisted microscopic image analysis reveals that NEP deactivates the PDGF-AB- and TGF-beta1-induced shape changes in immunocytes. However, Western blots show that, in solution, NEP does not cleave PDGF-AB or TGF-beta1, indicating that the inactivation is not due to proteolysis. These results suggest a functional interplay in invertebrate immunocytes between growth factors and NEP, as previously shown in vertebrate cells.  相似文献   

3.
The breakdown of endothelin-1 by crude membrane preparations of human kidney and choroid plexus was investigated. 125I-labeled endothelin-1 was degraded by both tissues in a phosphoramidon-sensitive way, suggesting a role of endopeptidase 24.11 in the in vitro metabolism of this peptide. Identification of the cleavage sites of purified human renal endopeptidase 24.11 in the sequence of endothelin-1 revealed that bonds involving the amino side of the hydrophobic amino acids (Ser4, Leu6, Val12, Phe14, His16, Leu17, Ile19) were susceptible to cleavage. Endothelin-1 appears thus to be degraded at multiple sites by endopeptidase 24.11 in vitro, producing inactive fragments.  相似文献   

4.
N M Hooper  A J Turner 《FEBS letters》1985,190(1):133-136
The major site of hydrolysis was the Gly8-Leu9 bond. Angiotensin converting enzyme (peptidyl dipeptidase A, EC 3.4.15.1) from pig kidney hydrolysed substance P releasing the C-terminal tripeptide Gly-Leu-MetNH2 but failed to hydrolyse neurokinin B. Pig brain striatal synaptic membranes hydrolysed neurokinin B producing a similar pattern of products as did endopeptidase-24.11. Substantial inhibition of this activity was achieved with the selective inhibitor phosphoramidon. A combination of phosphoramidon and bestatin abolished the hydrolysis of neurokinin B by synaptic membranes. Thus, a bestatin-sensitive aminopeptidase may play a role in the synaptic metabolism of neurokinin B in addition to endopeptidase-24.11. This aminopeptidase appears to be distinct from aminopeptidase N (EC 3.4.11.2).  相似文献   

5.
Neutral endopeptidase (EC 3.4.24.11, NEP) is an integral membrane protein of human neutrophils. NEP is identical with the common acute lymphoblastic leukemia antigen (CALLA) of leukemic cells. The expression of NEP on the surface of neutrophils is down-regulated by endocytosis which can be induced by phorbol 12-myristate 13-acetate (PMA) at 37 degrees C. The activity of the enzyme on the surface of intact cells decreases by 76% within 5 min. The activity can be recovered, however, if the cells are lysed within 5 min of the endocytosis. After 30 min, only 32% of the NEP activity is present in the neutrophil lysates. The loss of activity is presumably due to proteolytic inactivation. Diacylglycerol and monoclonal antibody to CALLA/NEP also induce internalization of NEP. PMA induces endocytosis even at 4 degrees C, but NEP is not inactivated at that temperature. The disappearance of NEP activity after adding PMA was inhibited by various agents. Among the most active were the phospholipase inhibitor 4-bromophenacyl bromide and a combination of the serine protease and cathepsin inhibitors, diisopropylfluorophosphate and N-ethylmaleimide. The employment of fluorescent monoclonal antibody confirmed the down-regulation and internalization of NEP antigen on the neutrophils. Since NEP inactivates chemotactic peptides and thereby affects chemotaxis of neutrophils (Painter, R. G., Dukes, R., Sullivan, J., Carter, R., Erd?s, E. G., and Johnson, A. R. (1988) J. Biol. Chem. 263, 9456-9461), the down-regulation of NEP activity on the cell membrane may modulate the function of these cells in inflammation.  相似文献   

6.
Endopeptidase-24.18 (endopeptidase-2, EC 3.4.24.18, E-24.18) is a Zn-ectoenzyme of rat renal and intestinal microvillar membranes exhibiting an oligomeric structure, alpha 2-beta 2. The primary structure of the alpha-subunit of E-24.18 has been defined by molecular cloning and its expression mapped in rat kidney by in situ hybridization. A 2.9-kb cDNA coding for the alpha-subunit was isolated and sequenced. It had an open reading frame of 2,244 base pairs coding for a type I membrane protein of 748 amino acids. The deduced amino acid sequence showed 87% identity with that of meprin A, a mouse metallo-endopeptidase, sharing common properties with the rat enzyme, and 85% identity with the human intestinal enzyme, 'PABA-peptide hydrolase'. Northern blot analysis revealed the alpha-subunit to be encoded by a single mRNA species of 3.2-kb. In situ hybridization performed on rat kidney showed a co-localization of E-24.18 with endopeptidase-24.11 in proximal tubules of juxtamedullary nephrons, suggesting that the two enzymes have similar or complementary physiological functions in kidney.  相似文献   

7.
Membrane preparations from striatum of pig brain contain endopeptidase activity towards iodoinsulin B-chain. Only 50% of the hydrolysis of insulin B-chain is inhibitable by phosphoramidon, and DEAE-cellulose chromatography can resolve the phosphoramidon-sensitive and -insensitive activities. The former activity (now designated 'endopeptidase-24.11') is responsible for hydrolysis of [D-Ala2,Leu5]enkephalin and is identical with an enzyme in brain that has previously been referred to as 'enkephalinase'. Pig striatal endopeptidase-24.11 has now been purified to homogeneity in a single step by immunoadsorbent chromatography using a monoclonal antibody. The overall purification was 23 000-fold, with a yield of 30%. The brain enzyme appears to be identical with kidney endopeptidase-24.11 in amino acid composition as well as by immunological and kinetic criteria. However, it differs slightly in apparent subunit size (Mr = 87 000), attributable to differences in glycosylation.  相似文献   

8.
Attempts to change enzyme specificity by charge polarity reversal have so far met with little success, probably due to a destabilization of the resulting ion pair in an environment naturally optimized for the inverted pair. In the zinc metallopeptidase neutral endopeptidase-24.11 (EC 3.4.24.11), Arg102, involved in substrate binding, is probably located at the edge of the active site (Bateman, R.C., Jr., Kim, Y.-A., Slaughter, C., and Hersh, L.B. (1990) J. Biol. Chem. 265, 8365-8368; Beaumont, A., Le Moual, H., Boileau, G., Crine, P., and Roques, B.P. (1991) J. Biol. Chem. 266, 214-220). This environment may be favorable for polarity reversal, as in water the energies of reverse ion pairs would be identical. We show here that, while mutating Arg102 to Glu reduces the specificity of a C-terminally negatively charged substrate 16-fold, it increases that of a substrate with an optimally positioned positive charge 29-fold. The concept of charge polarity reversal can be extended to other zinc metallopeptidases, and the mutated enzyme could also have applications in the enantiomeric separation of unnatural amino acids.  相似文献   

9.
An organ culture employing slices of renal-cortex tissue from piglets of the Yucatan strain was used to study the biogenesis of four microvillar peptidases: endopeptidase-24.11 (EC 3.4.24.11), dipeptidyl peptidase IV (EC 3.4.14.5), aminopeptidase N (EC 3.4.11.2) and aminopeptidase A (EC 3.4.11.7). The viability of the culture system was confirmed by the preservation of ultrastructural integrity and by an unchanged uptake of [3H]alanine into cells during the period of the experiments. After labelling with [35S]methionine, treatment with Mg2+ yielded two fractions, one containing microvilli and another, the Mg2+ pellet, containing intracellular and basolateral membranes. The labelled forms of the peptidases, isolated by immunoprecipitation, were analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and fluorography. The Mg2+ pellet contained the earliest detectable forms of the enzymes. In each case, a polypeptide of lower Mr than the mature form and sensitive to treatment with endo-beta-N-acetylglucosaminidase H was the first form to be detected. These high-mannose forms were followed, about 30 min after the pulse, by a complex glycosylated form of higher Mr. Only the latter form was observed in microvilli and then only after 90 min of the chase period. A quantitative study of dipeptidyl peptidase IV showed that the forms observed in the Mg2+ pellet were precursors of those in the microvillar fraction. No labelled forms were observed in the cytosol. All four peptidases were thus synthesized within membrane compartments and glycosylated in two steps before assembly in microvilli.  相似文献   

10.
11.
The effect of the arginine-specific reagents phenylglyoxal and butanedione on the activity of neutral endopeptidase 24.11 ("enkephalinase") was determined. Inactivation of the enzyme by butanedione is completely protected by methionine-enkephalin, but only partially protected by methionine-enkephalinamide. In contrast, phenylglyoxal inactivation of the enzyme exhibits saturation kinetics with a Kd of 20 mM. The enzyme is only partially protected against phenylglyoxal inactivation by both methionine-enkephalin and its amide, indicating that phenylglyoxal reacts at two sites. Reaction of the enzyme with phenylglyoxal in the presence of saturating methionine-enkephalin involves the direct reaction of the reagent with the enzyme-substrate complex. Enzyme treated with butanedione or with phenylglyoxal (at site 1) exhibits a 3-5 decrease in substrate binding with little change in kcat. In contrast, reaction with phenylglyoxal in the presence of saturating methionine-enkephalin shows little change in substrate binding but a 4-fold decrease in kcat. Enzyme inactivation involves the incorporation of approximately 1 mol of phenylglyoxal/enzyme subunit in the absence of methionine-enkephalin and approximately 2.5 mol of phenylglyoxal/enzyme subunit in the presence of saturating methionine-enkephalin. These results suggest that an arginine residue on the enzyme is involved in substrate binding.  相似文献   

12.
The hydrolysis of endothelins by neutral endopeptidase 24.11 (enkephalinase)   总被引:23,自引:0,他引:23  
Endothelins 1-3 are a family of 21-amino acid peptides whose structure consists of two rings formed by intra-chain disulfide bonds and a linear "COOH-terminal tail." These peptides were originally described on the basis of their potent vasoconstrictor activity. The hydrolytic inactivation of endothelin action has recently been implicated to be attributed, at least in part, to the enzyme neutral endopeptidase 24.11 (Scicli, A. G., Vijayaraghavan, J., Hersh, L., and Carretero, O. (1989) Hypertension 14, 353). The kinetic properties and mode of hydrolysis of the endothelins by this enzyme are reported in this study. The Km for endothelins 1 and 3 hydrolysis is approximately 2 microM while endothelin2 exhibits a 5-fold higher Km. Endothelins 1 and 2 exhibit similar Vmax values while endothelin3 is hydrolyzed considerably more slowly. The initial cleavage site in endothelin1 is at the Ser5-Leu6 bond located within one of the cyclic structures. Thermolysin, a bacterial neutral endopeptidase with a similar substrate specificity to neutral endopeptidase 24.11 initially cleaves endothelin1 between His16-Leu17 which lies within the COOH-terminal linear "tail" portion of the molecule. The cleavage of endothelins 2 and 3 by neutral endopeptidase 24.11 differs from that observed with endothelin1 in that cleavage of these endothelins occurs at Asp18-Ile19 within the linear COOH-terminal tail structure. These results demonstrate that the endothelins are good substrates for neutral endopeptidase 24.11 and suggest that their mode of cleavage is dependent upon both amino acid sequence as well as peptide conformation.  相似文献   

13.
Endopeptidase-24.11, an integral microvillar membrane enzyme, exists in differently glycosylated forms when purified from pig kidney and intestine [Fulcher, Chaplin & Kenny (1983) Biochem. J. 215, 317-323]. When these glycoproteins, and another form of the kidney enzyme prepared from the Yucatan dwarf strain of piglet, were treated, under controlled conditions, with trifluoromethanesulphonic acid, the proteins were freed of carbohydrate and all had the same apparent subunit Mr (77 000) even though the untreated forms varied from Mr 89 000 to Mr 95 000.  相似文献   

14.
Neutral endopeptidase (EC 3.424.11, NEP) is a membrane-bound zinc-metallopeptidase. The substrate specificity and catalytic activity of NEP resemble those of thermolysin, a bacterial zinc-metalloprotease. Comparison of the primary structure of both enzymes suggests that several amino acids present in the active site of thermolysin are also found in NEP. Using site-directed mutagenesis of the cDNA encoding the NEP sequence, we have already shown that His residues 583 and 587 are two of the three zinc ligands. In order to identify the third zinc ligand, we have substituted Val or Asp for Glu616 or Glu646. Val616 NEP showed the same kinetic parameters as the non-mutated NEP. In contrast, the mutant Val646 NEP was almost completely devoid of catalytic activity and unable to bind the tritiated inhibitor [3H]N-[2(R,S)-3-hydroxyaminocarbonyl-2-benzyl-1-oxypropyl]gl ycine, the binding of which is dependent on the presence of the zinc ion. Replacing Glu for Asp at position 646 conserved the negative charge, and the mutant enzyme exhibited the same Km value as the non-mutated enzyme, but kCat was decreased to less than 3% of the value of the non-mutated enzyme. When compared to the non-mutated enzyme Asp646 NEP showed a higher susceptibility to chelating agents, but bound the tritiated inhibitor with the same affinity. Taken together, these observations strongly suggest that Glu646 of NEP is the third zinc-coordinating residue and is equivalent to Glu166 in thermolysin.  相似文献   

15.
16.
The circulating form of atrial natriuretic factor is a 28-residue peptide containing a 17-residue disulphide-linked ring. It has important actions on the kidney, largely on its haemodynamics, and at other sites including the adrenal cortex and CNS. It has a short half-life in vivo and is rapidly inactivated when incubated with kidney microvillar membranes. Of the battery of peptidases present in that membrane, only one, endopeptidase-24.11, is responsible for initiating the attack, and this commences with hydrolysis of the Cys7-Phe8 bond within the ring. Hydrolysis at this and other points has been shown to inactivate the peptide and this information has pointed the way to the synthesis of resistant analogues.  相似文献   

17.
Neutral endopeptidase-24.11 (EC 3.4.24.11) (NEP) is a transmembrane metallo-endopeptidase that has been shown to be involved in the degradation of several mammalian neuropeptides, including enkephalins. The enzyme has recently been found to be specifically associated with the axonal and synaptic membranes of neurons in the globus pallidus of the pig brain. This result suggests that neurons must possess mechanisms for targeting NEP to particular membrane domains. Study of these mechanisms would greatly benefit from the existence of an established neuron-like cell line capable of expressing and targeting NEP to specific membrane domains. For this reason we have used a retroviral vector containing the cDNA for rabbit kidney NEP to express this enzyme in a mouse neuroblastoma cell line (Neuro2A). Labelling of the cell surface with an antibody coupled to colloidal gold particles and examination of the cells by electron microscopy revealed a non-uniform distribution of NEP at the surface of the cells, the protein being preferentially associated with the membrane of neurites compared with the cell body. This observation suggests that Neuro2A cells possess a mechanism for targeting NEP to specific domains of the plasma membrane. This cell line could thus constitute a good model for studying the mechanisms responsible for targeting this enzyme to specialized regions of the plasma membrane.  相似文献   

18.
Endopeptidase 24.11 (enkephalinase) is a membrane bound protease involved in the degradation of neuropeptides and hormones. Its presence on cells of the thymus and lymph nodes suggests a possible role in the inactivation of immune system mediators. IL-1 (both purified IL-1 beta and an IL-1-rich supernatant) bioactivity, as measured in the thymocyte proliferation assay, was found to disappear upon incubation with endopeptidase 24.11. This inactivation was dependent on both incubation time and enzyme concentration. IL-1 beta was protected by the presence in the incubation medium of phosphoramidon, a specific inhibitor of endopeptidase 24.11. After incubation of IL-1-rich supernatant with the enzyme, the thymocyte proliferation activity could be restored by adding purified IL-1 beta to the samples, indicating that neither the enzyme nor the buffer had any toxic effect on thymocyte proliferation. In the same experimental conditions, IL-2 activity was not destroyed by endopeptidase 24.11.  相似文献   

19.
Both endopeptidase-24.11 and peptidyl dipeptidase A have previously been shown to hydrolyse the neuropeptide substance P. The structurally related peptide neurokinin A is also shown to be hydrolysed by pig kidney endopeptidase-24.11. The identified products indicated hydrolysis at two sites, Ser5-Phe6 and Gly8-Leu9, consistent with the known specificity of the enzyme. The pattern of hydrolysis of neurokinin A by synaptic membranes prepared from pig striatum was similar to that observed with purified endopeptidase-24.11, and hydrolysis was substantially abolished by the selective inhibitor phosphoramidon. Peptidyl dipeptidase A purified from pig kidney was shown to hydrolyse substance P but not neurokinin A. It is concluded that endopeptidase-24.11 has the general capacity to hydrolyse and inactivate the family of tachykinin peptides, including substance P and neurokinin A.  相似文献   

20.
alpha-Human atrial natriuretic peptide (hANP) is secreted by the heart and acts on the kidney to promote a strong diuresis and natriuresis. In vivo it has been shown to be catabolized partly by the kidney. Crude microvillar membranes of human kidney degrade 125I-ANP at several internal bonds generating metabolites among which the C-terminal fragments were identified. Formation of the C-terminal tripeptide was blocked by phosphoramidon, indicating the involvement of endopeptidase-24.11 in this cleavage. Subsequent cleavages by aminopeptidase(s) yielded the C-terminal dipeptide and free tyrosine. Using purified endopeptidase 24.11, we identified seven sites of hydrolysis in unlabelled alpha-hANP: the bonds Arg-4-Ser-5, Cys-7-Phe-8, Arg-11-Met-12, Arg-14-Ile-15, Gly-16-Ala-17, Gly-20-Leu-21 and Ser-25-Phe-26. However, the bonds Gly-16-Ala-17 and Arg-4-Ser-5 did not fulfil the known specificity requirements of the enzyme. Cleavage at the Gly-16-Ala-17 bond was previously observed by Stephenson & Kenny [(1987) Biochem. J. 243, 183-187], but this is the first report of an Arg-Ser bond cleavage by this enzyme. Initial attack of alpha-hANP by endopeptidase-24.11 took place at a bond within the disulphide-linked loop and produced a peptide having the same amino acid composition as intact ANP. The bond cleaved in this metabolite was determined as the Cys-7-Phe-8 bond. Determination of all the bonds cleaved in alpha-hANP by endopeptidase-24.11 should prove useful for the design of more stable analogues, which could have therapeutic uses in hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号