首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In this study, the role of root organic acid synthesis and exudation in the mechanism of aluminum tolerance was examined in Al-tolerant (South American 3) and Al-sensitive (Tuxpeño and South American 5) maize genotypes. In a growth solution containing 6 M Al3+, Tuxpeño and South American 5 were found to be two- and threefold more sensitive to Al than South American 3. Root organic acid content and organic acid exudation from the entire root system into the bulk solution were investigated via high-performance liquid chromatographic analysis while exudates collected separately from the root apex or a mature root region (using a dividedroot-chamber technique) were analyzed with a more-sensitive ion chromatography system. In both the Al-tolerant and Al-sensitive lines, Al treatment significantly increased the total root content of organic acids, which was likely the result of Al stress and not the cause of the observed differential Al tolerance. In the absence of Al, small amounts of citrate were exuded into the solution bathing the roots. Aluminum exposure triggered a stimulation of citrate release in the Al-tolerant but not in the Al-sensitive genotypes; this response was localized to the root apex of the Al-tolerant genotype. Additionally, Al exposure triggered the release of phosphate from the root apex of the Al-tolerant genotype. The same solution Al3+ activity that elicited the maximum difference in Al sensitivity between Al-tolerant and Al-sensitive genotypes also triggered maximal citrate release from the root apex of the Al-tolerant line. The significance of citrate as a potential detoxifier for aluminum is discussed. It is concluded that organic acid release by the root apex could be an important aspect of Al tolerance in maize.Abbreviations SA3 South American 3, an Al-tolerant maize cultivar - SA5 South American 5, an Al-sensitive maize cultivar The authors would like to express their appreciation to Drs. John Thompson, Ross Welch and Mr. Stephen Schaefer for their training and guidance in the use of the chromatography systems. This work was supported by a Swiss National Science Foundation Fellowship to Didier Pellet, and U.S. Department of Agriculture/National Research Initiative Competitive Grant 93-37100-8874 to Leon Kochian. We would also like to thank Drs. S. Pandey and E. Ceballos from the CIMMYT Regional office at CIAT Cali, Colombia for providing seed for the maize varieties and inbred line.  相似文献   

2.
Soil acidity effects on nutrient use efficiency in exotic maize genotypes   总被引:3,自引:0,他引:3  
Maize (t Zea mays L.) is the third most important cereal grown in the world. In South and Central America, maize is mostly grown on acidic soils. On these soils, yields are limited by deficient levels of available P, Ca, and Mg, and toxic levels of Al and Mn. A greenhouse study was conducted with 22 maize genotypes originating from Africa, Europe, and North, Central, and South America on acid, dark red latosol (Typic Haplorthox) at 2%, 41%, and 64% Al saturation at corresponding pH of 5.6, 4.5, and 4.3. With increasing Al levels, the nutrient efficiency ratios (NER = mgs of dry shoot weight / mg of element in shoot) for K, Ca and Mg increased, and NER for P and Zn tended to decrease. Overall, Al-tolerant genotypes produced higher shoot and root weight and had higher NER for P, Ca Mg, and Fe at 41% Al saturation. Genotypes used in this study showed genetic diversity for growth and NER of essential nutrients. It was concluded that selection of acid-soil-tolerant genotypes and further breeding of acid-soil-tolerant maize cultivars are feasible.  相似文献   

3.
不同决明基因型的耐铝特性   总被引:2,自引:1,他引:1  
Zheng XL  Ye HL  Xu GZ 《应用生态学报》2010,21(8):1998-2003
在铝浓度120 mg·L-1条件下,通过溶液培养试验,研究了40个决明品种(系)对铝毒的反应.比较了不同基因型各性状的相对耐性值及其与综合评价系数的相关性.结果表明:相对株高、相对根系干物质量、相对地上部干物质量和相对根系活力可作为决明耐铝毒基因型筛选的重要指标.40个品种(系)中,86134R2、2208、3170、316、2211、2232的耐铝毒能力较强,属于耐铝毒的决明基因型,而34721R1、92985、3184的耐铝毒能力较弱,属于铝敏感的决明基因型.  相似文献   

4.
The aim of this study was to assess the effect of aluminum on the in vitro activity of acid phosphatases (APases) of four potato clones, Macaca and Dakota Rose (Al-sensitive), and SMIC148-A and Solanum microdontum (Al-tolerant), grown in vitro, in hydroponics or in a greenhouse. The enzyme was assayed in vitro in the presence of 0, 1.85, 3.70, 5.55 and 7.40 mM Al. In plantlets grown in vitro, root APases were inhibited by Al in all clones, while shoot APases were inhibited by Al in S. microdontum and Dakota Rose and increased in Macaca at all Al concentrations. In plantlets grown in hydroponics, root APases increased in Macaca at 1.85 mM Al, whereas decreased at all Al levels in S. microdontum. In greenhouse plantlets, root APases decreased at 7.40 mM Al in S. microdontum and SMIC148-A, and at 3.70, 5.55 and 7.40 mM Al in Dakota Rose. Shoot APases decreased in Macaca and SMIC148-A. Conversely, in Dakota Rose, APases increased at 1.85 and 3.70 mM Al. These results show that the effect of Al toxicity on in vitro APase activity depends not only on Al availability but also on the plant organ, genetic background, and the growth conditions. Therefore, it suggests that acid phosphatases activity assessed in vitro might not be a good parameter to validate the screening for adaptation of potato clones to Al toxicity.  相似文献   

5.
Aluminum effects on the morphological development of soybean (Glycine max (L.) Merr.) were characterized in greenhouse and growth chamber experiments. An Al-sensitive cultivar, ‘Ransom’, was grown in an acid soil (Aeric Paleudult) adjusted to 3 levels of exchangeable Al. Lateral shoot development at the nodes of the main stem was extensive in the limed soil containing 0.06 cmol(+) Alkg−1. However, lateral shoot length and weight were severely inhibited in the unlimed soil containing 2.19 cmol(+) Alkg−1, and in the unlimed soil amended to 2.63 cmol(+) Alkg−1 with AlCl3. This inhibition by the high Al/low pH condition was reversed by the exogenous application of a synthetic cytokinin 6-benzylaminopurine (BA). The daily application of 20 μg mL−1 BA applied locally to the lateral meristems of plants grown in the unlimed soil stimulated lateral shoot growth substantially, such that it was either comparable to or greater than that observed in the limed treatment without BA. Accumulation of K, Ca, and Mg in lateral shoot branches was also stimulated by the local application of BA. The inhibitory effects of Al on lateral shoot development were confirmed in solution culture. In addition, differential sensitivity to Al was evident among the primary root, first order lateral roots, and second order lateral roots. The length of the primary root was only slightly decreased by increasing concentrations of Al up to 30 μM. In contrast, the length of basipetally located first order lateral roots was restricted to greater extent; up to 50% by 30 μM Al. Second order lateral lengths were inhibited even more severely; up to 86% by 30 μM Al. Substantial evidence in the literature indicates that the root apex is a major site for the biosynthesis of cytokinin that is supplied to shoots, and cellular function and development in this region of the root are impaired during Al toxic conditions. This suggests that one mode of action by which Al may affect shoot growth is by inhibiting the synthesis and subsequent translocation of cytokinin to the meristematic regions of the shoot. The present observation of a reversal of Al-inhibited lateral shoot development by exogenously applied cytokinin supports this hypothesis. However, the inability of applied cytokinin to counter the restriction imposed by Al on total shoot dry matter production implies the impairment by Al toxicity of other root functions, such as ion and water transport, also played an important role in altering shoot morphology.  相似文献   

6.
1 引  言以往的研究中 ,测定植物根系长度或重量通常以相对根长或相对根系干重作为耐性指标进行耐Al性的筛选[2 ,4 ,5,8] .但是根系性状在土培或田间试验中不仅取样和测定困难 ,而且易造成根系损伤 ,影响测定的精度 .因此 ,有必要建立简便、可靠且易于测定的筛选指标 .能否采用植株地上部耐性指标来衡量不同小麦基因型的耐Al性 ?以往涉及植物在铝毒胁迫下地上部和根系生长的耐性指标间的相关性 ,以及地上部耐性指标用于耐Al性筛选方面的研究甚少 .本研究采用两种筛选方法探讨了 2 4个小麦基因型地上部和根系耐性指标间的相关性 ,旨…  相似文献   

7.
Sorghum [Sorghum bicolor (L.) Moench] is the fifth most important cereal crop of the world. In South America, it is grown mainly on acid soils, and its production on these soils is limited by deficient levels of available P, Ca, Mg, and micronutrients, and toxic levels of Al and Mn. A greenhouse experiment was undertaken to evaluate the genotypic differences in sorghum for uptake (U), inhibition (IH), influx (IN) into roots, and transport (TR) to shoot for nutrients at three levels of soil Al saturation (2, 41, 64%). Overall shoot nutrient U, IN, and TR showed a significant inverse correlation with soil Al saturation and shoot Al concentration, and a significant positive correlation with shoot and root dry weight. The nutrient uptake parameters differentiated genotypes into most and least efficient categories at various levels of soil Al saturation. The nutrient uptake parameters showed significant differences with respect to soil Al saturation, genotypes, and their interactions. In the current study, Al tolerant genotypes recorded higher IN and TR for P, K, Ca, Mg, Zn, and Fe than Al-sensitive genotypes. Therefore, these U, IN, and TR traits could be used in selection of sorghum plants adaptable to acid soils. Sorghum genotypes used in this study showed intraspecific genetic diversity in U, IN, and TR for essential nutrients. It was concluded that selection of acid soil tolerant genotypes and further breeding of acid (Al) tolerant sorghum cultivars are feasible.IICA/EMBRAPA/World BankIICA/EMBRAPA/World BankIICA/EMBRAPA/World Bank  相似文献   

8.
Toufiq Iqbal 《Plant and Soil》2014,384(1-2):21-36

Background and aims

My previous experimental findings suggested that phosphorus (P) enhances aluminium (Al) tolerance in both Al-tolerant and Al-sensitive wheat seedlings. However, the role of P in the amelioration of Al toxicity within plant tissue is still unclear. Therefore, a soil culture horizontal split-root system was used to quantify whether or not translocated P alleviates Al toxicity within the plant tissue.

Methods

Different level of Al and P were added in two compartments in various combinations for separate root halves. Constrasting Al-tolerant (ET8) and Al-sensitive (ES8) wheat genotypes were used as a testing plant.

Results

The limitation of root growth was independent to Al-toxicity in one root half. However, root proliferation occurred as a compensatory growth on the other root half that has no Al-toxicity. Where half of the roots were given 60 mg P/kg, plant did not translocated P in the other part of the root system that grown in Al toxic soil. When 40 mg P/kg were mixed with 60 mg AlCl3/kg within one root half combinations, root dry weight of both ET8 and ES8 increased markedly in that root half. In contrast, root dry weight of both ET8 and ES8 decreased noticeably only 60 mg AlCl3/kg treated root half. The shoot P and Al uptake in both ET8 and ES8 was lower in combined 40 mg P/kg and 60 mg AlCl3/kg addition as compared to other combination with same P and Al level.

Conclusions

Result from this study confirm that addition of P to Al toxic acid soil played dual role like amelioration of Al-toxicity in soil and utilize P as nutrition for plant growth and development. Findings also attributed that added P was reduced by precipitation with added Al. However, evidence found that translocated P was not able to alleviate Al toxicity within plant tissue of both ES8 and ET8.  相似文献   

9.
X. Xian 《Plant and Soil》1989,116(2):257-264
Sorghum (Sorhum bicolor L. Moench) is an important cereal crop of the world. Performance of sorghum in acid infertile soils that are common to the tropics is rather poor. Research was undertaken in greenhouse and field conditions to evaluate the differences in growth, grain yield, and nutrient efficiency ratio (NER) of sorghum genotypes grown at three levels of Al saturation. The growth of shoots and roots and the grain yields showed significant differences with respect to Al-saturation, genotypes and their interactions. The shoot weights, root weights, and visual scores of the greenhouse study were highly related to grain yields obtained in field. The greenhouse technique adapted in this study appears to be a reliable method for separation of genotypes into Al-tolerant and intolerant types. The NER values helped differentiate genotypes into efficient and inefficient utilizers of the absorbed nutrients. The sorghum entries showed intraspecific genetic diversity in growth and NER values for the essential elements in the presence or absence of toxic levels of Al. We concluded that selection of acid soil tolerant genotypes and further breeding of acid soil (Al) tolerant cultivars is feasible in sorghum.IICA/EMBRAPA/World Bank  相似文献   

10.
采用水培试验,研究了铝胁迫下两个胡枝子品种根尖产生胼胝质的变化规律及影响因素。结果表明,两个品种的根尖铝吸收量与胼胝质形成量呈正比例关系。品种间差异主要是在根尖0—0.5 cm处。敏感品种胼胝质形成量同铝吸收量的变化趋势相一致,而耐性品种则在铝处理6 h时出现一个高峰值后下降。去除铝胁迫后,耐性品种胼胝质形成量并不显著减少。与单独铝处理相比,阴离子通道抑制剂苯甲酰甲醛加铝处理对两个品种胼胝质形成无影响;尼氟灭酸加铝处理抑制敏感品种胼胝质的形成,对耐性品种无影响;蒽-9-羧酸加铝处理显著抑制两个品种的胼胝质形成。另外,抑制剂2-去氧-D-葡萄糖加铝共同处理与单独铝处理相比,敏感品种的胼胝质形成量显著降低,耐性品种无影响。甘露醇对两个品种胼胝质形成的影响无显著差别。镧处理下胼胝质的形成量是耐性品种显著高于敏感品种,铝、镧同时处理胼胝质的形成量最高。敏感品种胼胝质形成处理间无差别。总之,耐性品种在铝胁迫下胼胝质形成与有机酸分泌可能存在一定的协调关系;铝胁迫下胼胝质形成是敏感指标;在一定条件下,特别是有机酸分泌前胼胝质的形成可能具有一定抗性意义;铝诱导胼胝质的形成受多种外界因素(浓度、时间、有机酸分泌,渗透压等)的影响。  相似文献   

11.
A solution culture experiment was carried out to study the effects of interactions between aluminium (Al) and phosphorus (P) on Al-toxicity under conditions of suboptimal P supply. The experiment was conducted in a growth chamber with seedlings of the Al-sensitive sorghum genotype TAM428 (Sorghum bicolor (L.) Moench). Phosphorus deficiency differed from Al toxicity in its effect on shoot/root ratio and root morphological charateristics. Results indicated that there were positive effects of Al on the uptake and assimilation of P. Therefore, it was unlikely that an Al-induced P deficiency could account for the observed reduction in plant biomass. Plants suffered more from Al toxicity at very low P supply. Moreover, decreasing P supply resulted in increased root H-ion efflux density. In the soil, where a rhizosphere can be formed, this would make the plant even more susceptible to Al. Dry matter yield of the plants was affected more severely by Al at the first harvest (14 days) than at the second (35 days), but the opposite was true for P. Aluminium-inhibited root development and reduced uptake of N, K and Mg (but not Ca) may be partly responsible for the growth depression. Increasing the P supply exerted certain roles in eliminating Al phytotoxicity, possibly through improved root development and nutrient uptake. The detrimental influence of Al on biomass could be overcome by doubling the P supply.  相似文献   

12.
Liao H  Wan H  Shaff J  Wang X  Yan X  Kochian LV 《Plant physiology》2006,141(2):674-684
Aluminum (Al) toxicity and phosphorus (P) deficiency often coexist in acid soils that severely limit crop growth and production, including soybean (Glycine max). Understanding the physiological mechanisms relating to plant Al and P interactions should help facilitate the development of more Al-tolerant and/or P-efficient crops. In this study, both homogeneous and heterogeneous nutrient solution experiments were conducted to study the effects of Al and P interactions on soybean root growth and root organic acid exudation. In the homogenous solution experiments with a uniform Al and P distribution in the bulk solution, P addition significantly increased Al tolerance in four soybean genotypes differing in P efficiency. The two P-efficient genotypes appeared to be more Al tolerant than the two P-inefficient genotypes under these high-P conditions. Analysis of root exudates indicated Al toxicity induced citrate exudation, P deficiency triggered oxalate exudation, and malate release was induced by both treatments. To more closely mimic low-P acid soils where P deficiency and Al toxicity are often much greater in the lower soil horizons, a divided root chamber/nutrient solution approach was employed to impose elevated P conditions in the simulated upper soil horizon, and Al toxicity/P deficiency in the lower horizon. Under these conditions, we found that the two P-efficient genotypes were more Al tolerant during the early stages of the experiment than the P-inefficient lines. Although the same three organic acids were exuded by roots in the divided chamber experiments, their exudation patterns were different from those in the homogeneous solution system. The two P-efficient genotypes secreted more malate from the taproot tip, suggesting that improved P nutrition may enhance exudation of organic acids in the root regions dealing with the greatest Al toxicity, thus enhancing Al tolerance. These findings demonstrate that P efficiency may play a role in Al tolerance in soybean. Phosphorus-efficient genotypes may be able to enhance Al tolerance not only through direct Al-P interactions but also through indirect interactions associated with stimulated exudation of different Al-chelating organic acids in specific roots and root regions.  相似文献   

13.
Kerley  S. J.  Leach  J. E.  Swain  J. L.  Huyghe  C. 《Plant and Soil》2000,222(1-2):241-253
In calcareous soils, genotypes of Lupinus albus L. generally grow poorly, resulting in stunted plants that often develop lime-induced chlorosis. In contrast, some genotypes of L. pilosus Murr. occur naturally in calcareous soils without developing any visible symptoms of stress. Some genotypic variation for tolerance to calcareous soil does exist in L. albus and the tolerance mechanisms need to be determined. The adaptation through root system morphological plasticity of L. albus and L. pilosus, to heterogeneous limed soil profiles (pH 7.8) containing either patches of acid (non-limed) soil, or vertically split between acid and limed soil, was investigated. When grown in the presence of patches of acid soil, L. albus had a 52% greater shoot dry weight and visibly greener leaves compared with plants grown in the homogeneous limed soil. Total root dry matter in the acid-soil patches was greater than in the control limed-soil patches. This was due to a four-fold increase in the cluster root mass, accounting for 95% of the root dry matter in the acid-soil patch. Although these cluster roots secreted no more citric acid per unit mass than those in the limed soil did, their greater mass resulted in a higher citrate concentration in the surrounding soil. L. pilosus responded to the patches of acid soil in a manner comparable with L. albus. When grown in the homogeneous limed soil, L. pilosus had a greater maximum net CO2 assimilation rate (Pmax) than L. albus, however, the Pmax of both species increased after they had accessed a patch of acid soil. Differences were apparent between the L. albus genotypes grown in soil profiles split vertically into limed and acid soil. A genotype by soil interaction occurred in the partitioning between soils of the cluster roots. The genotype La 674 was comparable with L. pilosus and produced over 11% of its cluster roots in the limed soil, whereas the other genotypes produced only 1–3% of their cluster roots in the limed soil. These results indicate L. pilosus is better adapted to the limed soil than L. albus, but that both species respond to a heterogeneous soil by producing mainly cluster roots in an acid-soil patch. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Summary Root growth and morphology were compared between seven week old maize plants grown in the greenhouse and in the field. The plants were similar in shoot dry weight and the partioning of N and dry matter to roots were similar except for the field grown plants in 1983. Field grown plants had greater root mass per length and greater calculated diameter than greenhouse plants. Nitrogen fertilization decreased N and dry matter partitioning to the root system in all three environments.  相似文献   

15.
In vitro directly micropropagated plantlets from three selected five-year-old Eucalyptus grandis Hill ex. Maiden hybrids were compared to their related half-sib seedlings for growth and growth pattern parameters under greenhouse conditions used for operational seedling production. The oven dry weights were determined from stem, leaf, and root samples collected every 40 days for four times. Relative growth rate, net assimilation rates and shoot:root ratio were calculated. Survival was 98% and 95% for plantlets and seedlings, respectively. Significant differences were observed between parents in terms of shoot and root dry weights and their ratios with similar ranking among plantlets and seedlings, suggesting genetic control over these traits. Plantlets started with significantly higher root: shoot ratios and stem, leaf, root, and total dry weight. Although seedlings had higher relative growth and net assimilation rates, all the initial differences decreased sharply over time.  相似文献   

16.
K. Ohki 《Plant and Soil》1987,98(2):195-202
Summary Sorghum plants were grown in the greenhouse in modified Steinberg nutrient solution containing ten Al rates (0 to 297 μM) and harvested 28 days after transplanting. Top and root dry weight were not affected by added Al up to 74 μM; but decreased sharply at concentration of 148 μM and greater. Aluminum concentrations in blade 1 (recently matured blade) and plants remained constant from 0 to 297 μM added Al. Root Al concentration increased as added Al increased. No correlation existed between top dry weight and Al concentration in blade 1 or in plant. Root Al concentration was related to top dry weight and root dry weight to estimate the Al critical toxicity level. The Al critical toxicity levle in the root was 54 mmol kg−1 root dry weight basis for either top or root dry weight. In blade 1 Cu concentration negatively correlated with Al while Fe and P were positively correlated. In roots Ca, Mg, Mn and Fe concentrations were negatively correlated with Al while Zn, Cu, P, and K were positively correlated with Al concentration.  相似文献   

17.
The activities of inorganic, monomeric aluminium (Al) species in the root environment are important in the toxicity of Al to plant roots, which may be ameliorated by increased activities of basic cations. Additionally, it has been suggested that electro-chemical processes in walls of root cells play a role in Al tolerance. Empirical models were proposed to accomodate genetic and calcium (Ca) and magnesium (Mg) ameliorative effects on Al toxicity. The models were tested using data from a solution culture study (with ionic strength 1.6 to 8.6 mM) in which wheat (Triticum aestivum L.) cvv. Warigal (Al-sensitive) and Waalt (Al-tolerant) were grown for 28 d at 0, 10 and 20 M Al, in factorial combination with 200, 400, 800 and 1600 M Ca and 100, 200, 400 and 800 M Mg. There was a poor relationship between relative total dry mass (TDM) (calculated as a percentage of the average TDM of each cultivar in the absence of added Al) and the activity of Al3+ or the sum of the activities of the monomeric Al species in solution. A model based on the ratios of activities of cations in solution, taking valency into consideration, was more successful, accounting for ca 85% of the observed variation in relative TDM. There were no systematic variations between observed values and those estimated by the model.  相似文献   

18.
Studies of Al partitioning and accumulation and of the effect of Al on the growth of intact wheat (Triticum aestivum L.) roots of cultivars that show differential Al sensitivity were conducted. The effects of various Al concentrations on root growth and Al accumulation in the tissue were followed for 24 h. At low external Al concentrations, Al accumulation in the root tips was low and root growth was either unaffected or stimulated. Calculations based on regression analysis of growth and Al accumulation in the root tips predicted that 50% root growth inhibition in the Al-tolerant cv Atlas 66 would be attained when the Al concentrations were 105 [mu]M in the nutrient solution and 376.7 [mu]g Al g-1 dry weight in the tissue. In contrast, in the Al-sensitive cv Tam 105, 50% root growth inhibition would be attained when the Al concentrations were 11 [mu]M in the nutrient solution and 546.2 [mu]g Al g-1 dry weight in the tissue. The data support the hypotheses that differential Al sensitivity correlates with differential Al accumulation in the growing root tissue, and that mechanisms of Al tolerance may be based on strategies to exclude Al from the root meristems.  相似文献   

19.
This experiment was designed to examine the effects of aluminium (Al) on the growth of Pinus radiata (D. Don) and Eucalyptus mannifera subsp. mannifera (Mudie) seedlings in culture solutions in a glasshouse to help explain the failure of radiata pine trees on some acid, low fertility soils in Australia on which the native eucalypts flourish. Aluminium (Al) in culture solution increased the growth of roots and shoots of seedlings of both species but while growth of the eucalypt continued to increase with increases in Al to 2.222 μM, growth of the pine was largest at 370 μM Al. In addition to total root length, specific root length (length per unit dry weight), a measure of fineness of the root, increased in the eucalypt seedlings as the substrate Al increased. Growth of the shoots and roots of the pine in the absence of any added Al was extremely poor suggesting that Al, in low concentrations, may be an essential element or ameliorate some other factors in solution culture at low pH. Root and shoot concentrations of K increased with increasing Al, whilst Ca and Mg Concentrations decreased and Mn concentrations were unaffected in both species. Tissue Ca and Mg concentrations were 2 to 3 times higher in the eucalypt seedlings than the pine at all levels of added Al due to greater uptake of these elements by the eucalypt. In contrast, at the highest concentration of Al in the medium, shoot Al concentrations were lower in the cucalypt than in the pine due to a greater proportion of Al being retained in the eucalypt roots. These differences between the seedlings in terms of root growth and tissue cation concentrations may help explain the ability of eucalypt species to maintain vigorous growth on acid soils high in Al and low in Ca and P, where growth of the pines failed.  相似文献   

20.
Effects of soil drought on growth and productivity of 16 single cross maize hybrids were investigated under field and greenhouse experiments. The Drought Susceptibility Index (DSI) was evaluated in a three year field experiment by the determination of grain loss in conditions of two soil moisture levels (drought and irrigated) and in a pot experiment by the effects of periodical soil drought on seedling dry matter. In the greenhouse experiment response to drought in maize genotypes was also evaluated by root to shoot dry mater ratio, transpiration productivity index, indexes of kernel germination and index of leaf injury by drought and heat temperature. The obtained values of DSI enabled the ranking of the tested genotypes with respect to their drought tolerance. The values of DSI obtained in the field experiment allow to divide the examined genotypes into three, and in the greenhouse experiment into two groups of drought susceptibility. The correlation coefficients between the DSI of maize hybrids in the field and the greenhouse experiments was high and statistically significant, being equal to 0.876. The ranking of hybrids drought tolerance, identified on the basis of field experiments was generally in agreement with the ranking established on the basis of the greenhouse experiment. In the greenhouse experiment statistically significant coefficients of correlation with DSI values in hybrids were obtained for the ratio of dry matter of overground parts to dry matter of roots, both for control and drought treatments, whereas in the estimation of the transpiration productivity coefficient and total dry matter the correlation coefficients were not statistically significant. In this study several laboratory tests were carried out for the drought tolerance of plants (kernel germination, leaf injury) on 4 drought resistant and 4 drought sensitive maize hybrids. Statistically significant correlation coefficients between DSI and the examined parameter of grain germination and leaf injury were obtained for the determination of promptness index (PI), seedling survival index (SS) and leaf injuries indexes (IDS, ITS) as a result of exposure to 14 days of soil drought, osmotic drought −0.9 MPa and exposure to high temperature 45 ° or 50 °C. The results of laboratory tests show that in maize the genetic variation in the degree of drought tolerance is better manifested under severe conditions of water deficit in the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号