首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Possible steps in the folding of bacteriorhodopsin are revealed by studying the refolding and interaction of two fragments of the molecule reconstituted in lipid vesicles. (1) Two denatured bacteriorhodopsin fragments have been purified starting from chymotryptically cleaved bacteriorhodopsin. Cleaved bacteriorhodopsin has been renatured from a mixture of the fragments in Halobacterium lipids/retinal/dodecyl sulfate solution following removal of dodecyl sulfate by precipitation with potassium. The renatured molecules have the same absorption spectrum and extinction coefficient as native cleaved bacteriorhodopsin. They are integrated into small lipid vesicles as a mixture of monomers and aggregates. Extended lattices form during the partial dehydration process used to orient samples for X-ray and neutron crystallography. (2) Correct refolding of cleaved bacterioopsin occurs upon renaturation in the absence of retinal. Regeneration of the chromophore and reformation of the purple membrane lattice are observed following subsequent addition of all-trans retinal. (3) The two chymotryptic fragments have been reinserted separately into lipid vesicles and refolded in the absence of retinal. Circular dichroism spectra of the polypeptide backbone transitions indicate that they have regained a highly alpha-helical structure. The kinetics of chromophore regeneration following reassociation have been studied by absorption spectroscopy. Upon vesicle fusion, the refolded fragments first reassociate, then bind retinal and finally regenerate cleaved bacteriorhodopsin. The complex formed in the absence of retinal is kinetically indistinguishable from cleaved bacterioopsin. The refolded fragments in lipid vesicles are stable for months, both as separate entities and after reassociation. These observations provide further evidence that the native folded structure of bacteriorhodopsin lies at a free energy minimum. They are interpreted in terms of a two-stage folding mechanism for membrane proteins in which stable transmembrane helices are first formed. They subsequently pack without major rearrangement to produce the tertiary structure.  相似文献   

2.
本文研究在乾燥紫膜薄层中不同水合程度对光循环中间体M衰减速率,对园二色谱(CD)和蛋白紫外荧光光谱的影响.在相对湿度小于70%时,M衰减速率相对稳定,不随湿度改变而变化;但当湿度大于70%时,则衰减速率急剧上升.从可见区的CD光谱中,也发现了在相对湿度大于70%后,旋转强度急剧上升.蛋白紫外荧光光谱随湿度增加未发现有明显变化.实验结果说明一定水份的含量对紫膜完成质子泵功能是必不可少的,它能改变色素团的微环境,从而改变色素团和蛋白间的相互作用.  相似文献   

3.
To study their role in the structure and function of bacteriorhodopsin, three prolines, presumed to be in the membrane-embedded alpha-helices, have been individually replaced as follows: Pro-50 and Pro-91 each by Gly and Ala and Pro-186 by Ala, Gly, and Val. The mutants of Pro-50 and Pro-91 all showed normal chromophore and proton pumping. However, the rates of regeneration of the chromophore in Pro-50----Ala, Pro-91----Ala and ----Gly with all-trans-retinal were about 30-fold slower than that in the wild-type, whereas the chromophore regeneration rate in Pro-50----Gly was 10-fold faster than in the wild-type. While, Pro-186----Ala regenerated the wild-type chromophore, the mutants Pro-186----Val and Pro-186----Gly showed large blue shifts (about 80 nm) in the chromophore regenerated with all-trans-retinal and showed no apparent dark-light adaptation. Pro-186----Gly first regenerated the wild-type chromophore with 13-cis-retinal which was thermally unstable and rapidly converted to the blue-shifted chromophore obtained with all-trans-retinal. High salt concentration restored the wild-type purple chromophore in the Pro-186----Gly mutant. Thus, in this mutant, the protein interconverts between two conformational states. Pro-186----Ala and Pro-186----Gly showed about 65%, whereas Pro-186----Val showed 10-20% of the normal proton pumping.  相似文献   

4.
Deactivation of light-activated rhodopsin (metarhodopsin II) involves, after rhodopsin kinase and arrestin interactions, the hydrolysis of the covalent bond of all-trans-retinal to the apoprotein. Although the long-lived storage form metarhodopsin III is transiently formed, all-trans-retinal is eventually released from the active site. Here we address the question of whether the release results in a retinal that is freely diffusible in the lipid phase of the photoreceptor membrane. The release reaction is accompanied by an increase in intrinsic protein fluorescence (release signal), which arises from the relief of the fluorescence quenching imposed by the retinal in the active site. An analogous fluorescence decrease (uptake signal) was evoked by exogenous retinoids when they non-covalently bound to native opsin membranes. Uptake of 11-cis-retinal was faster than formation of the retinylidene linkage to the apoprotein. Endogenous all-trans-retinal released from the active site during metarhodopsin II decay did not generate the uptake signal. The data show that in addition to the retinylidene pocket (site I) there are two other retinoidbinding sites within opsin. Site II involved in the uptake signal is an entrance site, while the exit site (site III) is occupied when retinal remains bound after its release from site I. Support for a retinal channeling mechanism comes from the rhodopsin crystal structure, which unveiled two putative hydrophobic binding sites. This mechanism enables a unidirectional process for the release of photoisomerized chromophore and the uptake of newly synthesized 11-cis-retinal for the regeneration of rhodopsin.  相似文献   

5.
Little is known about the structural properties of semi-denatured membrane proteins. The current study employs laser-induced oxidative labeling of methionine side chains in combination with electrospray mass spectrometry and optical spectroscopy for gaining insights into the conformation of bacteriorhodopsin (BR) under partially denaturing conditions. The native protein shows extensive oxidation at M32, M68, and M163, which are located in solvent-accessible loops. In contrast, M20 (helix A), M56/60 (helix B), M118 (helix D), M145 (helix E), and M209 (helix G) are strongly protected, consistent with the known protein structure. Exposure of the protein to acidic conditions leads to a labeling pattern very similar to that of the native state. The absence of large-scale conformational changes at low pH is in agreement with recent crystallography data. Solubilization of BR in SDS induces loss of the retinal chromophore concomitant with collapse of the binding pocket, thereby precluding solvent access to the protein interior. Tryptophan fluorescence data confirm the presence of a large protein core that remains protected from water. However, oxidative labeling indicates partial unfolding of helices A and D in SDS. Irreversible thermal denaturation of the protein at 100 °C induces a labeling pattern quite similar to that seen upon SDS exposure. Labeling experiments on refolded bacterioopsin reveal a native-like structure, but with partial unfolding of helix D. Our data suggest that noncovalent contacts with the retinal chromophore in native BR play an important role for the stability of this particular helix. Overall, the present work illustrates the viability of using laser-induced oxidative labeling as a novel tool for characterizing structural changes of membrane proteins in response to alterations of their solvent environment.  相似文献   

6.
A S Verkman  H E Ives 《Biochemistry》1986,25(10):2876-2882
The pH, delta pH, and membrane potential dependences of H+/OH-permeability in renal brush border membrane vesicles (BBMV) were studied by using the entrapped pH indicator 6-carboxyfluorescein (6CF). Quantitative H+/OH-fluxes (JH) were obtained from a calibration of the fluorescence response of 6CF to intravesicular pH using vesicles prepared with varying intravesicular and solution pHs. Intravesicular buffer capacity, determined by titration of lysed vesicles, increased monotonically from 140 to 260 mequiv/L in the pH range 5-8. JH was measured by subjecting voltage-clamped BBMV (K+/valinomycin) to preformed pH gradients over the pH range 5-8 and measuring the rate of change of intravesicular pH. For small preformed pH gradients (0.4 pH unit) JH [6 nequiv s-1 (mg of protein)-1] was nearly independent of pH (5-8), predicting a highly pH dependent H+ permeability coefficient. JH increased in a curvilinear manner from 6 to 104 nequiv s-1 (mg of protein)-1 as delta pH increased from 0.4 to 2.5. JH increased linearly [1.6-7.3 nequiv s-1 (mg of protein)-1] with induced K+ diffusion potentials (21-83 mV) in the absence of a pH gradient. These findings cannot be explained by simple diffusion of H+ or OH- or by mobile carrier models. Two mechanisms are proposed, including a lipid diffusion mechanism, facilitated by binding of H+/OH- to fixed sites in the membrane, and a linear H2O strand model, where dissociation of H2O in the membrane fixes H+ and OH- concentrations in strands, which can result in net H+/OH- transport.  相似文献   

7.
The gene encoding for bacterio-opsin (bop gene) from Halobacterium halobium has been introduced in a yeast expression vector. After transformation in Schizosaccharomyces pombe, bacterio-opsin (BO) is expressed and was detected by antisera. The precursor protein of BO (pre-BO) is processed by cleavage of amino acids at the N-terminal end as in H. halobium. Addition of the chromophore, retinal, to the culture medium results in a slight purple colour of the yeast cells indicating the in vivo regeneration of BO to bacteriorhodopsin (BR) and its incorporation into membranes. Therefore, in contrast to the expression in E. coli, isolation of the membrane protein and reconstitution in lipid vesicles is not necessary for functional analysis. The kinetics of the ground state signal of the photocycle BR in protoplasts is demonstrated by flash spectroscopy and is comparable to that of the natural system. The present investigation shows for the first time the transfer of an energy converting protein from archaebacteria to eukaryotes by genetic techniques. This is a basis for further studies on membrane biogenesis, genetics, and bioenergetics by analysis of in vivo active mutants.  相似文献   

8.
Light-dependent production of 11-cis-retinal by the retinal pigment epithelium (RPE) and normal regeneration of rhodopsin under photic conditions involve the RPE retinal G protein-coupled receptor (RGR) opsin. This microsomal opsin is bound to all-trans-retinal which, upon illumination, isomerizes stereospecifically to the 11-cis isomer. In this paper, we investigate the synthesis of the all-trans-retinal chromophore of RGR in cultured ARPE-hRGR and freshly isolated bovine RPE cells. Exogenous all-trans-[(3)H]retinol is incorporated into intact RPE cells and converted mainly into retinyl esters and all-trans-retinal. The intracellular processing of all-trans-[(3)H]retinol results in physiological binding to RGR of a radiolabeled retinoid, identified as all-trans-[(3)H]retinal. The ARPE-hRGR cells contain a membrane-bound NADPH-dependent retinol dehydrogenase that reacts efficiently with all-trans-retinol but not the 11-cis isomer. The NADPH-dependent all-trans-retinol dehydrogenase activity in isolated RPE microsomal membranes can be linked in vitro to specific binding of the chromophore to RGR. These findings provide confirmation that RGR opsin binds the chromophore, all-trans-retinal, in the dark. A novel all-trans-retinol dehydrogenase exists in the RPE and performs a critical function in chromophore biosynthesis.  相似文献   

9.
Integral membrane protein complexes consisting of proteins and small molecules that act as cofactors have important functions in all organisms. To form functional complexes, cofactor biosynthesis must be coordinated with the production of corresponding apoproteins. To examine this coordination, we study bacteriorhodopsin (BR), a light-induced proton pump in the halophilic archaeon Halobacterium salinarum. This complex consists of a retinal cofactor and bacterioopsin (BO), the BR apoprotein. To examine possible novel regulatory mechanisms linking BO and retinal biosynthesis, we deleted bop, the gene that encodes BO. bop deletion resulted in a dramatic increase of bacterioruberins, carotenoid molecules that share biosynthetic precursors with retinal. Additional studies revealed that bacterioruberins accumulate in the absence of BO regardless of the presence of retinal or BR, suggesting that BO inhibits bacterioruberin biosynthesis to increase the availability of carotenoid precursors for retinal biosynthesis. To further examine this potential regulatory mechanism, we characterized an enzyme, encoded by the lye gene, that catalyzes bacterioruberin biosynthesis. BO-mediated inhibition of bacterioruberin synthesis appears to be specific to the H. salinarum lye-encoded enzyme, as expression of a lye homolog from Haloferax volcanii, a related archaeon that synthesizes bacterioruberins but lacks opsins, resulted in bacterioruberin synthesis that was not reduced in the presence of BO. Our results provide evidence for a novel regulatory mechanism in which biosynthesis of a cofactor is promoted by apoprotein-mediated inhibition of an alternate biochemical pathway. Specifically, BO accumulation promotes retinal production by inhibiting bacterioruberin biosynthesis.  相似文献   

10.
Neutron diffraction is used to localize water molecules and/or exchangeable hydrogen ions in the purple membrane by H2O/2H2O exchange experiments at different values of relative humidity. At 100% relative humidity, differences in the hydration between protein and lipid areas are observed, accounting for an excess amount of about 100 molecules of water in the lipid domains per unit cell. A pronounced isotope effect was observed, reproducibly showing an increase in the lamellar spacing from 60 A in 2H2O to 68 A in H2O. At 15% relative humidity, the positions of exchangeable protons became visible. A dominant difference density peak corresponding to 11 +/- 2 exchangeable protons was detected in the central part of the projected structure of bacteriorhodopsin at the Schiff's base end of the chromophore. A difference density map obtained from data on purple membrane films at 15% relative humidity in 2H2O, and the same sample after complete drying in vacuum, revealed that about eight of these protons belong to four water molecules. This is direct evidence for tightly bound water molecules close to the chromophore binding site of bacteriorhodopsin, which could participate in the active steps of H+ translocation as well as in the proton pathway across this membrane protein.  相似文献   

11.
The dependency of delta pH-relaxation kinetics across the membrane of sonicated small phospholipid vesicles on the concentration of internally entrapped buffer has been investigated by means of the pH-indicator dye pyranine. A very high contribution of lipid headgroups to the internal buffering power of the liposomes is observed, amounting to an equivalent phosphate buffer concentration of 110 mM. This localized two-dimensional proton/hydroxide ion reservoir must be considered in any determination of the H+/OH- permeability coefficient. Furthermore, it could have significance for energy-transduction across biological membranes. From the established linear relation between delta pH-relaxation rates and buffering power, net H+/OH- permeabilities of 3 X 10(-3) cm/s for soybean phospholipid (SBPL) and 1 X 10(-4) cm/s for diphytanoyl phosphatidylcholine (diphytanoyl PC) vesicles at pH 7.2 as well as buffering powers per lipid molecule of 6 X 10(-2) (pH-unit)-1 (SBPL) and 4 X 10(-2) (pH-unit)-1 (diphytanoyl PC) are calculated. In the case of diphytanoyl PC vesicles, delta pH-decay is accelerated by the presence of chloride ions.  相似文献   

12.
T Iwasa 《Biochemistry》1992,31(4):1190-1195
Halorhodopsin (HR), the light-driven chloride pump of Halobacterium halobium, was bleached with hydroxylamine and regenerated with all-trans-retinal under several different conditions. The largest recovery of the pigment was found with apoprotein obtained from detergent-free HR [HR(BB)]. To compare the chloride-pumping mechanism of HR with that of bacteriorhodopsin (BR; the light-driven proton pump of the same bacteria), HR pigment analogues were reconstituted with the bleached HR (BB) and retinal analogues. The corresponding BR pigment analogues have previously been shown to have little or no proton-pumping activity, except for retinal2 (3,4-dehydroretinal). Pigment analogues with 13-demethylretinal or retinal2 showed an "opsin shift" similar to that of the all-trans-retinal pigment of both HR and BR. Opsin shifts of the pigments of 9-12-phenylretinal and 3,7-dimethyl-2,4,6,8-decatetraenal and haloopsin are slightly different from those of the corresponding BR pigment analogues, presumably reflecting differences of the chromophoric structures in HR and BR. In addition to the spectral properties, the effect of chloride ion on deprotonation of the Schiff base was measured. These pigment analogues showed the "chloride effect" (a shift of the pK value for deprotonation of the Schiff base), but a smaller one than that seen in HR. For a measurement of the chloride-pumping activity, each retinal analogue was added to a culture of L07 cells (BOP-, HOP+, Ret-), and the activity was measured with the cell suspension. Only cultures with retinal or retinal2 showed chloride-pumping activity, as is true for proton pumping by BR. This suggests that a similar retinal-protein interaction is necessary for both ion pumps.  相似文献   

13.
Visual sensation in vertebrates is triggered when light strikes retinal photoreceptor cells causing photoisomerization of the rhodopsin chromophore 11-cis-retinal to all-trans-retinal. The regeneration of preillumination conditions of the photoreceptor cells requires formation of 11-cis-retinal in the adjacent retinal pigment epithelium (RPE). Using the intrinsic fluorescence of all-trans-retinyl esters, noninvasive two-photon microscopy revealed previously uncharacterized structures (6.9 +/- 1.1 microm in length and 0.8 +/- 0.2 microm in diameter) distinct from other cellular organelles, termed the retinyl ester storage particles (RESTs), or retinosomes. These structures form autonomous all-trans-retinyl ester-rich intracellular compartments distinct from other organelles and colocalize with adipose differentiation-related protein. As demonstrated by in vivo experiments using wild-type mice, the RESTs participate in 11-cis-retinal formation. RESTs accumulate in Rpe65-/- mice incapable of carrying out the enzymatic isomerization, and correspondingly, are absent in the eyes of Lrat-/- mice deficient in retinyl ester synthesis. These results indicate that RESTs located close to the RPE plasma membrane are essential components in 11-cis-retinal production.  相似文献   

14.
Bacteriorhodopsin (bR), a membrane protein that can generate a light-driven proton pump, was successfully reconstituted into vesicles composed of an artificial cyclic lipid that mimics archaeal membrane lipids. Unlike reconstituted bR in 1,2-dimyristoyl-sn-glycero-3-phosphocholine vesicles, the net topology and structure of bR molecules in cyclic lipid vesicles are identical to those in the native purple membrane of Halobacterium salinarum.  相似文献   

15.
Studies have shown that trans-cis isomerization of retinal is the primary photoreaction in the photocycle of the light-driven proton pump bacteriorhodopsin (BR) from Halobacterium salinarum, as well as in the photocycle of the chloride pump halorhodopsin (HR). The transmembrane proteins HR and BR show extensive structural similarities, but differ in the electrostatic surroundings of the retinal chromophore near the protonated Schiff base. Point mutation of BR of the negatively charged aspartate D85 to a threonine T (D85T) in combination with variation of the pH value and anion concentration is used to study the ultrafast photoisomerization of BR and HR for well-defined electrostatic surroundings of the retinal chromophore. Variations of the pH value and salt concentration allow a switch in the isomerization dynamics of the BR mutant D85T between BR-like and HR-like behaviors. At low salt concentrations or a high pH value (pH 8), the mutant D85T shows a biexponential initial reaction similar to that of HR. The combination of high salt concentration and a low pH value (pH 6) leads to a subpopulation of 25% of the mutant D85T whose stationary and dynamic absorption properties are similar to those of native BR. In this sample, the combination of low pH and high salt concentration reestablishes the electrostatic surroundings originally present in native BR, but only a minor fraction of the D85T molecules have the charge located exactly at the position required for the BR-like fast isomerization reaction. The results suggest that the electrostatics in the native BR protein is optimized by evolution. The accurate location of the fixed charge at the aspartate D85 near the Schiff base in BR is essential for the high efficiency of the primary reaction.  相似文献   

16.
Synthetic pigment analogues of the purple membrane protein.   总被引:1,自引:0,他引:1       下载免费PDF全文
Nonphysiological analogues of retinal have been shown to form pigments in reactions with the apoprotein of the purple membrane of Halobacterium halobium. Both the all-trans and 13-cis isomers of a retinal analogue, having an elongated chain with an extra double bond, formed pigments. Unlike the native all-trans and 13-cis retinal1-based pigments, the new pigments were not interconvertible with each other and were unstable against hydroxylamine. When incorporated into phospholipid vesicles, they showed no proton pumping activity upon illumination. The ability of the extended-length retinal to form pigments contrasts with its nonreactivity with opsin (apoprotein of rhodopsin), suggesting a less stringent binding site for the purple membrane chromophore. All-trans retinal2 also combined with bleached purple membrane to form a blue pigment absorbing at ca. 590 nm. Like the native purple membrane, the blu membrane showed proton pumping activity upon illumination in phospholipid vesicles.  相似文献   

17.
Vertebrate vision is initiated by photoisomerization of the visual pigment chromophore 11-cis-retinal and is maintained by continuous regeneration of this retinoid through a series of reactions termed the retinoid cycle. However, toxic side reaction products, especially those involving reactive aldehyde groups of the photoisomerized product, all-trans-retinal, can cause severe retinal pathology. Here we lowered peak concentrations of free all-trans-retinal with primary amine-containing Food and Drug Administration (FDA)-approved drugs that did not inhibit chromophore regeneration in mouse models of retinal degeneration. Schiff base adducts between all-trans-retinal and these amines were identified by MS. Adducts were observed in mouse eyes only when an experimental drug protected the retina from degeneration in both short-term and long-term treatment experiments. This study demonstrates a molecular basis of all-trans-retinal-induced retinal pathology and identifies an assemblage of FDA-approved compounds with protective effects against this pathology in a mouse model that shows features of Stargardt's disease and age-related retinal degeneration.  相似文献   

18.
The effect of amphotericin B on the proton/hydroxide permeability of small unilamellar vesicles has been investigated by using potential-dependent paramagnetic probes. Amphotericin B at 1-10 molecules/vesicle causes a modest 4-8-fold increase in the background H+/OH- permeability of egg phosphatidylcholine (egg PC) vesicles. However, in the presence of cholesterol, amphotericin B promotes a dramatic increase in the H+/OH- permeability of more than 2 orders of magnitude. Surprisingly, this is not observed in vesicle membranes containing ergosterol. In membranes composed of 5-15 mol% ergosterol, amphotericin B is even less effective at promoting H+/OH- currents than in pure egg PC vesicles. The K+ current promoted by amphotericin B in vesicles formed from egg PC and from egg PC plus cholesterol or ergosterol was measured. No significant sterol dependence was found for the K+ current. These results strongly suggest that different mechanisms, or amphotericin B/sterol complexes, are responsible for the induction of H+/OH- and K+ currents. These results have important implications for understanding the therapeutic and toxic effects of amphotericin B.  相似文献   

19.
H+/OH- permeation through lipid bilayers occurs at anomalously high rates and the determinants of proton flux through membranes are poorly understood. Since all life depends on proton gradients, it is important to develop a greater understanding of proton leak phenomena. We have used stopped-flow fluorimetry to probe the influence of two lipid raft components, chol (cholesterol) and SM (sphingomyelin), on H+/OH- and water permeability. Increasing the concentrations of both lipids in POPC (palmitoyl-2-oleoyl phosphatidylcholine) liposomes decreased water permeability in a concentration-dependent manner, an effect that correlated with increased lipid order. Surprisingly, proton flux was increased by increasing the concentration of chol and SM. The chol effect was complex with molar concentrations of 17.9, 33 and 45.7% giving 2.8-fold (P<0.01), 2.2-fold (P<0.001) and 5.1-fold (P<0.001) increases in H+/OH- permeability from a baseline of 2.4x10(-2) cm/s. SM at 10 mole% effected a 2.8-fold increase (P<0.01), whereas 20 and 30 mole% enhanced permeability by 3.6-fold (P<0.05) and 4.1-fold respectively (P<0.05). Supplementing membranes containing chol with SM did not enhance H+/OH- permeability. Of interest was the finding that chol addition to soya-bean lipids decreased H+/OH- permeability, consistent with an earlier report [Ira and Krishnamoorthy (2001) J. Phys. Chem. B 105, 1484-1488]. We speculate that the presence of proton carriers in crude lipid extracts might contribute to this result. We conclude that (i) chol and SM specifically and independently increase rates of proton permeation in POPC bilayers, (ii) domains enriched in these lipids or domain interfaces may represent regions with high H+/OH- conductivity, (iii) H+/OH- fluxes are not governed by lipid order and (iv) chol can inhibit or promote H+/OH- permeability depending on the total lipid environment. Theories of proton permeation are discussed in the light of these results.  相似文献   

20.
Recently, neutron diffraction experiments have revealed well-resolved and reversible changes in the protein conformation of bacteriorhodopsin (BR) between the light-adapted ground state and the M-intermediate of the proton pumping photocycle (Dencher, Dresselhaus, Zaccai and Büldt (1989) Proc. Natl. Acad. Sci. USA 86, 7876-7879). These changes are triggered by the light-induced isomerization of the chromophore retinal from the all-trans to the 13-cis configuration. Dark-adapted purple membranes contain a mixture of two pigment species with either the all-trans- or 13-cis-retinal isomer as chromophore. Employing a time-resolved neutron diffraction technique, no changes in protein conformation in the resolution regime of up to 7 A are observed during the transition between the two ground-state species 13-cis-BR and all-trans-BR. This is in line with the fact that the conversion of all-trans BR to 13-cis-BR involves an additional isomerization about the C15 = N Schiff's base bond, which in contrast to M formation minimizes retinal displacement and keeps the Schiff's base in the original protein environment. Furthermore, there is no indication for large-scale redistribution of water molecules in the purple membrane during light-dark adaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号