首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The control of cell division by growth regulators is critical to proper shoot and root development. Alkamides belong to a class of small lipid amides involved in plant morphogenetic processes, from which N-isobutyl decanamide is one of the most active compounds identified. This work describes the isolation and characterization of an N-isobutyl decanamide-hypersensitive (dhm1) mutant of Arabidopsis (Arabidopsis thaliana). dhm1 seedlings grown in vitro develop disorganized tumorous tissue in petioles, leaves and stems. N-isobutyl decanamide treatment exacerbates the dhm1 phenotype resulting in widespread production of callus-like structures in the mutant. Together with these morphological alterations in shoot, dhm1 seedlings sustained increased lateral root formation and greater sensitivity to alkamides in the inhibition of primary root growth. The mutants also show reduced etiolation when grown in darkness. When grown in soil, adult dhm1 plants were characterized by reduced plant size, and decreased fertility. Genetic analysis indicated that the mutant phenotype segregates as a single recessive Mendelian trait. Developmental alterations in dhm1 were related to an enhanced expression of the cell division marker CycB1-uidA both in the shoot and root system, which correlated with altered expression of auxin and cytokinin responsive gene markers. Pharmacological inhibition of auxin transport decreased LR formation in WT and dhm1 seedlings in a similar manner, indicating that auxin transport is involved in the dhm1 root phenotype. These data show an important role of alkamide signaling in cell proliferation and plant architecture remodeling likely acting through the DHM1 protein.  相似文献   

2.
3.
Plants alter the architecture of their root systems to adapt to the environment by modulating post-embryonic (lateral and adventitious) root formation and growth. To understand better the genetic basis of this regulation, we screened ethylmethane sulfonate-mutagenized lines of Arabidopsis thaliana for adventitious rooting mutants. One mutant showed retardation of the primary root growth, no production of lateral roots and enhanced formation of adventitious roots. Mapping and genetic complementation revealed that this mutant named wooden leg-3 (wol-3) was an allele of ARABIDOPSIS HISTIDINE KINASE 4 (AHK4), a locus known to encode a cytokinin receptor. Although the vascular system of the primary root and hypocotyl in the wol-3 mutant was aborted, that of the adventitious roots was normally developed. In the hypocotyl of the wol-3 mutant, auxin signals accumulated around the aborted vascular system. The application of auxin to primary roots induced lateral root formation in the wol-3 mutant. Transport of radiolabeled auxin from the top of the hypocotyl to the primary root was inhibited in wol-3. Although only a single amino acid alteration had occurred in AHK4, the root morphology in the wol-3 mutant was quite similar to that in the ahk2 ahk3 ahk4 triple mutant, which is a loss-of-function mutant of the three cytokinin receptors. This implies that the functional disturbance of AHK4 affects the function of the other receptors. Our results suggest that cytokinin receptors are necessary for the formation of auxin-transporting vascular tissues in the hypocotyl, but not in adventitious roots.  相似文献   

4.
Cytokinin is an adenine derivative plant hormone that generally regulates plant cell division and differentiation in conjunction with auxin. We report that a major cue for the negative regulation of sulfur acquisition is executed by cytokinin response 1 (CRE1)/wooden leg (WOL)/Arabidopsis histidine kinase 4 (AHK4) cytokinin receptor in Arabidopsis root. We constructed a green fluorescent protein (GFP) reporter system that generally displays the expression of the high-affinity sulfate transporter SULTR1;2 in Arabidopsis roots. GFP under the control of SULTR1;2 promoter showed typical sulfur responses that correlate with the changes in SULTR1;2 mRNA levels; accumulation of GFP was induced by sulfur limitation (-S), but was repressed in the presence of reduced sulfur compounds. Among the plant hormones tested, cytokinin significantly downregulated the expression of SULTR1;2. SULTR1;1 conducting sulfate uptake in sultr1;2 mutant was similarly downregulated by cytokinin. Downregulation of SULTR1;1 and SULTR1;2 by cytokinin correlated with the decrease in sulfate uptake activities in roots. The effect of cytokinin on sulfate uptake was moderated in the cre1-1 mutant, providing genetic evidence for involvement of CRE1/WOL/AHK4 in the negative regulation of high-affinity sulfate transporters. These data demonstrated the physiological importance of the cytokinin-dependent regulatory pathway in acquisition of sulfate in roots. Our results suggested that two different modes of regulation, represented as the -S induction and the cytokinin-dependent repression of sulfate transporters, independently control the uptake of sulfate in Arabidopsis roots.  相似文献   

5.
We used loss-of-function mutants to study three Arabidopsis thaliana sensor histidine kinases, AHK2, AHK3, and CRE1/AHK4, known to be cytokinin receptors. Mutant seeds had more rapid germination, reduced requirement for light, and decreased far-red light sensitivity, unraveling cytokinin functions in seed germination control. Triple mutant seeds were more than twice as large as wild-type seeds. Genetic analysis indicated a cytokinin-dependent endospermal and/or maternal control of embryo size. Unchanged red light sensitivity of mutant hypocotyl elongation suggests that previously reported modulation of red light signaling by A-type response regulators may not depend on cytokinin. Combined loss of AHK2 and AHK3 led to the most prominent changes during vegetative development. Leaves of ahk2 ahk3 mutants formed fewer cells, had reduced chlorophyll content, and lacked the cytokinin-dependent inhibition of dark-induced chlorophyll loss, indicating a prominent role of AHK2 and, particularly, AHK3 in the control of leaf development. ahk2 ahk3 double mutants developed a strongly enhanced root system through faster growth of the primary root and, more importantly, increased branching. This result supports a negative regulatory role for cytokinin in root growth regulation. Increased cytokinin content of receptor mutants indicates a homeostatic control of steady state cytokinin levels through signaling. Together, the analyses reveal partially redundant functions of the cytokinin receptors and prominent roles for the AHK2/AHK3 receptor combination in quantitative control of organ growth in plants, with opposite regulatory functions in roots and shoots.  相似文献   

6.
Recently we reported 6-(2-hydroxy-3-methylbenzylamino)purine (PI-55) as the first molecule to antagonize cytokinin activity at the receptor level. Here we report the synthesis and in vitro biological testing of eleven BAP derivatives substituted in the benzyl ring and in the C2, N7 and N9 positions of the purine moiety. The ability of the compounds to interact with Arabidopsis cytokinin receptors AHK3 and CRE1/AHK4 was tested in bacterial receptor and in live-cell binding assays, and in an Arabidopsis ARR5:GUS (Arabidopsis response regulator 5) reporter gene assay. Cytokinin activity of the compounds was determined in classical cytokinin biotests (tobacco callus, wheat leaf senescence and Amaranthus bioassays). 6-(2,5-Dihydroxybenzylamino)purine (LGR-991) was identified as a cytokinin receptor antagonist. At the molecular level LGR-991 blocks the cytokinin receptor CRE1/AHK4 with the same potency as PI-55. Moreover, LGR-991 acts as a competitive inhibitor of AHK3, and importantly shows reduced agonistic effects in comparison to PI-55 in the ARR5:GUS reporter gene assay and in cytokinin bioassays. LGR-991 causes more rapid germination of Arabidopsis seeds and increases hypocotyl length of dark-grown seedlings, which are characteristics of plants with a reduced cytokinin status. LGR-991 exhibits a structural motive that might lead to preparation of cytokinin antagonists with a broader specificity and reduced agonistic properties.  相似文献   

7.
Strains of Escherichia coli that express two different cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, were used to study the relative sensitivity of these receptors to various cytokinins. Both receptors were most sensitive to the bases of the isoprenoid-type cytokinins trans-zeatin and isopentenyladenine but differed significantly in the recognition of other cytokinin compounds. In particular, CRE1/AHK4 recognized at 1 microm concentration only trans-zeatin while AHK3 recognized cis-zeatin and dihydrozeatin as well, although with a lower sensitivity. Similarly, CRE1/AHK4 was not activated by cytokinin ribosides and ribotides, but AHK3 was. Comparisons using the ARR5::GUS fusion gene as a cytokinin reporter in Arabidopsis showed similar relative degrees of responses in planta, except that cytokinins with aromatic side chains showed much higher activities than in the bacterial assay. These results indicate that the diverse cytokinin compounds might have specific functions in the numerous cytokinin-regulated processes, which may depend in turn on different receptors and their associated signalling pathways. The importance of precise control of local concentrations of defined cytokinin metabolites to regulate the respective downstream event is corroborated.  相似文献   

8.
N-acyl-homoserine lactones (AHLs) belong to a class of bacterial quorum-sensing signals important for bacterial cell-to-cell communication. We evaluated Arabidopsis thaliana growth responses to a variety of AHLs ranging from 4 to 14 carbons in length, focusing on alterations in post-embryonic root development as a way to determine the biological activity of these signals. The compounds affected primary root growth, lateral root formation and root hair development, and in particular, N-decanoyl-HL (C10-HL) was found to be the most active AHL in altering root system architecture. Developmental changes elicited by C10-HL were related to altered expression of cell division and differentiation marker lines pPRZ1:uidA, CycB1:uidA and pAtEXP7:uidA in Arabidopsis roots. Although the effects of C10-HL were similar to those produced by auxins in modulating root system architecture, the primary and lateral root response to this compound was found to be independent of auxin signalling. Furthermore, we show that mutant and overexpressor lines for an Arabidopsis fatty acid amide hydrolase gene (AtFAAH) sustained altered growth response to C10-HL. All together, our results suggest that AHLs alter root development in Arabidopsis and that plants posses the enzymatic machinery to metabolize these compounds.  相似文献   

9.
We previously identified a set of structurally related genes, AHK2, 3 and 4, each encoding a sensor histidine kinase in Arabidopsis thaliana. To determine the relevant biological functions, we identified a loss-of-function mutation of the AHK4 gene. The mutant exhibited the cytokinin-resistant phenotype not only in inhibition of root growth by cytokinin but also in greening and shoot induction of calli. Moreover, AHK4 expressed in budding yeast showed histidine kinase activity in a manner dependent on the presence of cytokinin. These results strongly suggested that AHK4 is involved in the cytokinin-signaling pathway, as a direct receptor molecule, in Arabidopsis.  相似文献   

10.
The Arabidopsis thaliana AHK4 histidine kinase (also known as CRE1 or WOL) acts as a cytokinin signal transducer, presumably, in concert with downstream components, such as histidine-containing phosphotransfer factors (AHPs) and response regulators (ARRs), through the histidine-to-aspartate (His-->Asp) phosphorelay. Among 10 members of the type-A ARR family, the cytokinin-induced expression of ARR15 in roots is selectively impaired in the cre1-1 mutant, which carries a mutation in the AHK4 gene, suggesting a link between this type-A response regulator and the AHK4-mediated cytokinin signal transduction in roots. To address this issue further, we characterized a T-DNA insertion mutant of ARR15, and also constructed transgenic lines (referred to as ARR15-ox) that overexpress the ARR15 gene in a manner independent of cytokinin. While the T-DNA insertion mutant (arr15-1) showed no apparent phenotype, the cytokinin-independent overexpression of ARR15 in ARR15-ox plants resulted in a reduced sensitivity toward exogenously applied cytokinin, not only in elongation of roots in plants, but also in green callus formation (or shoot formation) in explants. Cytokinin-induced expressions of certain type-A ARRs were also down-regulated in ARR15-ox plants. These results support the view that ARR15 acts as a repressor that mediates a negative feedback loop in the cytokinin and AHK4-mediated His-->Asp phosphorelay.  相似文献   

11.
The synthesis of a new group of 2-X-6-anilinopurines, including compounds with potential cytokinin-like activities, with various substitutions (X=H, halogen, amino, methylthio or nitro) on the phenyl ring is described. The prepared compounds have been characterized using standard physico-chemical methods, and the influence of individual substituents on biological activity has been compared in three different bioassays, based on the stimulation of tobacco callus growth, retention of chlorophyll in excised wheat leaves and the dark induction of betacyanin synthesis in Amaranthus cotyledons. The biological activity of the prepared compounds was also assessed in receptor assays, in which the ability of the compounds to activate the cytokinin receptors AHK3 and AHK4/CRE1 was studied. Finally, the interactions of the compounds with the Arabidopsis cytokinin oxidase/dehydrogenase AtCKX2 (heterologously expressed) were investigated. Systematic testing led to the identification of two very potent inhibitors of AtCKX2: 2-chloro-6-(3-methoxyphenyl)aminopurine and 2-fluoro-6-(3-methoxyphenyl)aminopurine.  相似文献   

12.
Cytokinins are plant hormones that may play essential and crucial roles in various aspects of plant growth and development. Although the functional significance of exogenous cytokinins as to the proliferation and differentiation of cells has been well documented, the biological roles of endogenous cytokinins have remained largely unknown. The recent discovery of the Arabidopsis Histidine Kinase 4 (AHK4)/CRE1/WOL cytokinin receptor in Arabidopsis thaliana strongly suggested that the cellular response to cytokinins involves a two-component signal transduction system. However, the lack of an apparent phenotype in the mutant, presumably because of genetic redundancy, prevented us from determining the in planta roles of the cytokinin receptor. To gain insight into the molecular functions of the three AHK genes AHK2, AHK3, and AHK4 in this study, we identified mutational alleles of the AHK2 and AHK3 genes, both of which encode sensor histidine kinases closely related to AHK4, and constructed a set of multiple ahk mutants. Application of exogenous cytokinins to the resultant strains revealed that both AHK2 and AHK3 function as positive regulators for cytokinin signaling similar to AHK4. The ahk2 ahk4 and ahk3 ahk4 double mutants and the ahk single mutants grew normally, whereas the ahk2 ahk3 double mutants exhibited a semidwarf phenotype as to shoots, such as a reduced leaf size and a reduced influorescence stem length. The growth and development of the ahk2 ahk3 ahk4 triple mutant were markedly inhibited in various tissues and organs, including the roots and leaves in the vegetative growth phase and the influorescence meristem in the reproductive phase. We showed that the inhibition of growth is associated with reduced meristematic activity of cells. Expression analysis involving AHK:beta-glucuronidase fusion genes suggested that the AHK genes are expressed ubiquitously in various tissues during postembryonic growth and development. Our results thus strongly suggest that the primary functions of AHK genes, and those of endogenous cytokinins, are triggering of the cell division and maintenance of the meristematic competence of cells to prevent subsequent differentiation until a sufficient number of cells has accumulated during organogenesis.  相似文献   

13.
Alfalfa (Medicago sativa) and Arabidopsis were used as model systems to examine molecular mechanisms underlying developmental effects of a microsomal UDP-glucuronosyltransferase-encoding gene from pea (Pisum sativum; PsUGT1). Alfalfa expressing PsUGT1 antisense mRNA under the control of the cauliflower mosaic virus (CaMV) 35S promoter exhibited delayed root emergence, reduced root growth, and increased lateral root development. The timing of root emergence in wild-type and antisense plants was correlated with the transient accumulation of auxin at the site of root emergence. Cell suspension cultures derived from the antisense alfalfa plants exhibited a delay in cell cycle from 24-h in the wild-type plants to 48-h in the antisense plants. PsUGT1::uidA was introduced into Arabidopsis to demonstrate that, as in alfalfa and pea, PsUGT1 expression occurs in regions of active cell division. This includes the root cap and root apical meristems, leaf primordia, tips of older leaves, and the transition zone between the hypocotyl and the root. Expression of PsUGT1::uidA colocalized with the expression of the auxin-responding reporter DR5::uidA. Co-expression of DR5::uidA in transgenic Arabidopsis lines expressing CaMV35S::PsUGT1 revealed that ectopic expression of CaMV35S::PsUGT1 is correlated with a change in endogenous auxin gradients in roots. Roots of ecotype Columbia expressing CaMV35S::PsUGT1 exhibited distinctive responses to exogenous naphthalene acetic acid. Completion of the life cycle occurred in 4 to 6 weeks compared with 6 to 7 weeks for wild-type Columbia. Inhibition of endogenous ethylene did not correct this early senescence phenotype.  相似文献   

14.
Hairy root cultures of Echinacea, one of the most important medicinal plants in the US, represent a valuable alternative to field cultivation for the production of bioactive secondary metabolites. In this study, the three most economically important species of Echinacea (Echinacea purpurea, Echinacea pallida, and Echinacea angustifolia) were readily transformed with two strains of Agrobacterium that produce the hairy root phenotype. Transformed roots of all three species exhibited consistent accelerated growth and increased levels of alkamide production. Optimization of the culture of Echinacea hairy roots was implemented to enhance both growth and alkamide production concomitantly. The use of half-strength Gamborg’s B5 medium supplemented with 3.0% sucrose was twice as effective in maintaining hairy root production than any other media tested. The addition of indolebutyric acid increased the growth rate of roots by as much as 14-fold. Alkamide production increased severalfold in response to the addition of the elicitor, jasmonic acid, but did not respond to the addition of indolebutyric acid. Induced accumulation of the important bioactive compounds, alkamides 2 and 8, was observed both in transformed roots and in response to jasmonic acid treatments. The results of this study demonstrate the efficacy of hairy root cultures of Echinacea for the in vitro production of alkamides and establish guidelines for optimum yield.  相似文献   

15.
16.
The cytokinin receptor AHK4 histidine kinase, identified in Arabidopsis thaliana, presumably acts in concert with downstream components, such as histidine-containing phosphotransfer (HPt) factors (AHPs) and response regulators (ARRs). In this respect, we characterized a loss-of-function mutant of the AHK4 gene, named cre1-1, which showed a reduced cell number within the vascular tissues in roots. Among the 10 type-A ARR members, the expression of ARR15 and ARR16 in roots was specifically and markedly reduced in cre1-1, suggesting a link between these response regulators and the AHK4-mediated signal transduction in roots. The results for transgenic plants expressing promoter::GUS or promoter::LUC fusion genes showed that both the ARR15 and the ARR16 gene products are accumulated upon cytokinin treatment in roots. The results of GFP-fusion experiments with onion epidermal cells further showed that ARR15 was found in the nucleus, and ARR16 mainly in the cytoplasm. Together, it was suggested that ARR15 and ARR16 are distinctly implicated in the presumed AHK4-mediated signaling pathway in roots.  相似文献   

17.
Cytokinins are a class of phytohormones that play a crucial role in plant growth and development. The gene UGT76C2 encoding cytokinin N-glucosyltransferase of Arabidopsis thaliana has been previously identified. To determine the in planta role of UGT76C2 in cytokinin metabolism and response, we analyzed the phenotypes of its loss-of-function mutant (ugt76c2) and its overexpressors. The accumulation level of the cytokinin N-glucosides was significantly decreased in ugt76c2, but substantially increased in UGT76C2 overexpressors compared with the wild type. When treated with exogenously applied cytokinin, ugt76c2 showed more sensitivity and UGT76C2 overexpressors showed less sensitivity to cytokinin in primary root elongation, lateral root formation, Chl retention and anthocyanin accumulation. Under normal growth conditions ugt76c2 had smaller seeds than the wild type, with accompanying lowered levels of active and N-glucosylated cytokinin forms. The expression levels of cytokinin-related genes such as AHK2, AHK3, ARR1, IPT5 and CKX3 were changed in ugt76c2, suggesting homeostatic control of cytokinin activity. Studies of spatiotemporal expression patterns showed that UGT76C2 was expressed at a relatively higher level in the seedling and developing seed. In their entirety, our data, based mainly on this comparison and opposite phenotypes of knockout and overexpressors, strongly suggest that UGT76C2 is involved in cytokinin homeostasis and cytokinin response in planta through cytokinin N-glucosylation.  相似文献   

18.
The cytokinin receptor AHK3 of Arabidopsis thaliana plays a predominant role in shoot development. A study of the hormone-binding characteristics of AHK3 compared with the mainly root-confined receptor CRE1/AHK4 has been accomplished using a live-cell binding assay on transgenic bacteria expressing individual receptor proteins. Both receptors bound trans-zeatin (tZ) with high affinity. Scatchard analysis showed a linear function corresponding to an apparent K(D) of 1-2 nM for the AHK3 receptor-hormone complex, which is close to the K(D) (2-4 nM) for the CRE1/AHK4 receptor-hormone complex. The specific binding of tZ to both receptors was pH dependent, AHK3 being more sensitive to pH changes than CRE1/AHK4. Hormone binding was reversible, at least for the bulk of (3)H-zeatin, and influenced by monovalent cations, while divalent cations (Ca(2+), Mg(2+), Mn(2+)) at physiological concentrations had no significant effect. AHK3 differed significantly from CRE1/AHK4 in relative affinity to some cytokinins. AHK3 had an approximately 10-fold lower affinity to isopentenyladenine (iP) and its riboside, but a higher affinity to dihydrozeatin than CRE1/AHK4. For AHK3, cytokinin ribosides (tZR, iPR) and cis-zeatin had true binding activity, although lower than that of tZ. The phenylurea-derived cytokinin thidiazuron was a strong competitor and bound to the same site as did adenine-derived cytokinins. The inhibitor of cytokinin action butan-1-ol had little effect on cytokinin-receptor complex formation. The revealed properties of AHK3 suggest its specific function in root-to-shoot communication.  相似文献   

19.
To date, several classes of hormones have been described that influence plant development, including auxins, cytokinins, ethylene, and, more recently, brassinosteroids. However, it is known that many fungal and bacterial species produce substances that alter plant growth that, if naturally present in plants, might represent novel classes of plant growth regulators. Alkamides are metabolites widely distributed in plants with a broad range of biological activities. In this work, we investigated the effects of affinin, an alkamide naturally occurring in plants, and its derivates, N-isobutyl-2E-decenamide and N-isobutyl-decanamide, on plant growth and early root development in Arabidopsis. We found that treatments with affinin in the range of 10(-6) to 10(-4) m alter shoot and root biomass production. This effect correlated with alteration on primary root growth, lateral root formation, and root hair elongation. Low concentrations of affinin (7 x 10(-6)-2.8 x 10(-5) m) enhanced primary root growth and root hair elongation, whereas higher concentrations inhibited primary root growth that related with a reduction in cell proliferating activity and cell elongation. N-isobutyl-2E-decenamide and N-isobutyl-decanamide were found to stimulate root hair elongation at concentrations between 10(-8) to 10(-7) m. Although the effects of alkamides were similar to those produced by auxins on root growth and cell parameters, the ability of the root system to respond to affinin was found to be independent of auxin signaling. Our results suggest that alkamides may represent a new group of plant growth promoting substances with significant impact on root development and opens the possibility of using these compounds for improved plant production.  相似文献   

20.
Strigolactones suppress adventitious rooting in Arabidopsis and pea   总被引:2,自引:0,他引:2  
Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号