首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The Mi gene originating from the wild tomato species Lycopersicon peruvianum confers resistance to all major root knot nematodes (Meloidogyne spp.). This single dominant gene is located on chromosome 6 and is very closely linked to the acid phosphatase-1 (Aps-1) locus. Resistance to nematodes has been introgressed into various cultivars of the cultivated tomato (L. esculentum), in many cultivars along with the linked L. peruvianum Aps-1 1 allele. By using a pair of nearly isogenic lines differing in a small chromosomal region containing the Mi and Aps-1 loci, we have identified two RFLP markers, GP79 and H6A2c2, which are located in the introgressed L. peruvianum region. Analysis of a test panel of 51 L. esculentum genotypes of various origins indicated that GP79 is very tightly linked to the Mi gene and allows both homozygous and heterozygous nematode-resistant genotypes to be distinguished from susceptible genotypes, irrespective of their Aps-1 alleles. Marker H6A2c2 is linked to the Aps-1 locus and is capable of discriminating between the L. peruvianum Aps-1 1 allele and the L. esculentum Aps-1 3 and Aps-1 + alleles. In combination, these RFLP markers may provide a powerful tool in breeding tomatoes for nematode resistance.  相似文献   

2.
3.
4.
The tomato gene Mi-1 confers resistance to three species of root-knot nematodes, Meloidogyne spp. However, the resistance mediated by Mi-1 is inactive at soil temperatures above 28 degrees C. Previously, we identified and mapped a novel heat-stable nematode resistance gene from the wild species Lycopersicon peruvianum accession LA2157 on to chromosome 6. Here we report further characterization of this heat-stable resistance against three Mi-1-avirulent biotypes of Meloidogyne javanica, Meloidogyne arenaria and Meloidogyne incognita. Screening segregating F(2) and F(3) progenies, derived from an intraspecific cross between susceptible LA392 and resistant LA2157, for nematode resistance at 25 degrees C and 32 degrees C, revealed a simple dominant monogenic inheritance with all the biotypes tested. We designate this gene as Mi-9. As a first step towards cloning of Mi-9, we constructed a linkage map around this gene. A total of 216 F(2) progeny from the cross between LA392 and LA2157 were screened with M. javanica at 32 degrees C and with CT119 and Aps-1, markers that flank the genetic interval that contains the Mi-1 gene. DNA marker analysis indicated that these markers also flank Mi-9. Further mapping of recombinants with both RFLP and PCR-based markers localized Mi-9 to the short arm of chromosome 6 and within the same genetic interval that spans the Mi-1 region.  相似文献   

5.
The gene Mi-1 confers effective resistance in tomato (Lycopersicon esculentum) against root-knot nematodes and some isolates of potato aphid. This locus was introgressed from L. peruvianum into the corresponding region on chromosome 6 in tomato. In nematode-resistant tomato, Mi-1 and six homologs are grouped into two clusters separated by 300 kb. Analysis of BAC clones revealed that the Mi-1 locus from susceptible tomato carried the same number and distribution of Mi-1 homologs, as did the resistant locus. Molecular markers flanking the resistant and susceptible loci were in the same relative orientation, but markers between the two clusters were in an inverse orientation. The simplest explanation for these observations is that there is an inversion between the two clusters of homologs when comparing the Mi-1 loci from L. esculentum and L. peruvianum. Such an inversion may explain previous observations of severe recombination suppression in the region. Two Mi-1 homologs identified from the BAC library derived from susceptible tomato are not linked to the chromosome 6 locus, but map to chromosome 5 in regions known to contain resistance gene loci in other solanaceous species.Communicated by J.S. Heslop-Harrison  相似文献   

6.
Accessions of the wild tomato species L. peruvianum were screened with a root-knot nematode population (557R) which infects tomato plants carrying the nematode resistance gene Mi. Several accessions were found to carry resistance to 557R. A L. peruvianum backcross population segregating for resistance to 557R was produced. The segregation ratio of resistant to susceptible plants suggested that a single, dominant gene was a major factor in the new resistance. This gene, which we have designated Mi-3, confers resistance against nematode strains that can infect plants carrying Mi. Mi-3, or a closely linked gene, also confers resistance to nematodes at 32°C, a temperature at which Mi is not effective. Bulked-segregant analysis with resistant and susceptible DNA pools was employed to identify RAPD markers linked to this gene. Five-hundred-and-twenty oligonucleotide primers were screened and two markers linked to the new resistance gene were identified. One of the linked markers (NR14) was mapped to chromosome 12 of tomato in an L. esculentum/L. pennellii mapping population. Linkage of NR14 and Mi-3 with RFLP markers known to map on the short arm of chromosome 12 was confirmed by Southern analysis in the population segregating for Mi-3. We have positioned Mi-3 near RFLP marker TG180 which maps to the telomeric region of the short arm of chromosome 12 in tomato.  相似文献   

7.
A set of 154 accessions of nine wild Lycopersicon spp. and five accessions of three closely related Solanum spp. were tested for resistance to tomato powdery mildew ( Oidium lycopersici ). Screening revealed valuable sources of resistance, mainly among L. hirsutum, L. pennellii, L. cheesmanii, L. chilense, L. peruvianum and L. parviflorum. L. esculentum (all ssp.) and L. pimpinellifolium expressed high susceptibility to O. lycopersici inoculation. Results of variance and cluster analysis of responses to O. lycopersici coincide with recent taxonomic classification and genetic relationships within genus Lycopersicon .  相似文献   

8.
9.
Multilocus studies assessing patterns of nucleotide polymorphism within and among closely related species provide access to genealogical information bearing on demographic and geographic aspects of their speciation history. However, the technical difficulties in obtaining sufficient sequence data have severely limited this approach thus far, especially in outbred plant taxa. We employ the analytical framework of divergence population genetics in testing the isolation model of speciation in three self-incompatible species of wild tomatoes (clade Lycopersicon), in particular the assumption of divergence without gene flow. Based on DNA sequence data for 13 nuclear loci, average levels of silent polymorphism vary more than three-fold among species. We estimate a large effective population size for the ancestral species, quite similar to that of the highly polymorphic L. peruvianum. The other two species, however, exhibit concordant signatures of population-size reduction. These demographic inferences are biologically plausible and consistent with results obtained from standard neutrality tests. While the isolation model cannot be rejected by goodness-of-fit criteria, patterns of intragenic linkage disequilibrium in L. peruvianum are indicative of historical introgression at least in some regions of the genome. Considered jointly with the geographic pattern of postzygotic reproductive isolation, our results suggest that speciation occurred under residual gene flow, implying natural selection as one of the evolutionary forces driving the diversification of tomato lineages.  相似文献   

10.
A novel member of the proteinase Inhibitor I family having a trypsin inhibitor specificity was isolated from the fruit of the wild tomato species Lycopersicon peruvianum (L.) Mill. (LA 107) and characterized. The protein is among the isoinhibitors of Inhibitor I that comprise 50% of the soluble proteins in the fruit of this wild species of tomato. A cDNA corresponding to the inhibitor protein and mRNA was isolated and characterized. The Inhibitor I mRNA represented 0.06% of the poly(A) RNA and gene copy number reconstruction experiments gave an estimate of two to four genes/haploid genome. The open reading frame of the cDNA codes for a protein of 111 amino acids having a 42-amino acid prepropolypeptide. The NH2-terminal sequence of the first 21 amino acids of the purified Inhibitor I protein confirmed that the cDNA was identical to the protein. The amino acid sequence of the L. peruvianum fruit Inhibitor I exhibits 74% identity with the wound-inducible Inhibitor I from tomato leaves. Whereas all previously identified members of the Inhibitor I family have either Met, Leu, or Asp at the P1 site and can inhibit enzymes such as chymotrypsin, subtilisin, and elastase, the fruit Inhibitor I possesses Lys at the P1 position. Thus, this is the first member of the extensive Inhibitor I family from plants and animals that exhibits trypsin inhibitory specificity. The presence of this inhibitor in wild tomato fruit may reflect a functional role to protect the tissues against herbivory.  相似文献   

11.
As part of a map-based cloning strategy designed to isolate the root-knot nematode resistance gene Mi, tomato F2 populations were analyzed in order to identify recombination points close to this economically important gene. A total of 21?089 F2 progeny plants were screened using morphological markers. An additional 1887 F2 were screened using PCR-based flanking markers. Fine-structure mapping of recombinants with newly developed AFLP markers, and RFLP markers derived from physically mapped cosmid subclones, localized Mi to a genomic region of about 550?kb. The low frequency of recombinants indicated that recombination was generally suppressed in these crosses and that crossovers were restricted to particular regions. To circumvent this problem, a population of Lycopersicon peruvianum, the species from which Mi was originally introgressed, that was segregating for resistance was developed. Screening of this population with PCR, RFLP and AFLP markers identified several plants with crossovers near Mi. Recombination frequency was approximately eight-fold higher in the Mi region of the L. peruvianum cross. However, even within the wild species cross, recombination sites were not uniformly distributed in the region. By combining data from the L.?esculentum and L. peruvianum recombinant analyses, it was possible to localize Mi to a region of the genome spanning less than 65?kb.  相似文献   

12.
In order to establish differences in the chilling sensitivity of domestic and wild Lycopersicon species, galactolipase (EC 3.1.1.26) activity, free fatty acid (FFA) level and Hill reaction activity were measured in chloroplasts isolated from control and cold treated leaves of L. esculentum Mill., cv. Norton, L. hirsutum Humb. and Bonpl., L. peruvianum var. glandulosum Mill. Galactolipase activity was higher in chloroplasts from Lycopersicon species with high chilling sensitivity than in chloroplasts of more chilling-resistant ones. A similar relationship was observed for FFA level in chloroplasts from both cold-stored and control leaves. Decrease in Hill reaction activity due to cold stress was greater in chloroplasts of more chilling-sensitive species. The changes are accompanied by a decline of photochemical activity. Considering the changes in the three parameters noted above, an increasing order of chilling tolerance was established: L. esculentum < L. hirsutum (700 m) < L. hirsutum (3100 m) < L. peruvianum (3400 m). It is suggested that measurements of galactolipase activity and FFA may be useful in an evaluation of differences in resistance to chilling injury of closely related species.  相似文献   

13.
A PCR-based codominant marker has been developed which is tightly linked to Mi, a dominant genetic locus in tomato that confers resistance to several species of root-knot nematode. DNA from tomato lines differing in nematode resistance was screened for random amplified polymorphic DNA markers linked to Mi using decamer primers. Several markers were identified. One amplified product, REX-1, obtained using a pair of decamer primers, was present as a dominant marker in all nematode-resistant tomato lines tested. REX-1 was cloned and the DNA sequences of its ends were determined and used to develop 20-mer primers. PCR amplification with the 20-mer primers produced a single amplified band in both susceptible and resistant tomato lines. The amplified bands from susceptible and resistant lines were distinguishable after cleavage with the restriction enzyme Taq I. The linkage of REX-1 to Mi was verified in an F2 population. This marker is more tightly linked to Mi than is Aps-1, the currently-used isozyme marker, and allows screening of germplasm where the linkage between Mi and Aps-1 has been lost. Homozygous and heterozygous individuals can be distinguished and the procedure can be used for rapid, routine screening. The strategy used to obtain REX-1 is applicable to obtaining tightly-linked markers to other genetic loci. Such markers would allow rapid, concurrent screening for the segregation of several loci of interest.  相似文献   

14.
RAPD genome analysis of 53 species and cultivars of the genus Lycopersicon (Tourn.) Mill. revealed their high genetic polymorphism (Tourn.) Mill., based on which their phylogenetic relationships were inferred. In total, 248 polymorphic DNA fragments were amplified. Intraspecific polymorphism was maximum (79%) in L. peruvianum and minimum (9%) in L. parviflorum. In general, genome divergence among cross-pollinating tomato species was substantially higher than in self-pollinating species. An UPGMA dendrogram constructed from the RAPD patterns was consisted with the Lycopersicon phylogeny inferred from the molecular data of RFLP, ISSR, and microsatellite analyses and with a classification based on morphological characters. The relationships of taxa within the genus Lycopersicon are discussed.  相似文献   

15.
Recombinant DNA techniques have been used to introduce agronomically valuable traits, including resistance to viruses, herbicides, and insects, into crop plants. Introduction of these genes into plants frequently involves Agrobacterium-mediated gene transfer. The potential exists for applying this technology to nematode control by introducing genes conferring resistance to nematodes. Transferred genes could include those encoding products detrimental to nematode development or reproduction as well as cloned host resistance genes. Host genes that confer resistance to cyst or root-knot nematode species have been identified in many plants. The best characterized is Mi, a gene that confers resistance to root-knot nematodes in tomato. A map-based cloning approach is being used to isolate the gene. For development of a detailed map of the region of the genome surrounding Mi, DNA markers genetically linked to Mi have been identified and analyzed in tomato lines that have undergone a recombination event near Mi. The molecular map will be used to identify DNA corresponding to Mi. We estimate that a clone of Mi will be obtained in 2-5 years. An exciting prospect is that introduction of this gene will confer resistance in plant species without currently available sources of resistance.  相似文献   

16.
利用花粉管通道技术培育番茄耐盐新种质   总被引:12,自引:0,他引:12  
利用白花授粉后形成的花粉管通道分别将番茄耐盐野生近缘种Lycopersicon peruvianum LAlll、Lycopersicon cheesmanii LAl66、Lycopersicon pennellii LA716、Lycopersicon pimpinellifolium LA2184的总DNA及含来源于大麦LEA基因家族的HVAl基因的pBY520质粒DNA导人栽培番茄“鲜丰”及“矮黄”,获得了较为广泛的变异,经过对后代的选择培育获得了一批农艺性状优良的耐盐新种质,并已培育耐盐新品系1个;传统的叶色遗传与现代的PCR检测表明番茄通过花粉管通道导人外源DNA是可行的。  相似文献   

17.
A set of 24 simple PCR markers was generated for tomato chromosomes 9, 10, 11 and 12. Polymorphism was sought for between Lycopersicon esculentum and one of six other Lycopersicon species (L. parviflorum, L. cheesmanii, L. hirsutum, L. pennellii, L. peruvianum, and L. chilense). PCR primers, which were designed from mapped RFLP sequences, were used to amplify genomic DNA of the different species and the PCR amplification products were screened for polymorphism by testing restriction enzymes. With this approach, 24 (71%) of the 34 selected RFLPs were converted into simple PCR markers. By using a reference population, the map positions of these markers relative to the original RFLP markers were verified. These markers are locus specific and can be efficiently used for alignment of linkage maps, mapping target genes and marker assisted selection.  相似文献   

18.
Pepino mosaic virus (PepMV), a potexvirus first described in 1980 from pepino ( Solanum muricatum ) plants cultivated in Peru, was isolated from diseased tomato plants in the Netherlands in 1999, and is now the cause of an emerging tomato disease in Europe. In a survey of central and southern Peru, 65 wild and four cultivated populations of Lycopersicon , as well as six populations of other species of Solanaceae , were tested for the presence of PepMV and six other viruses. Of the Lycopersicon population sampled, 23 (35.4%) reacted positively in double antibody sandwich (DAS)-enzyme-linked immunosorbent assay (ELISA) with antisera to PepMV. DAS-ELISA tests for PepMV of other solanaceous species were negative, except for one sample of pepino ( Solanum muricatum ). Mechanical inoculation of susceptible Lycopersicon esculentum cv. NE-1 plants with crude sap extracts of 20 of these samples confirmed that 15 of them (from the Departments of Apurimac, Arequipa and Moquegua) were infected with PepMV; these inoculated plants were also DAS-ELISA positive and, in most cases, developed symptoms. Thirteen of the infective extracts were obtained from plants of wild Lycopersicon species (three L. chilense , three L. chmielewskii , two L. parviflorum and five L. peruvianum ) and one each from the cultivated species L. esculentum and S. muricatum . The wild Lycopersicon species are newly reported natural hosts of PepMV. Tests for the other six viruses were negative, except that two samples contained Tomato mosaic virus . Thus, PepMV occurs in Lycopersicon species in central and southern Peru, even in isolated wild populations. These results indicate that the virus is not new to the region and has an efficient mechanism of natural transmission.  相似文献   

19.
As part of a map-based cloning strategy designed to isolate the root-knot nematode resistance gene Mi, tomato F2 populations were analyzed in order to identify recombination points close to this economically important gene. A total of 21 089 F2 progeny plants were screened using morphological markers. An additional 1887 F2 were screened using PCR-based flanking markers. Fine-structure mapping of recombinants with newly developed AFLP markers, and RFLP markers derived from physically mapped cosmid subclones, localized Mi to a genomic region of about 550 kb. The low frequency of recombinants indicated that recombination was generally suppressed in these crosses and that crossovers were restricted to particular regions. To circumvent this problem, a population of Lycopersicon peruvianum, the species from which Mi was originally introgressed, that was segregating for resistance was developed. Screening of this population with PCR, RFLP and AFLP markers identified several plants with crossovers near Mi. Recombination frequency was approximately eight-fold higher in the Mi region of the L. peruvianum cross. However, even within the wild species cross, recombination sites were not uniformly distributed in the region. By combining data from the L. esculentum and L. peruvianum recombinant analyses, it was possible to localize Mi to a region of the genome spanning less than 65 kb. Received: 15 July 1997 / Accepted: 1 October 1997  相似文献   

20.
The tomato gene Mi-1.2 confers resistance against root-knot nematodes and some isolates of potato aphid. Resistance to the whitefly Bemisia tabaci previously has been observed in Mi-bearing commercial tomato cultivars, suggesting that Mi, or a closely linked gene, is responsible for the resistance. The response of two biotypes of B. tabaci to tomato carrying the cloned Mi was compared with that of the isogenic untransformed tomato line Moneymaker. Our results indicate that Mi-1.2 is responsible for the resistance in tomato plants to both B- and Q- biotypes. Mi-1.2 is unique among characterized resistance genes in its activity against three very different organisms (root-knot nematodes, aphids, and whiteflies). These pests are among the most important on tomato crops worldwide, making Mi a valuable resource in integrated pest management programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号