首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Remarkable progress has been made in the field of G protein-coupled receptor (GPCR) structural biology during the past four years. Several obstacles to generating diffraction quality crystals of GPCRs have been overcome by combining innovative methods ranging from protein engineering to lipid-based screens and microdiffraction technology. The initial GPCR structures represent energetically stable inactive-state conformations. However, GPCRs signal through different G protein isoforms or G protein-independent effectors upon ligand binding suggesting the existence of multiple ligand-specific active states. These active-state conformations are unstable in the absence of specific cytosolic signaling partners representing new challenges for structural biology. Camelid single chain antibody fragments (nanobodies) show promise for stabilizing active GPCR conformations and as chaperones for crystallogenesis.  相似文献   

2.
The serotonin receptors, also known as 5-hydroxytryptamine (5-HT) receptors, are a group of G protein-coupled receptors (GPCRs) and ligand-gated ion channels found in the central and peripheral nervous systems. GPCRs have a characteristic feature of activating different signalling pathways upon ligand binding and these ligands display several efficacy levels to differentially activate the receptor. GPCRs are primary drug targets due to their central role in several signal transduction pathways. Drug design for GPCRs is also most challenging due to their inherent promiscuity in ligand recognition, which gives rise to several side effects of existing drugs. Here, we have performed the ligand interaction study using the two prominent states of GPCR, namely the active and inactive state of the 5-HT2A receptor. Active state of 5-HT2A receptor model enhances the understanding of conformational difference which influences the ligand-binding site. A 5-HT2A receptor active state model was constructed by homology modelling using active state β2-adrenergic receptor (β2-AR). In addition, virtual screening and docking studies with both active and inactive state models reveal potential small molecule hits which could be considered as agonist-like and antagonist-like molecules. The results from the all-atom molecular dynamics simulations further confirmed that agonists and antagonists interact in different modes with the receptor.  相似文献   

3.
G protein-coupled receptors (GPCRs) belong to one of the largest family of signaling receptors in the mammalian genome [1]. GPCRs elicit cellular responses to multiple diverse stimuli and play essential roles in human health and disease. GPCRs have important clinical implications in various diseases and are the targets of approximately 25–50% of all marketed drugs [2], [3]. Understanding how GPCRs are regulated is essential to delineating their role in normal physiology and in the pathophysiology of several diseases. Given the vast number and diversity of GPCRs, it is likely that multiple mechanisms exist to regulate GPCR function. While GPCR signaling is typically regulated by desensitization and endocytosis mediated by phosphorylation and β-arrestins, it can also be modulated by ubiquitination. Ubiquitination is emerging an important regulatory process that may have unique roles in governing GPCR trafficking and signaling. Recent studies have revealed a mechanistic link between GPCR phosphorylation, β-arrestins and ubiquitination that may be applicable to some GPCRs but not others. While the function of ubiquitination is generally thought to promote receptor endocytosis and endosomal sorting, recent studies have revealed that ubiquitination also plays an important role in positive regulation of GPCR signaling. Here, we will review recent developments in our understanding of how ubiquitin regulates GPCR endocytic trafficking and how it contributes to signal transduction induced by GPCR activation.  相似文献   

4.
5.
G protein-coupled receptors (GPCRs) are ubiquitous and essential in modulating virtually all physiological processes. These receptors share a similar structural design consisting of the seven-transmembrane alpha-helical segments. The active conformations of the receptors are stabilized by an agonist and couple to structurally highly conserved heterotrimeric G proteins. One of the most important unanswered questions is how GPCRs couple to their cognate G proteins. Phototransduction represents an excellent model system for understanding G protein signaling, owing to the high expression of rhodopsin in rod photoreceptors and the multidisciplinary experimental approaches used to study this GPCR. Here, we describe how a G protein (transducin) docks on to an oligomeric GPCR (rhodopsin), revealing structural details of this critical interface in the signal transduction process. This conceptual model takes into account recent structural information on the receptor and G protein, as well as oligomeric states of GPCRs.  相似文献   

6.
Macrophage cells that are stimulated by two different ligands that bind to G-protein-coupled receptors (GPCRs) usually respond as if the stimulus effects are additive, but for a minority of ligand combinations the response is synergistic. The G-protein-coupled receptor system integrates signaling cues from the environment to actuate cell morphology, gene expression, ion homeostasis, and other physiological states. We analyze the effects of the two signaling molecules complement factors 5a (C5a) and uridine diphosphate (UDP) on the intracellular second messenger calcium to elucidate the principles that govern the processing of multiple signals by GPCRs. We have developed a formal hypothesis, in the form of a kinetic model, for the mechanism of action of this GPCR signal transduction system using data obtained from RAW264.7 macrophage cells. Bayesian statistical methods are employed to represent uncertainty in both data and model parameters and formally tie the model to experimental data. When the model is also used as a tool in the design of experiments, it predicts a synergistic region in the calcium peak height dose response that results when cells are simultaneously stimulated by C5a and UDP. An analysis of the model reveals a potential mechanism for crosstalk between the Galphai-coupled C5a receptor and the Galphaq-coupled UDP receptor signaling systems that results in synergistic calcium release.  相似文献   

7.
GPCRs (G-protein-coupled receptors) play key roles in many cellular processes, and malfunction may lead to a range of pathologies, including psychiatric and neurological disorders. It is therefore not surprising that this group of receptors supplies a majority of the targets for pharmaceutical drug development. Despite their importance, the mechanisms that regulate their function and signalling still remain only partially understood. Recently, it has become evident that a subset of GPCRs is not homogeneously distributed in the plasma membrane, but localizes instead to specific membrane microdomains known as lipid rafts. Lipid rafts are characterized by their enrichment in cholesterol and sphingolipids, and have been suggested to serve as platforms for a range of cellular signalling complexes. In the present review, we will be discussing the effects of the lipid raft environment on trafficking, signalling and internalization of raft-associated GPCRs.  相似文献   

8.
After the discovery of molecules modulating G protein-coupled receptors (GPCRs) that are able to selectively affect one signaling pathway over others for a specific GPCR, thereby "biasing" the signaling, it has become obvious that the original model of GPCRs existing in either an "on" or "off" conformation is too simple. The current explanation for this biased agonism is that GPCRs can adopt multiple active conformations stabilized by different molecules, and that each conformation affects intracellular signaling in a different way. In the present study we sought to investigate biased agonism of the calcium-sensing receptor (CaSR), by looking at 12 well-known orthosteric CaSR agonists in 3 different CaSR signaling pathways: G(q/11) protein, G(i/o) protein, and extracellular signal-regulated kinases 1 and 2 (ERK1/2). Here we show that apart from G(q/11) and G(i/o) signaling, ERK1/2 is activated through recruitment of β-arrestins. Next, by measuring activity of all three signaling pathways we found that barium, spermine, neomycin, and tobramycin act as biased agonist in terms of efficacy and/or potency. Finally, polyamines and aminoglycosides in general were biased in their potencies toward ERK1/2 signaling. In conclusion, the results of this study indicate that several active conformations of CaSR, stabilized by different molecules, exist, which affect intracellular signaling distinctly.  相似文献   

9.
G protein-coupled receptors (GPCRs) exist in multiple dynamic states (e.g., ligand-bound, inactive, G protein-coupled) that influence G protein activation and ultimately response generation. In quantitative models of GPCR signaling that incorporate these varied states, parameter values are often uncharacterized or varied over large ranges, making identification of important parameters and signaling outcomes difficult to intuit. Here we identify the ligand- and cell-specific parameters that are important determinants of cell-response behavior in a dynamic model of GPCR signaling using parameter variation and sensitivity analysis. The character of response (i.e., positive/neutral/inverse agonism) is, not surprisingly, significantly influenced by a ligand's ability to bias the receptor into an active conformation. We also find that several cell-specific parameters, including the ratio of active to inactive receptor species, the rate constant for G protein activation, and expression levels of receptors and G proteins also dramatically influence agonism. Expressing either receptor or G protein in numbers several fold above or below endogenous levels may result in system behavior inconsistent with that measured in endogenous systems. Finally, small variations in cell-specific parameters identified by sensitivity analysis as significant determinants of response behavior are found to change ligand-induced responses from positive to negative, a phenomenon termed protean agonism. Our findings offer an explanation for protean agonism reported in beta2--adrenergic and alpha2A-adrenergic receptor systems.  相似文献   

10.
Being the largest family of cell surface receptors, G-protein-coupled receptors (GPCRs) are among the most frequent targets of therapeutic drugs. The functions of many of GPCRs are unknown, and it is both time-consuming and expensive to determine their ligands and signaling pathways. This forces us to face a critical challenge: how to develop an automated method for classifying the family of GPCRs so as to help us in classifying drugs and expedite the process of drug discovery. Owing to their highly divergent nature, it is difficult to predict the classification of GPCRs by means of conventional sequence alignment approaches. To cope with such a situation, the CD (Covariant Discriminant) predictor was introduced to predict the families of GPCRs. The overall success rate thus obtained by jack-knife test for 1238 GPCRs classified into three main families, i.e., class A-"rhodopsin like", class B-"secretin like", and class C-"metabotrophic/glutamate/pheromone", was over 97%. The high success rate suggests that the CD predictor holds very high potential to become a useful tool for understanding the actions of drugs that target GPCRs and designing new medications with fewer side effects and greater efficacy.  相似文献   

11.
G protein-coupled receptors (GPCRs) are integral membrane proteins that, in response to activation by extracellular stimuli, regulate intracellular second messenger levels via their coupling to heterotrimeric G proteins. GPCR activation also initiates a series of molecular events that leads to G protein-coupled receptor kinase-mediated receptor phosphorylation and the binding of beta-arrestin proteins to the intracellular face of the receptor. beta-Arrestin binding not only contributes to the G protein-uncoupling of GPCRs, but also mediates the targeting of many GPCRs for endocytosis in clathrin-coated pits. Several GPCRs internalize as a stable complex with beta-arrestin and the stability of this complex appears to regulate, at least in part, whether the receptors are dephosphorylated in early endosomes and recycled back to the cell surface as fully functional receptors, retained in early endosomes or targeted for degradation in lysosomes. More recently, it has become appreciated that the movement of GPCRs through functionally distinct intracellular membrane compartments is regulated by a variety of Rab GTPases and that the activity of these Rab GTPases may influence GPCR function. Moreover, it appears that GPCRs are not simply passive cargo molecules, but that GPCR activation may directly influence Rab GTPase activity and as such, GPCRs may directly control their own targeting between intracellular compartments. This review provides a synopsis of the current knowledge regarding the role of beta-arrestins and Rab GTPases in regulating the intracellular trafficking and function of GPCRs.  相似文献   

12.
GPCRs (G-protein-coupled receptors) are seven-transmembrane helix proteins that transduce exogenous and endogenous signals to modulate the activity of downstream effectors inside the cell. Despite the relevance of these proteins in human physiology and pharmaceutical research, we only recently started to understand the structural basis of their activation mechanism. In the period 2008-2011, nine active-like structures of GPCRs were solved. Among them, we have determined the structure of light-activated rhodopsin with all the features of the active metarhodopsin-II, which represents so far the most native-like model of an active GPCR. This structure, together with the structures of other inactive, intermediate and active states of rhodopsin constitutes a unique structural framework on which to understand the conserved aspects of the activation mechanism of GPCRs. This mechanism can be summarized as follows: retinal isomerization triggers a series of local structural changes in the binding site that are amplified into three intramolecular activation pathways through TM (transmembrane helix) 5/TM3, TM6 and TM7/TM2. Sequence analysis strongly suggests that these pathways are conserved in other GPCRs. Differential activation of these pathways by ligands could be translated into the stabilization of different active states of the receptor with specific signalling properties.  相似文献   

13.
14.
G protein-coupled receptors (GPCRs) represent a major focus in functional genomics programs and drug development research, but their important potential as drug targets contrasts with the still limited data available concerning their activation mechanism. Here, we investigated the activation mechanism of the cholecystokinin-2 receptor (CCK2R). The three-dimensional structure of inactive CCK2R was homology-modeled on the basis of crystal coordinates of inactive rhodopsin. Starting from the inactive CCK2R modeled structure, active CCK2R (namely cholecystokinin-occupied CCK2R) was modeled by means of steered molecular dynamics in a lipid bilayer and by using available data from other GPCRs, including rhodopsin. By comparing the modeled structures of the inactive and active CCK2R, we identified changes in the relative position of helices and networks of interacting residues, which were expected to stabilize either the active or inactive states of CCK2R. Using targeted molecular dynamics simulations capable of converting CCK2R from the inactive to the active state, we delineated structural changes at the atomic level. The activation mechanism involved significant movements of helices VI and V, a slight movement of helices IV and VII, and changes in the position of critical residues within or near the binding site. The mutation of key amino acids yielded inactive or constitutively active CCK2R mutants, supporting this proposed mechanism. Such progress in the refinement of the CCK2R binding site structure and in knowledge of CCK2R activation mechanisms will enable target-based optimization of nonpeptide ligands.  相似文献   

15.
The concept of intra-membrane receptor-receptor interactions (RRIs) between different types of G protein-coupled receptors (GPCRs) and evidence for their existence was introduced by Agnati and Fuxe in 1980/81 through the biochemical analysis of the effects of neuropeptides on the binding characteristics of monoamine receptors in membrane preparations from discrete brain regions and functional studies of the interactions between neuropeptides and monoamines in the control of specific functions such as motor control and arterial blood pressure control in animal models. Whether GPCRs can form high-order structures is still a topic of an intense debate. Increasing evidence, however, suggests that the hypothesis of the existence of high-order receptor oligomers is correct. A fundamental consequence of the view describing GPCRs as interacting structures, with the likely formation at the plasma membrane of receptor aggregates of multiple receptors (Receptor Mosaics) is that it is no longer possible to describe signal transduction simply as the result of the binding of the chemical signal to its receptor, but rather as the result of a filtering/integration of chemical signals by the Receptor Mosaics (RMs) and membrane-associated proteins. Thus, in parallel with experimental research, significant efforts were spent in bioinformatics and mathematical modelling. We review here the main approaches that have been used to assess the interaction interfaces allowing the assembly of GPCRs and to shed some light on the integrative functions emerging from the complex behaviour of these RMs. Particular attention was paid to the RMs generated by adenosine A(2A), dopamine D(2), cannabinoid CB(1), and metabotropic glutamate mGlu(5) receptors (A(2A), D(2), CB(1) and mGlu(5), respectively), and a possible approach to model the interplay between the D(2)-A(2A)-CB(1) and D(2)-A(2A)-mGlu(5) trimers is proposed.  相似文献   

16.
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane signaling proteins and are the target of approximately half of all therapeutic agents. Agonist ligands bind their cognate GPCRs stabilizing the active conformation that is competent to bind G proteins, thus initiating a cascade of intracellular signaling events leading to modification of the cell activity. Despite their biomedical importance, the only known GPCR crystal structures are those of inactive rhodopsin forms. In order to understand how GPCRs are able to transduce extracellular signals across the plasma membrane, it is critical to determine the structure of these receptors in their ligand-bound, active state. Here, we report a novel combination of purification procedures that allowed the crystallization of rhodopsin in two new crystal forms and can be applicable to the purification and crystallization of other membrane proteins. Importantly, these new crystals are stable upon photoactivation and the preliminary X-ray diffraction analysis of both photoactivated and ground state rhodopsin crystals are also reported.  相似文献   

17.
Although highly controversial just a few years ago, the idea that G-protein-coupled receptors (GPCRs) may undergo homo-oligomerization or hetero-oligomerization has recently gained considerable attention. The recognition that GPCRs may exhibit either dimeric or oligomeric structures is based on a number of different biochemical and biophysical approaches. Although much effort has been spent to demonstrate the mechanism(s) by which GPCRs interact with each other, the physiological relevance of this phenomenon remains elusive. An additional source of uncertainty stems from the realization that homo-oligomerization and hetero-oligomerization of GPCRs may affect receptor binding and activity in different ways, depending on the type of interacting receptors. In this brief review, the functional and pharmacological effects of the hetero-oligomerization of GPCR on binding and cell signaling are critically analyzed.  相似文献   

18.
Anatomical profiling of G protein-coupled receptor expression   总被引:1,自引:0,他引:1  
Regard JB  Sato IT  Coughlin SR 《Cell》2008,135(3):561-571
  相似文献   

19.
Accurate development of allosteric modulators of GPCRs require a thorough assessment of their sequence, structure, and dynamics, toward gaining insights into their mechanisms of actions shared by family members, as well as dynamic features that distinguish subfamilies. Building on recent progress in the characterization of the signature dynamics of proteins, we analyzed here a dataset of 160 Class A GPCRs to determine their sequence similarities, structural landscape, and dynamic features across different species (human, bovine, mouse, squid, and rat), different activation states (active/inactive), and different subfamilies. The two dominant directions of variability across experimentally resolved structures, identified by principal component analysis of the dataset, shed light to cooperative mechanisms of activation, subfamily differentiation, and speciation of Class A GPCRs. The analysis reveals the functional significance of the conformational flexibilities of specific structural elements, including: the dominant role of the intracellular loop 3 (ICL3) together with the cytoplasmic ends of the adjoining helices TM5 and TM6 in enabling allosteric activation; the role of particular structural motifs at the extracellular loop 2 (ECL2) connecting TM4 and TM5 in binding ligands specific to different subfamilies; or even the differentiation of the N-terminal conformation across different species. Detailed analyses of the modes of motions accessible to the members of the dataset and their variations across members demonstrate how the active and inactive states of GPCRs obey distinct conformational dynamics. The collective fluctuations of the GPCRs are robustly defined in the active state, while the inactive conformers exhibit broad variance among members.  相似文献   

20.
G-protein coupled receptor structure   总被引:1,自引:0,他引:1  
Because of their central role in regulation of cellular function, structure/function relationships for G-protein coupled receptors (GPCR) are of vital importance, yet only recently have sufficient data been obtained to begin mapping those relationships. GPCRs regulate a wide range of cellular processes, including the senses of taste, smell, and vision, and control a myriad of intracellular signaling systems in response to external stimuli. Many diseases are linked to GPCRs. A critical need exists for structural information to inform studies on mechanism of receptor action and regulation. X-ray crystal structures of only one GPCR, in an inactive state, have been obtained to date. However considerable structural information for a variety of GPCRs has been obtained using non-crystallographic approaches. This review begins with a review of the very earliest GPCR structural information, mostly derived from rhodopsin. Because of the difficulty in crystallizing GPCRs for X-ray crystallography, the extensive published work utilizing alternative approaches to GPCR structure is reviewed, including determination of three-dimensional structure from sparse constraints. The available X-ray crystallographic analyses on bovine rhodopsin are reviewed as the only available high-resolution structures for any GPCR. Structural information available on ligand binding to several receptors is included. The limited information on excited states of receptors is also reviewed. It is concluded that while considerable basic structural information has been obtained, more data are needed to describe the molecular mechanism of activation of a GPCR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号