首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nuclear localization signal of ING4 plays a key role in its binding to p53   总被引:10,自引:0,他引:10  
ING4, a novel member of ING family, is recently reported to interact with tumor suppressor p53 and negatively regulate the cell growth with significant G2/M arrest of cell cycle in HepG2 cells through upregulation of p53-inducible gene p21. However, which region of ING4 could have contributed to the binding to p53 remains largely unclear. Herein, the GST-pulldown experiments revealed that the middle region of ING4, a potential bipartite nuclear localization signal (NLS), could be involved in the binding to p53. Furthermore, the interaction of ING4 to p53 was abrogated in vitro and in vivo when certain mutations or the entire deletion of the NLS domain occurred. More interestingly, the mutations of the NLS domain could alter the ING4 nuclear localization, disrupt the interaction of ING4 with p53, and even, deregulate the p53-inducible gene p21 in MCF-7 cells. All data indicated that the NLS domain of ING4 is essential for the binding of ING4 to p53 and the function of ING4 associated with p53.  相似文献   

2.
3.
Zhu JJ  Li FB  Zhu XF  Liao WM 《Life sciences》2006,78(13):1469-1477
p33ING1b induces cell cycle arrest and stimulates DNA repair, apoptosis and chemosensitivity. The magnitude of some p33ING1b effects may be due to activation of the tumor suppressor p53. To investigate if the p33ING1b protein affected chemosensitivity of osteosarcoma cells, we overexpressed p33ING1b in p53+/+ U2OS cells or in p53-mutant MG63 cells, and then assessed for growth arrest and apoptosis after treatment with etoposide. p33ING1b increased etoposide-induced growth inhibition and apoptosis to a much greater degree in p53+/+ U2OS cells than in p53-mutant MG63 cells. Moreover, ectopic expression of p33ING1b markedly upregulated p53, p21WAF1 and bax protein levels and activated caspase-3 protein kinase in etoposide-treated U2OS cells. Together, our data indicate that p33ING1b prominently enhances etoposide-induced apoptosis through p53-dependent pathways in human osteosarcoma cells. p33ING1b may be an important marker and/or therapeutic target in the prevention and treatment of metastatic osteosarcoma.  相似文献   

4.
5.
目的:研究肿瘤抑制基因人ING4 (inhibitor of growth family, member 4)对C6鼠胶质瘤细胞的促凋亡作用。方法:将携有绿色荧光蛋白(GFP)腺病毒空载体Ad及重组腺病毒Ad-hING4-His(由本科室构建)分别感染C6细胞,RT-PCR法检测hING4的转录,Western-blotting法检测目的蛋白的表达。并观测hING4基因表达对C6胶质瘤细胞的作用,用MTT法绘制生长曲线,计算抑瘤率。再取重组腺病毒Ad-hING4-His及空腺病毒Ad作用后的C6细胞分别行激光共聚焦显微镜观察凋亡小体、透射电镜观察亚细胞结构的变化,抽提基因组DNA行琼脂糖凝胶电泳及流式细胞仪检测。结果: Ad-hING4-His感染C6细胞后,RT-PCR及Western-blotting结果提示有目的基因的转录和表达。hING4基因表达可以显着抑制C6细胞生长。激光共聚焦观察可见明显核断裂、透射电镜可见实验组细胞呈凋亡表现、基因组DNA电泳呈现梯形条带,流式细胞仪检测有明显AP峰,凋亡率达18.1%。结论:hING4可以通过促进细胞凋亡作用而显着抑制C6细胞的增殖和生长。  相似文献   

6.
7.
Acquired resistance to cytotoxic antineoplastic agents is a major clinical challenge in tumor therapy; however, the mechanisms involved are still poorly understood. In this study, we show that knockdown of CtIP, a corepressor of CtBP, promotes cell proliferation and alleviates G2/M phase arrest in etoposide (Eto)-treated HCT116 cells. Although the expression of p21 and growth arrest and DNA damage inducible α (GADD45a), which are important targets of p53, was downregulated in CtIP-deficient HCT116 cells, p53 deletion did not affect G2/M arrest after Eto treatment. In addition, the phosphorylation levels of Ser317 and Ser345 in Chk1 and of Ser216 in CDC25C were lower in CtIP-deficient HCT116 cells than in control cells after Eto treatment. Our results indicate that CtIP may enhance cell sensitivity to Eto by promoting G2/M phase arrest, mainly through the ATR-Chk1-CDC25C pathway rather than the p53-p21/GADD45a pathway. The expression of CtIP may be a useful biomarker for predicting the drug sensitivity of colorectal cancer cells.  相似文献   

8.
9.
We identified a novel inhibitor of growth family member 2 (ING2) isoform, ING2b, which shares exon 2 with ING2a, but lacks the N-terminal p53 binding region. Contrary to ING2a, ING2b’s promoter has no p53 binding sites. Consistently, activation of p53 led to suppression of ING2a, leaving ING2b unaffected. Through isoform-specific targeting, we showed that ING2a knockdown suppressed cell growth only in the presence of p53, ING2b knockdown had no effect on cell growth, and knockdown of both induced cell cycle arrest and apoptosis independently of p53. ING2a and ING2b have compensatory roles that protect cells from cell cycle arrest and apoptosis and may be involved in development of chemotherapeutic resistance.  相似文献   

10.
Cyr61/CCN1 is a secreted extracellular matrix associated protein involved in diverse biological functions and plays multiple roles in tumorigenesis. Cyr61 was down-regulated in HCC tumor tissues as observed in our previous cDNA microarray study, but its potential role in hepatocarcinogenesis is still unclear. To explore the biological significance of Cyr61 in HCC development, over-expression of this gene was established in HCC cell lines and its effects on cell proliferation, adhesion, migration and invasion were analyzed in this study. Cyr61 expression was down-regulated in HCC tumors as measured by quantitative real-time PCR and its protein level was decreased in most HCC cell lines as detected by Western blot. Over-expression of Cyr61 in HCC cell lines suppressed cell proliferation in monolayer and anchorage-independent growth in soft agar, whereas down-regulation of Cyr61 by siRNA increased cell proliferation rate. Over-expression of Cyr61 also significantly enhanced adhesion activities of HepG2 cells to various ECM proteins. Moreover, stably transfected HepG2-Cyr61 cells showed inhibited cell mobility (40-45%) and reduced invasiveness (30-40%) compared to HepG2-Neo controls. Furthermore, upon exposure to 5-Fluorouracil and UV irradiation, Cyr61 was rapidly induced in both p53(+/+) HepG2 and p53(-/-) Hep3B cells. However, only HepG2 cells showed increased G2/M phase arrest with concomitant up-regulation in p53 and p21 levels, suggesting that Cyr61 may play an active role in regulating HCC cell growth involving p53 as well as alternative pathways. In conclusion, we demonstrated that Cyr61 is a tumor suppressor in hepatocarcinogenesis and is involved in DNA damage response.  相似文献   

11.
12.
UHRF2(ubiquitin like with PHD and ring finger domains 2)是新近发现的具有多个结构域的核蛋白,在细胞周期调控和表观遗传学中发挥重要作用.近期研究提示,UHRF2是肿瘤抑制蛋白p53的1个E3连接酶,在体内外能与p53相互结合并促进其泛素化,过表达UHRF2能使细胞周期停滞于G1期.然而,UHRF2介导的G1期阻滞及其与p53联系尚不清楚.通过共转染UHRF2质粒及p53特异性小干扰RNA(siRNAs)到HEK293细胞构建细胞模型,探索UHRF2引起细胞周期停滞与p53之间的关系.结果显示,UHRF2能促进HEK293细胞中p53的稳定,从而引起p21 (CIP1/WAF1)基因表达,并使细胞周期停滞于G1期;但在siRNA抑制p53的表达后p21(CIP1/WAF1)表达降低,UHRF2引起的细胞周期阻滞消除.研究结果提示,UHRF2可通过稳定p53,上调p21的表达,从而介导细胞周期阻滞于G1期;同时UHRF2可能参与细胞周期调控及DNA损伤反应(DNA damage response, DDR).UHRF2稳定p53的具体分子机制及其在DDR中的作用有待进一步研究证明.  相似文献   

13.
p33(ING1) enhances UVB-induced apoptosis in melanoma cells   总被引:14,自引:0,他引:14  
The biological functions of the tumor suppressor ING1 have been studied extensively in the past few years since it was cloned. It shares many biological functions with p53 and has been reported to mediate growth arrest, senescence, apoptosis, anchorage-dependent growth, chemosensitivity, and DNA repair. Some of these functions, such as cell cycle arrest and apoptosis, have been shown to be dependent on the activity of both ING1 and p53 proteins. Two recent reports by Scott and colleagues demonstrate that p33(ING1) (one of the ING1 isoforms) translocates to the nucleus and binds to PCNA upon UV irradiation. Here we report that p33(ING1) mediates UV-induced cell death in melanoma cells. We found that overexpression of p33(ING1) increased while the introduction of an antisense p33(ING1) plasmid reduced the apoptosis rate in melanoma cells after UVB irradiation. We also demonstrated that enhancement of UV-induced apoptosis by p33(ING1) required the presence of p53. Moreover, we found that p33(ING1) enhanced the expression of endogenous Bax and altered the mitochondrial membrane potential. Taken together, these observations strongly suggest that p33(ING1) cooperates with p53 in UVB-induced apoptosis via the mitochondrial cell death pathway in melanoma cells.  相似文献   

14.
Ho PJ  Chou CK  Kuo YH  Tu LC  Yeh SF 《Life sciences》2007,80(5):493-503
Taiwanin A, a lignan isolated from Taiwania cryptomerioides Hayata, has previously been reported to have cytotoxicity against human tumor cells, but the mechanisms are unclear. In this study, we examined the molecular mechanism of cell death of human hepatocellular carcinoma HepG2 cells induced by Taiwanin A. Taiwanin A has been found to induce cell cycle arrest at G2/M phase as well as caspase-3-dependent apoptosis within 24 h. We performed both in vitro turbidity assay and immunofluorescence staining of tubulin to show that Taiwanin A can inhibit microtubule assembly. Moreover, the tumor suppressor protein p53 in HepG2 cells was activated by Taiwanin A within 12 h. Inhibition of p53 by either pifithrin-alpha or by short hairpin RNA which blocks p53 expression attenuates Taiwanin A cytotoxicity. Our results demonstrate that Taiwanin A can act as a new class of microtubule damaging agent, arresting cell cycle progression at mitotic phase and inducing apoptosis through the activation of p53.  相似文献   

15.
The physiology of p16INK4A-mediated G1 proliferative arrest   总被引:11,自引:0,他引:11  
Phosphorylation of the product of the retinoblastoma susceptibility gene (Rb) physiologically inactivates its growth-suppressive properties. Rb phosphorylation is mediated by cyclin-dependent kinases (CDKs), whose activity is enhanced by cyclins and inhibited by CDK inhibitors. p16INK4A is a member of a family of inhibitors specific for CDK4 and CDK6. p16INK4A is deleted and inactivated in a wide variety of human malignancies, including familial melanomas and pancreatic carcinoma syndromes, indicating that it is an authentic human tumor suppressor. Although one mechanism for its tumor suppression may be prevention of Rb phosphorylation, thereby causing G1 arrest, many normal cell types express p16INK4A, and are still able to traverse the cell cycle. In a search for other mechanisms, we have found that p16INK4A is required for p53-independent G1 arrest in response to DNA-damaging agents, including topoisomerase I and II inhibitors. Thus, like other tumor suppressors, p16INK4A plays an essential role in a DNA-damage checkpoint that leads to cell cycle arrest.  相似文献   

16.
Peptidylarginine deiminases (PADIs) convert peptidylarginine into citrulline via posttranslational modification. One member of the family, PADI4, plays an important role in immune cell differentiation and cell death. To elucidate the participation of PADI4 in haematopoietic cell death, we examine whether inducible overexpression of PADI4 enhances the apoptotic cell death. PADI4 reduced the viability in a dose- and time-dependent manner of human leukemia HL-60 cells and human acute T leukemia Jurkat cells. The apoptosis-inducing activities were determined by nuclear condensation, DNA fragmentation, sub-G1 appearance, loss of mitochondrial membrane potential (Δψm), release of mitochondrial cytochrome c into cytoplasm and proteolytic activation of caspase 9 and 3. Following PADI4 overexpression, cells arrest in G1 phase significantly before their entrance into apoptotic cell death. PADI4 increases tumor suppressor p53 and its downstream p21 to control cell cycle. In the detections of protein expression and kinase activity, all protein levels of cyclin-dependent kinases (CDKs) and cyclins are not reduced except cyclin D, however, CDK2 (G1 entry S phase) and CDK1 (G2 entry M phase) enzyme activities are inhibited by conditionally inducible PADI4. p53 also expands its other downstream Bax to induce cytochrome c release from mitochondria. According to these data, we suggest that PADI4 induces apoptosis mainly through cell cycle arrest and mitochondria-mediated pathway. Furthermore, p53 features in PADI4-induced apoptosis by increasing intracellular p21 to control cell cycle and by Bax accumulation to decline Bcl-2 function, destroy Δψm, release cytochrome c to cytoplasm and activate the caspase cascade.  相似文献   

17.
18.
Previous studies have shown that hyperoxia inhibits proliferation and increases the expression of the tumor suppressor p53 and its downstream target, the cyclin-dependent kinase inhibitor p21(CIP1/WAF1), which inhibits proliferation in the G1 phase of the cell cycle. To determine whether growth arrest was mediated through activation of the p21-dependent G1 checkpoint, the kinetics of cell cycle movement during exposure to 95% O2 were assessed in the Mv1Lu and A549 pulmonary adenocarcinoma cell lines. Cell counts, 5-bromo-2'-deoxyuridine incorporation, and cell cycle analyses revealed that growth arrest of both cell lines occurred in S phase, with A549 cells also showing evidence of a G1 arrest. Hyperoxia increased p21 in A549 but not in Mv1Lu cells, consistent with the activation of the p21-dependent G1 checkpoint. The ability of p21 to exert the G1 arrest was confirmed by showing that hyperoxia inhibited proliferation of HCT 116 colon carcinoma cells predominantly in G1, whereas an isogenic line lacking p21 arrested in S phase. The cell cycle arrest in S phase appears to be a p21-independent process caused by a gradual reduction in the rate of DNA strand elongation. Our data reveal that hyperoxia inhibits proliferation in G1 and S phase and demonstrate that p53 and p21 retain their ability to affect G1 checkpoint control during exposure to elevated O2 levels.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号