首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis and hydrolysis in aqueous buffers of novel N-alkyl-N-alkyloxycarbonylaminomethyl (NANAOCAM) and N-aryl-N-alkyloxycarbonylaminomethyl (NArNAOCAM) derivatives of carboxylic acid containing drugs were carried out. The hydrolysis follows a S(N)1 type mechanism and is dependent on the nucleofugacity of the leaving group. Topical delivery of the NANAOCAM derivative of naproxen from IPM across hairless mice skin was examined in in vitro diffusion cell experiments. The prodrug was 4.5-fold less lipid soluble, 2.4-fold less water soluble and 3.6-fold less permeable than the parent drug.  相似文献   

2.
N,N′-Dialkylaminoalkylcarbonyl (DAAC) and aminoalkylcarbonyl (AAC) prodrugs of phenolic drugs acetaminophen (APAP) and naltrexone (NTX) are reported. The effects of incorporation of a basic amine group into the promoiety of an acyl prodrug of a phenolic drug on its skin permeation properties are also presented. DAAC-APAP prodrugs were synthesized via a three-step procedure starting with haloalkylcarbonyl esters which were reacted with five different amines: dimethylamine, diethylamine, dipropylamine, morpholine, and piperidine. The spacing between the amino group and the carbonyl group of the acyl group was 1-3 CH2. After the hydrolysis of the ester, the carboxylic acid product was subsequently coupled with the parent drug via a dicyclohexyl carbodiimide (DCC) mediated coupling to yield the DAAC-APAP-HCl prodrugs in excellent yields. The AAC prodrugs were synthesized using commercially available Boc-protected amino acids using DCC or EDCI as coupling agents. The yields of the prodrugs synthesized using these two different methods have been compared. Half-lives (t1/2) of a few members of the DAAC and AAC series were measured in buffer (pH 6.0, 20 mM). The members evaluated in hydrolysis experiments exhibit a t1/2 range of 15-113 min. Among AAC-APAP prodrugs, the isopropyl group in valinate-APAP-HCl exerted a steric effect that increased the t1/2 value for this prodrug compared to alaninate-APAP-HCl or prolinate-APAP-HCl. The 2-morpholinylacetate-APAP prodrug was able to achieve twice the flux of APAP in in vitro diffusion cell experiments through hairless mouse skin.  相似文献   

3.
Improved synthetic methods are reported for the preparation of sulfenamide derivatives of carbamazepine (CBZ) for evaluation as prodrugs. These sulfenamide prodrugs were designed to rapidly release CBZ in vivo by cleavage of the sulfenamide bond by chemical reaction with glutathione and other sulfhydryl compounds. Physicochemical characterization and in vivo conversion of a new prodrug of CBZ was evaluated to further establish the proof of concept of the sulfenamide prodrug approach.  相似文献   

4.
The development of novel chemotherapy strategies based on prodrugs remains a major challenge for effective treatment of malignancies. We tested the hypothesis that this can be achieved by a prodrug of paclitaxel where one biologically active center, represented by the C7 hydroxyl group, was blocked by a dihydroxypropyl side chain which can be hydrolytically cleaved by a pH-dependent, slow-release mechanism. The prodrug was synthesized by condensation of solketal chloroformate with the C7 hydroxyl group of paclitaxel followed by a ring-opening reaction to the dihydroxyl derivative. The cytotoxicity of the prodrug was similar to paclitaxel, when tested in vitro against a variety of human tumor cell lines. In vitro cell cycle analysis indicated that concentrations within the micromolar range of both drug and prodrug are required to induce sufficient G2M arrest. The hydrophilic paclitaxel prodrug proved to be more than 50-fold more water soluble than the parental drug and effectively converted to paclitaxel by pH dependent hydrolysis. Importantly, the prodrug could be used at a 3-fold higher maximum tolerated dose (MTD) and revealed a markedly improved antitumor activity in mice compared to paclitaxel. Taken together, our results demonstrate, that a hydrolytically activated paclitaxel prodrug exhibits greater water solubility and superior antitumor activity than the parental drug.  相似文献   

5.
The two new bacterial strains, Rhodococcus sp. C3II and Rhodococcus erythropolis MP50, which have been especially selected for the enantioselective hydrolysis of pharmaceutically interesting 2-arylpropionitriles like naproxen nitrile, have been applied for the hydrolysis of various aliphatic and aromatic nitriles and acid amides. From the enantioselective hydrolysis of racemic ibuprofen amide 4, 2-phenylbutyronitrile 5a as well as the profen-related atrolactamide 8 we deduce the decisive role of both an alkyl and aryl substituent in the -position to the nitrile or amide function for high enantioselectivity of the hydrolysis. Strain C3II and MP50 differ in the activity of their nitrile hydratase–amidase enzyme systems. This is of interest for the regioselective hydrolysis of the dinitriles 10a–13a to diacids 10f–13f. While strain C3II is suitable to preferentially produce mononitrile monoamide derivatives, strain MP50 can be used especially to form mononitrile monoacid and monoamide monoacid derivatives.  相似文献   

6.
A gradient eluent HPLC analysis in human plasma and urine was developed and validated for methylprednisolone (MP), its prodrug methylprednisolone-21-hemisuccinate (MPS) with the metabolites 6β-hydroxy-6α-methylprednisolone (MPA), 20-hydroxymethylprednisolone (MPC), 6β-hydroxy-20α-hydroxymethylprednisolone (MPB), 6β-hydroxy-20β-hydroxymethylprednisolone (MPE), 20-carboxymethylprednisolone (MPD), methylprednisolone-glucuronide (MPF) and 21-carboxymethylprednisolone (MPX). The column was Cp Spherisorb C8 5 μm, 250 mm×4.6 mm I.D. (Chrompack, Bergen op Zoom, The Netherlands) with a guard column 75 mm×2.1 mm, packed with pellicular reversed-phase. The eluent was a mixture of acetonitrile and 0.067 M KH2PO4 buffer, pH 4.5. At t=0, the eluent consisted of 2% acetonitrile and 98% buffer (v/v). Over the following 35 min the eluent changed linearly until it attained a composition of 50% acetonitrile and 50% buffer (v/v). At 37 min (t=37) the eluent was changed over 5 min to the initial composition, followed by equilibration over 3 min. The flow-rate was 1.5 ml/min and UV detection was achieved at 248 nm. Preliminary pharmacokinetic data were obtained from one patient who showed illustrative plasma concentration–time curves and renal excretion-time profiles after a short-lasting infusion (0.5 h) of 1 g of methylprednisolone hemisuccinate. The half-life of prodrug methylprednisolone-21-hemisuccinate (MPS) was 0.3 h, that of metabolite MPX (21-carboxy MP) was 0.4 h and that of the parent drug methylprednisolone (MP) was 1.4 h. The half-lives of the metabolites are almost similar (4 h). The main compounds in the urine are methylprednisolone hemisuccinate (prodrug, 15.0%), methylprednisolone (parent drug, 14.6%), metabolite MPD (20-carboxy, 11.7%), and metabolite MPB (13.2%). The renal clearance values of metabolites MPB, MPC and MPD are approximately 500 ml/min, that of MP is 100 ml/min.  相似文献   

7.
Electrophysiological and behavioural responses of females of two tabanid species, Tabanus bromius L. and Atylotus quadrifarius (Loew) (Diptera: Tabanidae), to ammonia, octenol (1‐octen‐3‐ol), phenols and aged horse urine were compared. Electroantennogram (EAG) responses in both species to octenol, 4‐methylphenol (4MP), 3‐propylphenol (3PP) and a phenol mixture (4MP and 3PP at a ratio of 16 : 1) increased in a dose‐dependent fashion. The most effective stimulus was 4MP and synergism between the two phenols may exist. Aged horse urine also elicited strong EAG responses in both species. Using gas chromatography–mass spectrometry (GC‐MS) analysis, we identified 29 compounds in horse urine, which included, in particular, ketones, fatty alcohols and phenols, among which 4MP was the most abundant component (? 80%). Trapping experiments were carried out using Nzi traps baited with various odours. Octenol and the phenol mixture in combination with ammonia increased catches of tabanids by 1.8–2.8 times relative to ammonia alone. Aged horse urine increased catches of T. bromius and A. quadrifarius by 2.2 and 4.1 times, respectively. The high attractiveness of aged horse urine, especially for A. quadrifarius, is not likely to derive from 4MP alone, but from the mixture of various active compounds used in host location.  相似文献   

8.
The structure of the covalent adduct formed in vitro between [14C]-acetaminophen ([14C]APAP) and bovine serum albumin (BSA) has been investigated with the aid of new analytical methodology. The APAP-BSA adduct, isolated from mouse liver microsomal incubations to which the radiolabeled drug and BSA had been added, was cleaved using a combination of specific (cyanogen bromide) and non-specific (acid hydrolysis) procedures, following which the mixture of amino acids obtained was derivatized, in aqueous solution, with ethyl chloroformate. The resulting ethoxycarbonyl derivatives were recovered by extraction into ethylacetate, methylated and subjected to profile analysis using both reverse-phase and normal-phase HPLC techniques. In each HPLC step, one major radioactive amino acid adduct was detected and was identified by mass spectrometry as the derivative of 3-cystein-S-yl-4-hydroxyaniline. Based on this finding, and with a knowledge of the behavior under acidic hydrolysis conditions of the 3-cysteinyl conjugate of APAP, it could be concluded that the major APAP-BSA adduct is one in which the drug is bound, via a thioether linkage at the C-3 position, to a sulfhydryl group on the protein. Furthermore, it could be established that this -SH function almost certainly is that associated with the cys-34 residue of BSA.  相似文献   

9.
As an alternative to the previously reported solid dispersion formulation for enhancing the oral absorption of thiazolo[5,4-b]pyridine 1, we investigated novel N-acyl imide prodrugs of 1 as RAF/vascular endothelial growth factor receptor 2 (VEGFR2) inhibitors. Introducing N-acyl promoieties at the benzanilide position gave chemically stable imides. N-tert-Butoxycarbonyl (Boc) introduced imide 6 was a promising prodrug, which was converted to the active compound 1 after its oral administration in mice. Cocrystals of 6 with AcOH (6b) possessed good physicochemical properties with moderate thermodynamic solubility (19μg/mL). This crystalline prodrug 6b was rapidly and enzymatically converted into 1 after its oral absorption in mice, rats, dogs, and monkeys. Prodrug 6b showed in vivo antitumor regressive efficacy (T/C=-6.4%) in an A375 melanoma xenograft model in rats. Hence, we selected 6b as a promising candidate and are performing further studies. Herein, we report the design, synthesis, and characterization of novel imide-type prodrugs.  相似文献   

10.
The purpose of the study was to investigate the effect of hydroxypropyl beta cyclodextrin (HPβCD) on aqueous solubility, stability, and in vitro corneal permeation of acyl ester prodrugs of ganciclovir (GCV). Aqueous solubility and stability of acyl ester prodrugs of Ganciclovir (GCV) were evaluated in pH 7.4 isotonic phosphate buffer solution (IPBS) in the presence and absence of HPβCD. Butyryl cholinesterase-mediated enzymatic hydrolysis of the GCV prodrugs was studied using various percentage w/v HPβCD. In vitro corneal permeation of GCV and its prodrugs (with and without 5% HPβCD) across isolated rabbit cornea was studied using side-by-side diffusion cells. HPβCD-prodrug complexation was of the AL type with values for complexation constants ranging between 12 and 108 M−1. Considerable improvement in chemical and enzymatic stability of the GCV prodrugs was observed in the presence of HPβCD. The stabilizing effect of HPβCD was found to depend on the degree of complexation and the degradation rate of prodrug within the complex. Five percent w/v HPβCD was found to enhance the corneal permeation of only the most lipophilic prodrug GCV dibutyrate (2.5-fold compared with 0% HPβCD). All other prodrugs showed little or no difference in transport in the presence of 5% w/v HPβCD. Agitation in the donor chamber largely influenced the transport kinetics of GCV dibutyrate across cornea. Results indicate the presence of an unstirred aqueous diffusion layer at the corneal surface that restricts the transport of the highly lipophilic GCV dibutyrate prodrug. HPβCD improves corneal permeation by solubilizing the hydrophobic prodrug and delivering it across the mucin layer at the corneal surface.  相似文献   

11.
Impurities in 5(6)-carboxyfluorescein can affect phospholipid vesicle stability and apparent rates of carboxyfluorescein transfer into cells. Thorough purification and characterization of the dye are thus important to many applications with vesicles and/or cells. The dye can be purified by adsorption chromatography on a hydrophobic gel, following treatment with activated charcoal and precipitation from ethanol-water. The 5- and 6-carboxy-isomers can be separated from each other (though for most purposes it is not necessary to do so) by synthesis, crystallization, and hydrolysis of the diacetate derivatives. Purification is monitored by thin-layer and high pressure chromatography.  相似文献   

12.
CYP2E1 is recognized as the most important enzyme for initiation of acetaminophen (APAP)-induced toxicity. In this study, the resistance of Cyp2e1-null mice to APAP treatment was confirmed by comparing serum aminotransferase activities and blood urea nitrogen levels in wild-type and Cyp2e1-null mice. However, unexpectedly, profiling of major known APAP metabolites in urine and serum revealed that the contribution of CYP2E1 to APAP metabolism decreased with increasing APAP doses administered. Measurement of hepatic glutathione and hydrogen peroxide levels exposed the importance of oxidative stress in determining the consequence of APAP overdose. Subsequent metabolomic analysis was capable of constructing a principal components analysis (PCA) model that delineated a relationship between urinary metabolomes and the responses to APAP treatment. Urinary ions high in wild-type mice treated with 400 mg/kg APAP were elucidated as 3-methoxy-APAP glucuronide (VII) and three novel APAP metabolites, including S-(5-acetylamino-2-hydroxyphenyl)mercaptopyruvic acid (VI, formed by a Cys-APAP transamination reaction in kidney), 3,3'-biacetaminophen (VIII, an APAP dimer), and a benzothiazine compound (IX, originated from deacetylated APAP), through mass isotopomer analysis, accurate mass measurement, tandem mass spectrometry fragmentation, in vitro reactions, and chemical treatments. Dose-, time-, and genotype-dependent appearance of these minor APAP metabolites implied their association with the APAP-induced toxicity and potential biomarker application. Overall, the oxidative stress elicited by CYP2E1-mediated APAP metabolism might significantly contribute to APAP-induced toxicity. The combination of genetically modified animal models, mass isotopomer analysis, and metabolomics provides a powerful and efficient technical platform to characterize APAP-induced toxicity through identifying novel biomarkers and unraveling novel mechanisms.  相似文献   

13.
Various novel 10-alkyl-2-deoxo-2-methylthioflavin-5-oxides and their 2-alkylamino derivatives were prepared by facile nitrosative cyclization of 6-(N-alkylanilino)-2-methylthiopyrimidin-4(3H)-ones followed by nucleophilic replacement of the 2-methylthio moiety by different amines, and acidic hydrolysis of the 2-methylthio moiety afforded the corresponding flavin derivatives. 2-Deoxo-2-methylthio-5-deazaalloxazines and 2-deoxo-2-methylthioalloxazine-5-oxides were also prepared by Vilsmeier reaction and by nitrosation of 6-anilino-2-methylthiopyrimidin-4(3H)-ones, respectively. Then, they were subjected to nucleophilic replacement with appropriate amines to produce the corresponding 2-alkylamino derivatives. Regiospecific N(3)-alkylation of 2-deoxo-2-methylthioalloxazine-5-oxides was carried out with various alkylating agents in the usual way. The antitumor activities against CCRF-HSB-2 and KB tumor cells have been investigated in vitro, and many compounds showed promising antitumor activities. Furthermore, AutoDock molecular docking into PTK (PDB: 1t46) has been done for lead optimization of the aforementioned compounds as potential PTK inhibitors.  相似文献   

14.
We synthesized a highly water-soluble canadensol prodrug 6 that formed canadensol 3 by a simple pH-dependent chemical mechanism via the O–N intramolecular acyl migration of the isobutyryl group. This prodrug, a 2′-O-isobutyryl isoform of 3, has no additional functional auxiliaries released during the conversion to 3. This is a significant advantage in toxicology and medical economics, since the potential side effects of reported water-soluble auxiliaries and the use of detergent for solubilization can be avoided. The solubility of 6 was 2.26 mg mL−1 and only the parent drug 3 was released under physiological conditions (pH=7.4) while, in acidic medium, the release of 3 slowed until migration was completely obstructed at pH=2. In further consideration of this strategy, we elucidated the use of an ‘O–N acyl-like’ migration reaction of the Boc group in the design of a docetaxel prodrug. Both O–N migration and undesired hydrolysis of the Boc group occurred under physiological conditions, although no oxazolidinone formation was observed, suggesting the limitation of our water-soluble prodrug strategy to docetaxel.  相似文献   

15.
We have previously reported the presence of an apyrase in Mimosa pudica. However, only limited information is available for this enzyme. Thus, in this study, the apyrase was purified to homogeneity. The purified enzyme had a molecular mass of around 67 kD and was able to hydrolyze both nucleotide triphosphate and nucleotide diphosphate as substrates. The ratio of ATP to ADP hydrolysis velocity of the purified protein was 0.01 in the presence of calcium ion, showing extremely high substrate specificity toward ADP. Thus, we designated this novel apyrase as MP67. A cDNA clone of MP67 was obtained using primers designed from the amino acid sequence of trypsin-digested fragments of the protein. In addition, rapid amplification of cDNA ends-polymerase chain reaction was performed to clone a conventional apyrase (MpAPY2). Comparison of the deduced amino acid sequences showed that MP67 is similar to ecto-apyrases; however, it was distinct from conventional apyrase based on phylogenetic classification. MP67 and MpAPY2 were expressed in Escherichia coli, and the recombinant proteins were purified. The recombinant MP67 showed high substrate specificity toward ADP rather than ATP. A polyclonal antibody raised against the recombinant MP67 was used to examine the tissue distribution and localization of native MP67 in the plant. The results showed that MP67 was ubiquitously distributed in various tissues, most abundantly in leaves, and was localized to plasma membranes. Thus, MP67 is a novel ecto-apyrase with extremely high substrate specificity for ADP.  相似文献   

16.
Acetaminophen (APAP) overdose leads to liver injury. NLRP3 inflammasome is a key player in APAP‐induced inflammation. Also, apoptosis and liver regeneration play an important role in liver injury. Therefore, we assessed allicin's protective effect on APAP‐induced hepatotoxicity and studied its effect on NLRP3 inflammasome and apoptosis. Mice in the APAP group were injected by APAP (250 mg/kg, intraperitoneal). The allicin‐treated group received allicin orally (10 mg/kg/d) during 7 days before APAP injection. Serum and hepatic tissues were separated 24 hours after APAP injection. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin, alkaline phosphatase (ALP), and hepatic malondialdehyde (MDA) were assessed using the colorimetric method. Hepatic NLRP3 inflammasome, caspase‐1, and interleukin‐1β (IL‐1β) were estimated using enzyme‐linked immunosorbent assay. Hepatic Bcl‐2 and Ki‐67 were investigated by immunohistochemistry. APAP significantly increased AST, ALT, and ALP, whereas allicin significantly decreased their levels. Also, APAP significantly decreased albumin and allicin significantly improved it. APAP produced changes in liver morphology, including inflammation and massive coagulative necrosis. Allicin protected the liver from APAP‐induced necrosis, apoptosis, and hepatocellular degeneration via increasing Bcl‐2 and Ki‐67 levels. APAP significantly increased the hepatic MDA, whereas allicin significantly prevented this increase. APAP markedly activated the NLRP3 inflammasome pathway and consequently increased the production of caspase‐1 and IL‐1β. Interestingly, we found that allicin significantly inhibited NLRP3 inflammasome activation, which resulted in decreased caspase‐1 and IL‐1β levels. Allicin has a hepatoprotective effect against APAP‐induced liver injury via the decline of oxidative stress and inhibition of the inflammasome pathway and apoptosis. Therefore, allicin might be a novel tool to halt the progression of APAP‐stimulated hepatotoxicity.  相似文献   

17.
A novel derivatization method employing 1,2-dimethylimidazole-4-sulfonyl chloride (DMISC) to improve the mass spectrometric response for phenolic compounds in liquid chromatography electrospray ionization mass spectrometry (LC-ESI-MS) and tandem mass spectrometry (LC-ESI-MS/MS) is described. Several environmentally relevant compounds, including chloro-, aryl- and alkylphenols, steroidal estrogens, and hydroxy-polycyclic aromatic hydrocarbons (OHPAHs), were selected to evaluate this technique. A facile derivatization procedure employing DMISC results in dimethylimidazolesulfonyl (DMIS) derivatives that are stable in aqueous solution. These DMIS derivatives produced intense [M+H](+) ions in positive-ion LC-ESI-MS. The product ion spectra of the [M+H](+) ions of simple phenols were dominated by ions representing the DMIS and dimethylimidazole moieties, whereas product ion spectra of the DMIS derivatives of OHPAHs with three or more fused aromatic rings showed prominent ArO(+) ions, the relative intensity of which increased with the number of rings. The DMIS derivatives of the selected phenolic compounds showed excellent chromatographic properties. To substantiate the utility of derivatization with DMISC, an analytical method employing enzyme hydrolysis, solid phase extraction, derivatization with DMISC, and analysis by LC-ESI-MS/MS with multiple reaction monitoring for determination in human urine of 1-hydroxypyrene, a widely used biomarker for the assessment of human exposure to PAHs, was developed and validated.  相似文献   

18.
ERM (ezrin, radixin, and moesin) proteins are cytoskeletal interacting proteins that bind cortical actin, the plasma membrane, and membrane proteins, which are found in specialized plasma membrane structures such as microvilli and filopodia. ERM proteins are regulated by phosphatidylinositol 4, 5-biphosphate (PIP(2)) and by phosphorylation of a C-terminal threonine, and its inactivation involves PIP(2) hydrolysis and/or myosin phosphatase (MP). Recently, we demonstrated that ERM proteins are also subject to counter regulation by the bioactive sphingolipids ceramide and sphingosine 1-phosphate. Plasma membrane ceramide induces ERM dephosphorylation whereas sphingosine 1-phosphate induces their phosphorylation. In this work, we pursue the mechanisms by which ceramide regulates dephosphorylation. We found that this dephosphorylation was independent of hydrolysis and localization of PIP(2) and MP. However, the results show that ERM dephosphorylation was blocked by treatment with protein phosphatase 1 (PP1) pharmacological inhibitors and specifically by siRNA to PP1α, whereas okadaic acid, a PP2A inhibitor, failed. Moreover, a catalytic inactive mutant of PP1α acted as dominant negative of the endogenous PP1α. Additional results showed that the ceramide mechanism of PP1α activation is largely independent of PIP(2) hydrolysis and MP. Taken together, these results demonstrate a novel, acute mechanism of ERM regulation dependent on PP1α and plasma membrane ceramide.  相似文献   

19.
The in vitro and in vivo stereoselective hydrolysis characteristics of the mutual prodrug FP-PPA, which is a conjugate of flurbiprofen (FP) with the histamine H2-antagonist PPA, to reduce gastrointestinal lesions induced by FP were investigated and compared with those of FP methyl ester (rac-FP-Me) and FP ethyleneglycol ester (rac-FP-EG). The rac-FP derivatives were hydrolyzed preferentially to the (+)-S-isomer in plasma and to the (−)-R-isomer in liver and small intestinal mucosa. Interestingly, in the gastric mucosa, the stereoselectivity of hydrolysis of (−)-R-FP-PPA was opposite from that of rac-FP-Me and rac-FP-EG, which suggested that the stereoselective hydrolysis of FP-PPA was helpful in reducing gastric damage induced by (+)-S-FP. However, hydrolysis of all rac-FP derivatives was found to be catalyzed by carboxylesterases in the gastric mucosa. The stereoselective disposition of FP enantiomers early after intravenous administration of rac-FP-PPA could be explained by the stereoselective formation of (−)-R-FP from rac-FP-PPA in the liver. (−)-R-FP-PPA was completely hydrolyzed to form (−)-R-FP in vivo, while 78% of (+)-S-FP-PPA was hydrolyzed to (+)-S-FP, with a corresponding decrease in the area under the curve. Twenty-five percent of (+)-S-FP-PPA might be eliminated as the intact prodrug or its metabolites other than FP. The most important bioconversion of FP-PPA occurred in plasma, and additional hydrolysis of the R-enantiomer in liver resulted in the stereoselectivity observed following both i.v. and p.o. administration. © 1996 Wiley-Liss, Inc.  相似文献   

20.
Various novel 10-alkyl-2-deoxo-2-methylthio-5-deazaflavins have been synthesized by reaction of 6-(N-alkylanilino)-2-methylthiopyrimidin-4(3H)-ones with Vilsmeier reagent. The similar 2-(N-substituted amino) derivatives were prepared by nucleophilic replacement reaction of the 2-methylthio moiety by appropriate amines. The 2-oxo derivatives (i.e., 5-deazaflavins) were obtained by acidic hydrolysis of the 2-methylthio derivatives. The antitumor activities against CCRF-HSB-2 and KB cells and the antiviral activities against HSV-1 and HSV-2 have been investigated in vitro, and many compounds showed promising antitumor activities. Furthermore, AutoDock molecular docking into PTK has been done for lead optimization of these compounds as potential PTK inhibitors. Whereas, the designed 2-deoxo-5-deazaflavins connected with amino acids at the 2-position exhibited the good binding affinities into PTK with more hydrogen bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号