首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aminopeptidase B, an arginyl aminopeptidase, was purified from goat brain with a purification factor of ~280 and a yield of 2.7%. It was entrapped in calcium alginate together with bovine serum albumin. The optimal conditions for immobilization for maximum activity yield were 1% CaCl2 and 2.5% alginate. The immobilized enzyme retained ~62% of its initial activity and could be used for five successive batch reactions with retention of 30% of the initial activity. The pH and temperature optima of the free and immobilized enzyme were pH 7.4, 45°C and pH 7.8, 50°C respectively, while the pH and thermal stability as well as the stability of the enzyme in organic solvents were improved significantly after entrapment. The Km value for the immobilized enzyme was about twofold higher than that of the soluble enzyme. Because of this increased stability, the immobilized enzyme may be useful in the meat processing industry.  相似文献   

2.
Summary To assay the functional significance of the multiple but closely related - and -tubulin polypeptides (termed isotypes) that are expressed in mammalian cells, we have generated a number of sera that uniquely discriminate among these isotypes. These sera have been used to demonstrate that there is no subcellular sorting of either - or -tubulin isotypes among microtubules of diverse function, either in cells growing in culture or in tissues consisting of cell types that contain specialized kinds of microtubule. In spite of this failure to segregate between functionally distinct kinds of microtubule, the fact that isotype-specific amino acid sequences have been strictly conserved over extensive periods of evolutionary time argues persuasively for a functional role for the different tubulin gene products. One possibility is that they are required for specific interactions with microtubule associated proteins (MAPs), and that tubulin isotypes have coevolved with different cell type-specific MAPs with which they must interact. We have tested this hypothesis by examining the distribution of -tubulin isotypes in mammalian cerebellum in relationship to the known patterns of expression of a number of MAPs, and find that these patterns correlate in the case of M 2 and MAP 3, and M 6 and MAP 1 a. These data, plus emerging data based on a structural analysis of tau, MAP 1 b and MAP 2 obtained via sequence determination of cloned cDNAs, are discussed in terms of the possible functional significance of tubulin isotype/MAP interactionsin vivo.  相似文献   

3.
Molecular Interaction of S-100 Proteins with Microtubule Proteins In Vitro   总被引:4,自引:0,他引:4  
Several procedures were employed to examine the in vitro interaction between S-100 proteins and microtubule proteins. Binding of S-100 to tau factors was observed under all experimental conditions. S-100 binding to microtubule-associated protein 2 (MAP2) was best detected by exposing nitrocellulose-immobilized MAP2 or MAPs to either 125I-labeled S-100 or biotinylated S-100. S-100 binding to tubulin was detected when the two protein fractions were first incubated with each other followed by exposure to the bifunctional cross-linker disuccinimidylsuberate, and then separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transfered onto nitrocellulose paper. By this procedure, complex formation between S-100 and tubulin, as well as between S-100 and a relatively low-molecular-weight MAP, was evidenced by immunoblotting using an anti-S-100 antiserum. Alternatively, complex formation between biotinylated S-100 and either tubulin or MAPs was visualized by means of avidin-peroxidase, after SDS-PAGE of the complex mixtures and transfer of the separated proteins onto nitrocellulose. The interaction between S-100 and tubulin was strictly Ca2+ dependent, and resistant to high concentrations of KCl, colchicine, or vinblastine.  相似文献   

4.
DPP-III from goat brain was purified to apparent electrophoretic homogeneity which showed several characteristics similar to other reported DPP-IIIs although it possesses dissimilar molecular weight and different inhibition behavior. Thin layer chromatographic studies with goat brain DPP-III revealed that it hydrolyses Leu-enkephalin (Tyr-Gly-Gly-Phe-Leu) at the Gly-Gly bond producing Tyr-Gly and Gly-Phe-Leu with no further degradation of liberated tripeptide. (Ala)(4) is hydrolyzed to dialanine whereas trialanine is not cleaved. ACTH, angiotensin II and III were also hydrolyzed whereas angiotensin I was not. It was concluded that the enzyme requires at least a tetrapeptide to act and that it removes a dipeptidyl moiety from the NH(2)-terminus of the studied peptides. Goat brain DPP-III may be involved in the metabolism of very important bioactive peptides such as enkephalins and angiotensins.  相似文献   

5.
Using immunological approaches and mass spectrometry, five proteins associated with metallothionein-3 in mouse brains have been identified. Metallothionein-3 and associated proteins were isolated using immunoaffinity chromatography over immobilized anti-mouse brain MT3 antibody. Proteins in the recovered pool were separated by SDS-polyacrylamide gel electrophoresis, and distinct bands were excised and the proteins digested using trypsin. Peptides were extracted and analyzed using electrospray ionization mass spectrometry. Initial identification was done comparing the identified peptide mass:charge ratios to the MASCOT database. Confirmation of proteins was accomplished by sequencing of selected peptides using tandem mass spectrometry and comparison to the MASCOT database. The proteins were heat-shock protein 84 (mouse variant of heat-shock protein 90), heat-shock protein 70, dihydropyrimidinase-like protein 2, creatine kinase, and beta actin. Independently using antibodies against metallothionein-3, creatine kinase, and heat-shock protein 84 showed that all three proteins were coimmunoprecipitated from whole mouse brain homogenates with each of the three antibodies. Mixing purified samples of metallothionein and human brain creatine kinase also generated a complex that could be immunoprecipitated either by anti-metallothionein-3 or anticreatine kinase antibody. These data are consistent with metallothionein-3 being present in the mouse brain as part of a multiprotein complex providing new functional information for understanding the role of metallothionein-3 in neuronal physiology.  相似文献   

6.
Isoelectrofocussing between pH 3.5 and 9.5, or 9 and 11 in the first direction of two-dimensional gel electrophoreses reveal that the bands of microtubule associated proteins, e.g. the high molecular weight proteins and the τ factor, contain several polypeptides. A distinct group of these associated proteins possesses an isoelectric point of 9.5, and molecular weights between 72000 and 280000 daltons. This family of basic proteins is not the result of proteolytic cleavage of one high molecular weight precursor, as could be shown by fingerprint methods. A separation of native MAPS is briefly described.  相似文献   

7.
The influence on microtubule assembly in vitro of monoclonal antibodies against microtubule-associated proteins (MAPs) was studied. Light scattering was used for measuring net polymer formation and electron microscopy for determining the influence of antibodies on microtubule morphology. Control experiments showed that nonimmune mouse IgG had no effect on either the assembly or appearance of microtubules. The same was true for monoclonal antibodies against MAP1. At low levels, antibodies against MAP2 caused the aggregation of microtubules into bundles, an effect that did not occur with antibodies against any other MAP type studied. At increasing concentrations, anti-MAP2 progressively inhibited tubulin polymerization, producing irregular, shortened filaments. Anti-MAP5 produced a striking fragmentation of microtubules into very short pieces that were otherwise morphologically identical to control microtubules. The different effects of these antibodies show the potential of monoclonal antibodies for investigating MAP function and form an important adjunct to cellular microinjection experiments.  相似文献   

8.
Induction of heat-shock proteins and glucose-regulated proteins in 9L rat brain tumor cells can be differentially elicited by sodium arsenite, cadmium chloride, zinc chloride, copper sulfate, sodium fluoride, and L-azetidine-2-carboxylic acid. The kinds of stress protein induced by the above chemicals varied considerably, mainly determined by the nature and the concentration of the chemicals, as well as the treatment protocols. In addition, at the concentrations where stress proteins can be induced, the above chemicals were able to suppress general protein synthesis and were cytotoxic. Enhanced phosphorylation of a protein with an apparent molecular weight of 65 kDa was detected during the induction of stress proteins except in azetidine treatments during which uptake of phosphate by the cells was impaired after prolonged incubation. The phosphate moiety on the 65 kDa phosphoprotein appeared to be alkaline-stable and two-dimensional gel electrophoresis revealed that the phosphoprotein resolved into four isoforms with isoelectric points ranging from 5.1 to 5.6. Enhanced phosphorylation of the same protein was also detected in heat-shocked and withangulatin A-treated 9L cells in which stress proteins were induced. It is suggested that this phosphoprotein may be a common target for heat stress response-stimulated phosphorylation and important in the further metabolic responses of the cell to stress. © 1993 Wiley-Liss, Inc.  相似文献   

9.
Cystatins are thiol proteinase inhibitors ubiquitously present in the mammalian body. In brain, they prevent unwanted proteolysis and are involved in several neurodegenerative diseases. Under physiological conditions nitric oxide can be found in almost all the tissues, but under pathological conditions NO has damaging effects. Its increased concentration, under various neural diseases leads to cell damage through formation of highly reactive peroxynitrite. Our present study was designed to investigate the protective effect of curcumin against NO induced damage of HM-GBC. NO caused intensive structural and functional damage of HM-GBC, resulting in 89% loss of its antiproteolytic activity after 2 h of incubation. Structural damage occurs in the form of protein degradation. Curcumin significantly protected HM-GBC against this damage. This suggests that curcumin has a significant potential in the treatment of diseases caused by nitrogen free radicals and this potential must be further explored for the development of novel drugs. This text was submitted by the authors in English.  相似文献   

10.
Abstract: The microtubule-associated protein τ is found primarily in neuronal tissues and is highly enriched in the axon. It promotes microtubule assembly in vitro and stabilizes microtubules in cells. To study how τ protein might be involved in the unique features of axonal microtubules, we have analyzed the effect of E. coli -synthesized τ protein using an in vitro centrosome-mediated microtubule regrowth assay over a wide range of τ/tubulin ratios. We report that microtubule assembly promoted by τ protein exhibits characteristic changes dependent on the τ/tubulin ratio. Above a threshold level, nucleation of new microtubules is favored over growth of existing ones, τ isoform variation does not change this phase transition in microtubule assembly. We discuss how τ might participate in the elaboration of axonal morphology based on our results and present evidence that the phase transition from microtubule growth to nucleation is critical for axonal development.  相似文献   

11.
Fast-performance liquid chromatography was used to purify assembly-competent tubulin from porcine brain microtubule protein prepared by two cycles of assembly-disassembly. Microtubule protein (1-100 mg at 1.5-2.5 mg/ml) in buffer consisting of 0.1 M 2-(N-morpholino)ethanesulfonic acid, 0.5 mM MgCl2, 1 mM EGTA, 0.3 M KCl, and 0.02 mM GTP (pH 6.6) was applied to the Mono Q column (anion exchanger). The microtubule-associated proteins, GTP and GDP, eluted in the void volume. The tubulin fraction eluted at 0.45-0.50 M KCl with 65-80% recovery. The tubulin fraction contained trace enzymatic activities when compared with the starting microtubule protein, i.e., less than 1 versus 60 mU/mg/min of nucleoside diphosphate kinase, 0.2 versus 7.0 nmol/mg/min of Mg-ATPase at pH 6.6, and 0.2 versus 88 mU/mg/min of adenylate kinase. Both the Mono Q-purified tubulin and the pelleted microtubules that were assembled in 0.5 mM [3H]GTP contained 0.77 mol of labeled nucleotide/tubulin dimer. The Mono Q-purified tubulin fraction was competent to assemble, i.e., the critical concentration was 0.1 mg/ml in the presence of 0.03 mM taxol and 1 mM GTP at 37 degrees C. The Mono Q-purified tubulin fraction showed trace high-molecular-weight components, which were removed on Mono S (cation exchanger) columns. Alternatively, microtubule protein in buffer was applied to the Mono S column. Tubulin, trace nontubulin proteins, and several enzymatic activities came off in the void volume. A combination of Mono Q-Mono S or Mono S-Mono Q chromatography resulted in highly purified protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Phenylketonuria (PKU), if not detected and treated in newborns, causes severe neurological dysfunction and cognitive and behavioral deficiencies. Despite the biochemical characterization of PKU, the molecular mechanisms underlying PKU‐associated brain dysfunction remain poorly understood. The aim of this study was to gain insights into the pathogenesis of this neurological damage by analyzing protein expression profiles in brain tissue of Black and Tan BRachyury‐PahEnu2 mice (a mouse model of PKU). We compared the cerebral protein expression of homozygous PKU mice with that of their heterozygous counterparts using two‐dimensional difference gel electrophoresis analysis, and identified 21 differentially expressed proteins, four of which were over‐expressed and 17 under‐expressed. An in silico bioinformatic approach indicated that protein under‐expression was related to neuronal differentiation and dendritic growth, and to such neurological disorders as progressive motor neuropathy and movement disorders. Moreover, functional annotation analyses showed that some identified proteins were involved in oxidative metabolism. To further investigate the proteins involved in the neurological damage, we validated two of the proteins that were most strikingly under‐expressed, namely, Syn2 and Dpysl2, which are involved in synaptic function and neurotransmission. We found that Glu2/3 and NR1 receptor subunits were over‐expressed in PKU mouse brain. Our results indicate that differential expression of these proteins may be associated with the processes underlying PKU brain dysfunction, namely, decreased synaptic plasticity and impaired neurotransmission.

  相似文献   


13.
The stochastic switching between microtubule growth and shrinkage is a fascinating and unique process in the regulation of the cytoskeleton. To understand it, almost all attention has been focused on the microtubule ends. However, recent research has revived the idea that tubulin dimers can also be exchanged in protofilaments along the microtubule shaft, thus repairing the microtubule and protecting it from disassembly. Here, we review the research describing this phenomenon, the mechanisms regulating the removal and insertion of tubulin dimers, as well as the potential implications for key functions of the microtubule network, such as intracellular transport and cell polarization.  相似文献   

14.
The purified dipeptidyl aminopeptidase from goat brain showed several characteristics similar to DPP-III although it possesses a dissimilar molecular weight and different inhibition behavior. The enzyme was found to be inhibited by metallochelators and thiol inhibitors which could be reversed by introducing metals and thiols, respectively. The enzyme activity is also significantly affected by DMSO and ethanol. It was found to be highly sensitive to even very low concentration of urea. The inhibitory potency of several dipeptides and bioactive peptides on this enzyme was investigated to characterize its active site. The highest potency was observed for the dipeptides having aromatic and bulky side chains such as Phe-Met, Leu-Arg, Met-Arg, Trp-Met and Leu-Trp.  相似文献   

15.
Purification and characterization of cathepsin B from goat brain   总被引:1,自引:0,他引:1  
Cathepsin B was purified to an apparent homogeneity from goat brain utilizing the techniques of homogenization, autolysis at pH 4, 30–70% (NH4)2SO4 fractionation, Sephadex G-100 column chromatography, organomercurial afinity chromatography and ion-exchange chromatography on CM-Sephadex C-50. The enzyme had a pH optima of 6 with α-N-benzoyl-D, L-arginine-β-naphthIylamide, benzyloxycarbonyl-arginine-arginme-4-methoxy -β-naphthylamide and azocasein as substrates. TheKm values for the hydrolysis of α-N-benzoyl-D, L-arginine-β-naphthylamide and benzyloxycarbonyl-arginine-arginine-4-methoxy -β-naphthylamide were 2.36 and 0.29 mM respectively in 2.5% dimethylsulphoxide. However, the correspondingKm values for these substrates in 1 % dimethylsulphoxide were 0.51 and 0.09 mM. The enzyme was strongly inhibited by thiol inhibitors and tetrapeptidyl chloromethylketones. Leupeptin inhibited the enzyme competitively withK i value of 12.5 × l0−9M. Dithioerythritol was found to be the most potent activator of this sulfhydryl protease. Molecular weight estimations on sodium dodecyl sulphate-polyacrylamide gel electrophoresis and on analytical Sephadex G-75 column were around 27,000 and 29,000 daltons respectively. Cathepsin B was found to reside in the lysosomes of goat brain. The highest percentage of cathepsin B was in cerebrum. However, the specific activity of the enzyme was maximum in pituitary gland.  相似文献   

16.
PTMs and microtubule-associated proteins (MAPs) are known to regulate microtubule dynamicity in somatic cells. Reported literature on modulation of α-tubulin acetyl transferase (αTAT1) and histone deacetylase 6 (HDAC6) in animal models and cell lines illustrate disparity in correlating tubulin acetylation status with stability of MT. Our earlier studies showed reduced acetyl tubulin in sperm of asthenozoospermic individuals. Our studies on rat sperm showed that on inhibition of HDAC6 activity, although tubulin acetylation increased, sperm motility was reduced. Studies were therefore undertaken to investigate the influence of tubulin acetylation/deacetylation on MT dynamicity in sperm flagella using rat and human sperm. Our data on rat sperm revealed that HDAC6 specific inhibitor Tubastatin A (T) inhibited sperm motility and neutralized the depolymerizing and motility debilitating effect of Nocodazole. The effect on polymerization was further confirmed in vitro using pure MT and recHDAC6. Also polymerized axoneme was less in sperm of asthenozoosperm compared to normozoosperm. Deacetylase activity was reduced in sperm lysates and axonemes exposed to T and N+T but not in axonemes of sperm treated similarly suggesting that HDAC6 is associated with sperm axonemes or MT. Deacetylase activity was less in asthenozoosperm. Intriguingly, the expression of MDP3 physiologically known to bind to HDAC6 and inhibit its deacetylase activity remained unchanged. However, expression of acetyl α-tubulin, HDAC6 and microtubule stabilizing protein SAXO1 was less in asthenozoosperm. These observations suggest that MAPs and threshold levels of MT acetylation/deacetylation are important for MT dynamicity in sperm and may play a role in regulating sperm motility.  相似文献   

17.
Summary Dissociated fetal rat brain cells (Day 14.5 of gestation) reaggregated into small cell clusters and formed large aggregates in a medium supplemented with serum or dialyzed serum in an aggregating culture. In contrast, only small aggregates were produced in a serum-free medium. The present results indicated that albumin, fetuin, transferrin, and {ie1031-1}-antitrypsin enhanced the aggregate formation. Small aggregates produced in a serum-free medium elongated neurites when they were cultured within a collagen gel matrix. Total DNA per flask was almost the same in small and large aggregates. Thus, these serum proteins may well play an important role in the adhesion of small cell clusters and cause the formation of large aggregates in this short-term aggregating culture.  相似文献   

18.
During cytokinesis the cytoplasm of a cell is divided to form two daughter cells. In animal cells, the existing plasma membrane is first constricted and then abscised to generate two individual plasma membranes. Plant cells on the other hand divide by forming an interior dividing wall, the so-called cell plate, which is constructed by localized deposition of membrane and cell wall material. Construction starts in the centre of the cell at the locus of the mitotic spindle and continues radially towards the existing plasma membrane. Finally the membrane of the cell plate and plasma membrane fuse to form two individual plasma membranes. Two microtubule-based cytoskeletal networks, the phragmoplast and the pre-prophase band (PPB), jointly control cytokinesis in plants. The bipolar microtubule array of the phragmoplast regulates cell plate deposition towards a cortical position that is templated by the ring-shaped microtubule array of the PPB. In contrast to most animal cells, plants do not use centrosomes as foci of microtubule growth initiation. Instead, plant microtubule networks are striking examples of self-organizing systems that emerge from physically constrained interactions of dispersed microtubules. Here we will discuss how microtubule-based activities including growth, shrinkage, severing, sliding, nucleation and bundling interrelate to jointly generate the required ordered structures. Evidence mounts that adapter proteins sense the local geometry of microtubules to locally modulate the activity of proteins involved in microtubule growth regulation and severing. Many of the proteins and mechanisms involved have roles in other microtubule assemblies as well, bestowing broader relevance to insights gained from plants.  相似文献   

19.
The Ziwuling black goat is an indigenously in China, their offspring are frequently affected by congenital cryptorchidism. The extracellular matrix (ECM) contains cytokines and growth factors that regulate the development of the testis, and component changes often result in pathological changes. Cryptorchidism is closely related to structural changes in ECM. In this study, the histochemical staining, immunohistochemical, immunofluorescence and Western blot combined with semi-quantitative analysis was used to describe the distribution of the important ECM components Collagen type IV (Col IV), laminin (LN)and heparan sulfate proteoglycans (HSPG) in the normal and cryptorchid testes of Ziwuling black goats. Results showed that: The histochemical staining showed that the dysplasia of seminiferous tubules and decreased number of Sertoli cells in cryptorchidism, as well as sparse collagen fiber. Meanwhile, the distribution of reticular fibers is relatively rich. Furthermore, the PAS and AB staining in the interstitial vessels and lamina propria of seminiferous tubules is weak. The immunohistochemical and immunofluorescence revealed that Col IV, LN was strongly expressed in Leydig, Sertoli cells of normal testes and moderately positive in the spermatogonia and spermatids, but HSPG was not expressed in the spermatogonia. However, cryptorchidism, the expression of Col IV, LN and HPSG in Leydig, Sertoli cells significantly decreased, as well as the expression of Col IV and LN in capillary endothelial cells, but HSPG was moderately expressed in spermatogonia. Based on these data, the underdevelopment of spermatogenic epithelium, decreased synthesis function of collagen fibers and Leydig cells develop usually in the cryptorchidism were shown to be closely related to the abnormal metabolism of Col IV and LN. The positive expressed of HSPG in the spermatogonia of cryptorchid testes is related to the compensatory development of spermatogonia.  相似文献   

20.
Oxidative stress, an imbalance between oxidants and antioxidants, contributes to the pathogenesis of traumatic brain injury (TBI). Oxidative neurodegeneration is a key mediator of exacerbated morphological responses and deficits in behavioral recoveries. The present study assessed early hippocampal sequential imbalance to possibly enhance antioxidant therapy. Young adult male Sprague-Dawley rats were subjected to a unilateral moderate cortical contusion. At various times post-TBI, animals were killed and the hippocampus was analyzed for antioxidants (GSH, GSSG, glutathione peroxidase, glutathione reductase, glutathione-S-transferase, glucose-6-phosphate dehydrogenase, superoxide dismutase, and catalase) and oxidants (acrolein, 4-hydroxynonenal, protein carbonyl, and 3-nitrotyrosine). Synaptic markers (synapsin I, postsynaptic density protein 95, synapse-associated protein 97, growth-associated protein 43) were also analyzed. All values were compared with those for sham-operated animals. Significant time-dependent changes in antioxidants were observed as early as 3 h posttrauma and paralleled increases in oxidants (4-hydroxynonenal, acrolein, and protein carbonyl), with peak values obtained at 24-48 h. Time-dependent changes in synaptic proteins (synapsin I, postsynaptic density protein 95, and synapse-associated protein 97) occurred well after levels of oxidants peaked. These results indicate that depletion of antioxidant systems following trauma could adversely affect synaptic function and plasticity. Early onset of oxidative stress suggests that the initial therapeutic window following TBI appears to be relatively short, and it may be necessary to stagger selective types of antioxidant therapy to target specific oxidative components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号