首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oligomers of prostaglandin B1 inhibited phospholipase A2 extracted from human neutrophils in a dose-dependent manner (IC50 = 5 microM), while the monomer was not inhibitory at concentrations of 10 microM or less. The inhibitory activity of PGB1 oligomers increased with increasing polymer size; PGB dimer had approximately one-half the maximal inhibitory activity of PGBx, while a trimer was almost as inhibitory as a tetramer and PGBx (n = 6). PGBx as an oil or as a water-soluble sodium-salt-inhibited Ca2(+)-dependent phospholipase A2 from snake venom, bovine pancreas, human neutrophil and platelet, human synovial fluid, and human sperm with IC50 values ranging from 0.5-7.5 microM. Inhibition was independent of added Ca2+ and was independent of substrate phospholipid concentration. Interaction of purified snake venom phospholipase A2 (Naja mocambique) with PGBx resulted in dose-dependent quenching of the enzyme's tryptophan fluorescence; 50% quench was noted with a molar ratio of PGBx/enzyme of 1.5. Inhibition of phospholipase A2 activity by PGBx was relieved in a dose-dependent manner by either defatted or untreated bovine serum albumin. PGBx is a potent in vitro inhibitor of a wide spectrum of phospholipases A2, and as illustrated in the accompanying paper, has profound inhibitory effects on arachidonic acid mobilization in human neutrophils and vascular endothelial cells. Modulation of cellular and extracellular phospholipases A2, and the bioactive transmitters generated by this catalytic event, may be a basic mechanism by which oligomers of prostaglandin B1 exert their reported membrane-protective effects.  相似文献   

2.
A small polypeptide isolated from human serum inhibits the action of phospholipase A2 on dipalmitoylglycerol phosphocholine vesicles. Sequence analysis revealed the protein to be apolipoprotein C-1, a major component of very light-density lipoprotein. The inhibiting efficiency is increased by one order of magnitude after 10 min preincubation of the protein with the substrate, but not the enzyme. It also depends on the concentration of the phospholipid. IC50 is about 0.5 microM at 0.2 mM DPPC and 1 microM at 1 mM DPPC. Apolipoprotein C-1 is also inhibitory in a more physiological system: in broken human leukemia cells (HL-60 cells) it inhibits the release by endogenous phospholipases of arachidonic acid from membrane phospholipids. The effective concentrations correspond to those found in the serum. It is concluded that apolipoprotein C-1 and similar phospholipid-binding proteins may act as phospholipase inhibitors by blocking the access to the substrate.  相似文献   

3.
The partial characterization of a calcium-dependent phospholipase A2 associated with membranes of mouse sperm is described. Intact and sonicated sperm had comparable phospholipase A2 activity which was maximal at pH 8.0 using [1-14C]oleate-labeled autoclaved Escherichia coli or 1-[1-14C]stearoyl-2-acyl-3-sn-glycerophosphorylethanolamine as substrates. More than 90% of the activity was sedimented when the sperm sonicate was centrifuged at 100 000 X g, indicating that the enzyme is almost totally membrane-associated. The activity is stimulated 200% during the ionophore-induced acrosome reaction and is almost equally distributed between plasma/outer acrosomal and inner acrosomal membrane fractions. The membrane-associated phospholipase A2 had an absolute requirement for low concentrations of Ca2+; Sr2+, Mg2+ and other divalent and monovalent cations would not substitute for Ca2+. In the presence of optimal Ca2+, zinc and gold ions inhibited the activity while Cu2+ and Cd2+ were without effect. Incubation of sperm sonicates with 1-[1-14C]stearoyl-2-acyl-3-sn-glycerophosphorylethanolamine in the presence and absence of sodium deoxycholate demonstrated the presence of phospholipase A2 and lysophospholipase activities. No phospholipase A1 activity was detectable. Indomethacin, sodium meclofenamate and mepacrine, but not dexamethasone or aspirin, inhibited the sperm phospholipase A2 activity. Preincubation with p-bromophenacyl bromide inhibited phospholipase A2, suggesting the presence of histidine at the active site. The enzyme may play an important role in the membrane fusion events in fertilization.  相似文献   

4.
Guinea pig lung cytosolic phospholipase A2 was purified to near homogeneity by chromatography on a phosphocellulose column, followed by Q-Sepharose, S-Sepharose, gel filtration chromatography and reverse-phase HPLC. The purified enzyme exhibited an apparent molecular weight of 16,700 by SDS-polyacrylamide gel electrophoresis. Active enzyme eluted from the gel at an apparent molecular weight of 16,700. The purified enzyme exhibited a pH optimum of 9.0 and was calcium-dependent. Guinea pig lung phospholipase A2 hydrolyzed phosphatidylcholine and phosphatidylethanolamine equally well. Substrates containing unsaturated fatty acids in the sn-2 position were hydrolyzed preferentially to those containing saturated fatty acids. Anionic detergents stimulated enzyme activity while nonionic detergents inhibited the enzyme. Disulfide reducing agents dithiothreitol, glutathione and 2-mercaptoethanol modestly stimulated enzyme activity. The sulfhydryl aklylating agent n-ethylmaleimide had no effect on enzyme activity and only high concentrations of p-hydroxymercuribenzoic acid inhibited enzyme activity. The histidine modifying agent, bromophenacyl bromide did not inhibit guinea pig lung phospholipase A2 under conditions in which Crotalus adamanteus phospholipase A2 was inhibited 80%. Manoalide inhibited guinea pig lung phospholipase A2 in a concentration-dependent manner (IC50 = 2 microM). Antibodies prepared against porcine pancreatic phospholipase A2 specifically immunoprecipitated guinea pig lung phospholipase A2 suggesting that the major phospholipase A2 in guinea pig lung cytosol is immunologically related to pancreatic phospholipase A2 in agreement with the biochemical properties of the enzyme.  相似文献   

5.
The kinetic properties and inhibitor sensitivity of human sperm phospholipase A2 (PLA2; EC 3.1.1.4) were studied. Phospholipase activity was isolated from human spermatozoa by acid extraction. Hydrolysis of dipalmitoyl phosphatidylcholine was specific to the sn-2 position. Activity was sensitive to product inhibition (60% inhibition by 0.1 mM lysophosphatidylcholine). The effects of Ca2+ and sodium deoxycholate on enzyme activity were biphasic; maximal activities were observed at 0.5 mM concentration of each agent. PLA2 was stimulated (135%) by 3% dimethylsulfoxide and was inhibited by elevated ionic strength (approximately 70% inhibition with either 0.2 M NaCl or 0.2 M KCl). Two molecular forms of PLA2 were kinetically distinguishable, one with an apparent Michaelis constant and maximal reaction velocity of 3.0 microM and 0.64 mlU/mg protein and the other with respective constants of 630 microM and 32.0 mlU/mg protein. Both forms of the enzyme were Ca2+ dependent and heat stable; however, the low-Km activity was less resistant to 60 degrees C preincubation at pH 7.5 (28% inactivation of low-Km activity after 45 min, as compared to no effect on high-Km activity). Quinacrine was a noncompetitive PLA2 inhibitor with Kis for low- and high-Km activities of 0.42 mM and 0.49 mM, respectively. Trifluoperazine (calmodulin antagonist) inhibited the high-Km activity noncompetitively (Ki = 87 microM) and the low-Km activity by a mechanism consistent with the removal of a nonessential activator. Dissociation and rate constants for inactivation of low- and high-Km activities by p-bromophenacyl bromide were 0.28 mM and 0.032 min-1, and 0.73 mM and 0.066 min-1, respectively. PLA2 was inhibited by p-nitrophenyl-p'-guanidinobenzoate, at higher concentrations (10(-4)-10(-3) M) than required to inhibit trypsinlike proteinases; p-aminobenzamidine, another potent trypsin/acrosin inhibitor, stimulated (approximately 40%) PLA2 at concentrations from 2-5 mM but inhibited PLA2 (40-50%) at a concentration of 10 mM. MnCl2 (5mM) inhibited low- and high-Km PLA2 activities by 77% and 76%, respectively. Quinacrine (0.4 mM), trifluoperazine (20 microM), p-bromophenacyl bromide (20 microM), and MnCl2 (5 mM) were tested as inhibitors of the ionophore A23187-induced human acrosome reaction. Inhibition was noted only with quinacrine (32%) and MnCl2 (93%). The effect of MnCl2 was restricted to an interaction with A23187, rather than with PLA2; p-Bromophenacyl bromide inhibited (P less than 0.05) PLA2 (29%) when added to intact spermatozoa but had no effect on the acrosome reaction. PLA2 inhibition was poorly correlated with the acrosome reaction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Using a sonicated dispersion of radiolabeled 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine as substrate, we found that phospholipase A2 activity of human platelets was enhanced 2.4-fold by albumin (1 mg/ml). The enzyme was recovered predominantly in the cytosolic fraction of platelets with less than a third of its activity being associated with the membrane fraction. In the presence of 24 mM n-octyl-beta-D-glucopyranoside (octylglucoside) phospholipase A2 was effectively (more than 90%) extracted from platelet lysates without solubilization of platelet membranes. Ion exchange chromatography of the soluble enzyme yielded a phospholipase A2 of unchanged total activity and great stability. This phospholipase A2 was active only in the presence of divalent cations (Ca2+ greater than Sr2+ greater than Mg2+ = 0), required albumin for optimal activity and exhibited exclusive positional specificity for the acyl ester bond at the 2-position of 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine. Indomethacin (500 microM), mepacrine (500 microM) and N-ethylmaleimide (4 mM) inhibited the phospholipase A2 by 69, 62 and 19%, respectively. The results are discussed in the light of previous findings on human platelet phospholipase A2.  相似文献   

7.
The development of a reliable assay for human synovial fluid phospholipase A2 (HSF PLA2) is important for the kinetic characterization of the enzyme and for the identification of enzyme inhibitors. This enzyme behaves differently from other extracellular PLA2s in many standard phospholipase assays and is generally assayed using radiolabeled, autoclaved Escherichia coli as a substrate. We have now developed a nonradioactive, continuous, spectrophotometric assay for this enzyme that is adaptable for use with a microtiterplate reader and is suitable for screening enzyme inhibitors. The assay uses a thioester derivative of diheptanoyl phosphatidylcholine as a substrate, with which the enzyme displays a specific activity of about 25 mumol min-1 mg-1. The substrate concentration curve fits a Hill equation with an apparent Km of 500 microM and a Hill coefficient of two. The enzyme has a pH optimum of 7.5 in this assay and requires about 10 mM Ca2+ for maximal activity. The presence of 0.3 mM Triton X-100 was necessary to solubilize the substrate; however, higher concentrations of the detergent inhibited enzyme activity. Using this spectrophotometric assay, inhibition of HSF PLA2 by a thioether phosphonate phosphatidylethanolamine analog was observed with an IC50 of 18 microM.  相似文献   

8.
A novel fluorescent phospholipid analogue, 1-triacontanoyl-2-(pyren-1-yl)hexanoyl-sn-glycero-3-phosphocholine (C30PHPC) was employed as a substrate for human pancreatic phospholipase A2. C30PHPC has a main endothermic phase transition with Tm at 46 degrees C as determined by differential scanning calorimetry (DSC). For an aqueous dispersion of C30PHPC the ratio of the intensities of pyrene excimer and monomer fluorescence emission, (IE/IM) has a maximum between 32 and 36 degrees C. The excimer emission intensity (at 480 nm) exceeds the monomer emission intensity (at 400 nm) 6.5-fold thus indicating a close packing of the phospholipid pyrene moieties in the lipid phase. C30PHPC has a limiting mean molecular area of 37 A2 at surface pressure 35 dyn cm-1 as judged by the compression isotherm at an air-water interphase. The hydrolysis of C30PHPC by human pancreatic phospholipase A2 was followed by monitoring the increase in the pyrene monomer fluorescence emission intensity occurring as a consequence of transfer of the reaction product, pyren-1-yl hexanoic acid into the aqueous phase. The enzyme reaction exhibited an apparent Km of 2.0 microM substrate. Calcium at a concentration of 0.2 mM activated the enzyme 4-fold. Maximal hydrolytic rates were obtained at 45 degrees C and at pH between 5.5 and 6.5. The enzyme reaction could be inhibited by 5 mM EDTA, confirming the absolute requirement for Ca2+ of this enzyme. The present fluorimetric assay easily detects hydrolysis of C30PHPC in the pmol min-1 range. Accordingly, less than nanogram levels of human pancreatic phospholipase A2 can be detected.  相似文献   

9.
The inhibitory effects of a naturally occurring diterpenoid furanolactone, columbin, on partially purified acidic phospholipase A2 (PLA2) from Naja nigricolis was investigated. Columbin inhibited the N. nigricolis PLA2 in a dose related pattern with an IC50 value of 2.5 microM. Double reciprocal plots of initial velocity data of inhibition by columbin revealed a non-competitive pattern. The KM remained constant at 19 microM, while the Vmax changed from 54 micromoles/min/mg to 32 micromoles/min/mg and 20 micromoles/min/mg in the presence of 2 and 10 microM of columbin, respectively. Extrapolated Ki values were 3 and 6.28 microM at 2 and 10 microM inhibitor, respectively. Columbin also inhibited PLA2 hydrolysis of ghost RBC in a dose-dependent fashion. At least 70% suppression of PLA2-catalysed haemolysis of RBC was observed in the presence of 2 microM columbin.  相似文献   

10.
Melittin and phospholipase A2-activating protein (PLAP) are known as efficient activators of secretory phospholipase A2(sPLA2) types I, II, and III when phospholipid liposomes are used as substrate. The present study demonstrates that both peptides can either inhibit or activate sPLA2 depending on the peptide/phospholipid ratio when erythrocyte membranes serve as a biologically relevant substrate. Low concentrations of melittin and PLAP were observed to inhibit sPLA2-triggered release of fatty acids from erythrocyte membranes. The inhibition was reversed at melittin concentrations above 1 microM. PLAP-induced inhibition of sPLA2 persisted steadily throughout the used concentration range (0-150 nM). The two peptides induced a dose-dependent activation of sPLA2 at low concentrations, followed by inhibition when model membranes were used as substrate. This opposite modulatory effect on biological membranes and model membranes is discussed with respect to different mechanisms the interaction of the regulatory peptides with the enzyme molecules and the substrate vesicles.  相似文献   

11.
Calmodulin-mediated adenylate cyclase from mammalian sperm   总被引:6,自引:0,他引:6  
Calmodulin (CaM), the calcium binding protein that modulates the activity of a number of key regulatory enzymes, is present at high levels in sperm. To determine whether CaM regulates adenylate cyclase in mammalian sperm, the actions of EGTA and selected CaM antagonists on a solubilized adenylate cyclase from mature equine sperm were examined. The activity of equine sperm adenylate cyclase was inhibited by EGTA in a concentration-dependent manner with a half-maximal inhibitory concentration (IC50) of 2 mM. Equine sperm adenylate cyclase was also inhibited in a concentration-dependent manner by the CaM antagonists chlorpromazine and calmidazolium (IC50 = 400 and 50 microM, respectively). The inhibition of enzyme activity by these agents correlated with their known potency and specificity as anti-CaM agents. The activity of the enzyme in the presence of 200 microM calmidazolium was restored by the addition of authentic CaM (EC50 = 15 microM); full activity was restored by the addition of 50 microM CaM. La3+, an ion that dissociates CaM from tightly bound CaM-enzyme systems, inhibited equine sperm adenylate cyclase (IC50 = 1 mM). Incubation of equine sperm adenylate cyclase with La3+ dissociated endogenous CaM from the enzyme so that most of the enzyme bound to a CaM-Sepharose column equilibrated with Ca2+. Specific elution of CaM-binding proteins from the CaM-Sepharose column with EGTA yielded a CaM-depleted adenylate cyclase fraction that was stimulated 2-fold by the addition of exogenous CaM.  相似文献   

12.
Phospholipase A2 activity in sonicates and acid extracts of ejaculated, washed human sperm was measured using [1-14C] oleate-labeled autoclaved E. coli and 1-[1-14C] stearoyl-2-acyl-3-sn- glycerophosphorylethanolamine as substrates. Phospholipase A was optimally active at pH 7.5, was calcium-dependent, and exclusively catalyzed the release of fatty acid from the 2-position of phospholipids. The activity was membrane-associated, and was solubilized by extraction with 0.18 N H2SO4. Acid extracts of human sperm had the highest specific activity (1709 nmols /h per mg), followed by mouse, rabbit and bull, which were 105, 36 and 1.7 nmols /h per mg, respectively. para-bromophenacyl bromide inhibited human sperm phospholipase A2 activity, but mepacrine was without effect. In the presence of 1.0 mM added CaCl2, phospholipase A2 activity was inhibited by Zn2+ and Mn2+; whereas Cu2+, Cd2+, Mg2+, or Sr2+ had no effect. Zn2+ stimulated activity at low concentrations (10(-6) to 10(-8) M), and inhibited activity in a dose-dependent manner at concentrations of 10(-5) M. The extent of stimulation by low concentrations of Zn2+ was dependent on Ca2+ concentration; at 10(-7) M, Zn2+ activity was stimulated 160% with 0.5 mM CaCl2, and only 120% with 1.0 mM CaCl2. At low concentrations (10(-5) to 10(-7) M), methoxyverapamil (D600) and trifluoperazine stimulated human sperm phospholipase A2 activity, and trifluoperazine but not D600 produced almost complete inhibition between 10(-5) and 10(-4) M of the drug. The significance of human sperm phospholipase A2 activity and its modulation by Ca2+, Zn2+ and Mn2+ in the sperm acrosome reaction is discussed.  相似文献   

13.
Cytosolic phospholipase A2 (cPLA2) catalyzes the selective release of arachidonic acid from the sn-2 position of phospholipids and is believed to play a key cellular role in the generation of arachidonic acid. When assaying the human recombinant cPLA2 using membranes isolated from [3H]arachidonate-labeled U937 cells as substrate, 2-(2'-benzyl-4-chlorophenoxy)ethyl-dimethyl-n-octadecyl-ammonium chloride (compound 1) was found to inhibit the enzyme in a dose-dependent manner (IC50 = 5 microM). It was over 70 times more selective for the cPLA2 as compared with the human nonpancreatic secreted phospholipase A2, and it did not inhibit other phospholipases. Additionally, it inhibited arachidonate production in N-formyl-methionyl-leucyl-phenylalanine-stimulated U937 cells. To further characterize the mechanism of inhibition, an assay in which the enzyme is bound to vesicles of 1,2-dimyristoyl-sn -glycero-3-phosphomethanol containing 6-10 mol % of 1-palmitoyl-2-[1-14C]arachidonoyl-sn-glycero-3-phosphocholine was employed. With this substrate system, the dose-dependent inhibition could be defined by kinetic equations describing competitive inhibition at the lipid-water interface. The apparent equilibrium dissociation constant for the inhibitor bound to the enzyme at the interface (KI*app) was determined to be 0.097 +/- 0.032 mol % versus an apparent dissociation constant for the arachidonate-containing phospholipid of 0.3 +/- 0.1 mol %. Thus, compound 1 represents a novel structural class of inhibitor of cPLA2 that partitions into the phospholipid bilayer and competes with the phospholipid substrate for the active site. Shorter n-alkyl-chained (C-4, C-6, C-8) derivatives of compound 1 were shown to have even smaller KI*app values. However, these short-chained analogs were less potent in terms of bulk inhibitor concentration needed for inhibition when using the [3H]arachidonate-labeled U937 membranes as substrate. This discrepancy was reconciled by showing that these shorter-chained analogs did not partition into the [3H]arachidonate-labeled U937 membranes as effectively as compound 1. The implications for in vivo efficacy that result from these findings are discussed.  相似文献   

14.
Calcium-dependent phospholipases A2 are markedly inhibited in vitro by cis-unsaturated fatty acids (CUFAs) and to a much lesser extent by trans-unsaturated or saturated fatty acids. Thus, CUFAs may function as endogenous suppressors of lipolysis. To better understand the mechanism of inhibition, kinetic analysis, fluorescence spectroscopy and gel permeation chromatography were employed to demonstrate that CUFAs interact with a highly purified Ca(2+)-dependent phospholipase A2 from Naja mossambica mossambica venom. Arachidonate inhibited hydrolysis of both [1-14C]oleate-labelled, autoclaved Escherichia coli and [1-14C]linoleate-labelled phosphatidylethanolamine in an apparent competitive manner. When subjected to gel permeation chromatography, [3H]arachidonate, but not [3H]palmitate, comigrated with the enzyme. Arachidonic and other CUFAs increased the fluorescence intensity of the enzyme almost 2-fold in a dose-dependent fashion (50 microM = 180% of control); methyl arachidonate was without effect. Saturated fatty acids had only a modest effect on enzyme fluorescence (50 microM = 122% of control). Concentrations of arachidonate that inhibited in vitro enzymatic activity by almost 80% did not alter binding of phospholipase A2 to the E. coli substrate. Collectively, these data demonstrate that, while CUFAs selectively bind to the enzyme, they do not influence phospholipase A2-substrate interaction. Inhibition of in vitro phospholipase A2 activity by CUFAs may be mediated by the formation of an enzymatically inactive enzyme-substrate-inhibitor complex.  相似文献   

15.
P Zeitler  Y Q Wu  S Handwerger 《Life sciences》1991,48(21):2089-2095
Previous investigations from this laboratory have implicated both phospholipase A2 and phospholipase C in the regulation of human placental lactogen release from human trophoblast. To study further the role of endogenous phospholipase A2 and the relationship between phospholipase A2 activation and phosphoinositide metabolism, we examined hPL and [3H]-inositol release from trophoblast cells in response to agents that stimulate or inhibit the endogenous enzyme. Melittin (0.5-2.0 micrograms/ml) stimulated rapid, dose-dependent, and reversible increases in the release of hPL, prostaglandin E, and [3H]-inositol. Mepacrine (0.1-0.25 mM) inhibited this stimulation. However, mepacrine had no effect on the stimulation of hPL and [3H]-inositol release by exogenous arachidonic acid (AA). These results indicate that the stimulation by melittin of phosphoinositide metabolism and hPL release is mediated by initial activation of phospholipase A2. Furthermore, the results support the possibility that AA, released as a consequence of phospholipase A2 activation, can act as a second messenger linking the two phospholipase pathways.  相似文献   

16.
The stimulation of O2.- generation by phorbol 12-myristate 13-acetate (PMA) in human neutrophil-derived cytoplasts was inhibited by a variety of phospholipase A2 inhibitors in a concentration-dependent manner. Inhibition was found to be independent of the order of addition of the inhibitor and PMA. The most potent inhibitor, RO 31-4639, inhibited O2.- generation with an IC50 value (concentration causing 50% inhibition) of 1.5 microM. The addition of either arachidonic acid or SDS, in the presence of the inhibitors, was able to restore O2.- generation. The results suggest that arachidonic acid, released by phospholipase A2, is necessary for both the activation and the maintenance of O2.- generation by the NADPH oxidase.  相似文献   

17.
A non-radioactive spectrometric assay for the evaluation of inhibitors of pancreatic group IB and non-pancreatic group IIA secretory phospholipase A(2) (sPLA(2)) is described. Mixed-micelles consisting of 1 mM of a 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol and 6 mM of sodium deoxycholate were used as substrate. The enzyme activity was determined directly without any sample clean-up by measuring the sPLA(2)-mediated oleic acid release with reversed-phase HPLC and UV-detection at 200 nm. The known sPLA(2) inhibitors MJ33 and AR-C 67047MI were analyzed in this assay for their inhibitory potency. While MJ33 revealed only a very weak inhibition of group IB and IIA sPLA(2) at the highest test concentration (33 microM), AR-C 67047MI proved to be a potent inhibitor of both enzymes with IC(50)-values of 0.36 and 0.14 microM, respectively.  相似文献   

18.
alpha-Tocopherol and three derivatives in which the phytol chain is modified or deleted were examined for their effect on cultured keratinocyte arachidonic acid metabolism. 2,2,5,7,8-Pentamethyl-6-hydroxychromane (PMC), in which the phytol chain is replaced by a methyl group, inhibited basal, bradykinin (BK)- and A23187-stimulated prostaglandin E2 (PGE2) synthesis with an apparent Ki of 1.3 microM. The Ki of the analogue with six carbon atoms in the side chain (C6) was 5 microM while that of the C11 analogue was 10 microM. No effect of alpha-tocopherol was observed. The mechanism of inhibition was studied using PMC. The effect of PMC on phospholipase and cyclooxygenase activity was assayed using stable isotope mass measurements of PGE2 formation, which assesses arachidonate release and cyclooxygenase metabolism simultaneously. BK-stimulated formation of PGE2, derived from endogenous phospholipid, was decreased 60% by 5 microM PMC and eliminated by 50 microM PMC, compared with controls. No difference in PGE2 formed from exogenous arachidonic acid was observed, indicating no effect of PMC on cyclooxygenase activity. In contrast, no effect of 5 microM PMC was observed on BK-stimulated [3H]arachidonic acid release from prelabeled cultures. The capacity of PMC to inhibit phospholipase activity in vitro was also assessed. PMC inhibited hydrolysis of phospholipid substrate by up to 60%. These results suggest that alpha-tocopherol analogues with alterations in the phytol chain inhibit eicosanoid synthesis by preferential inhibition of phospholipase.  相似文献   

19.
Several steps in the process of mammalian fertilization are mediated by carbohydrates. This study investigated the role of the p-aminophenyl derivative of d-mannose (APMP) during bovine fertilization. Inseminating cumulus-oocyte complexes (COCs) in the presence of increasing APMP concentrations resulted in a significant dose-dependent decrease of the fertilization rate (P < 0.05). No negative effect of 50 mM APMP on total sperm motility and progressive motility was found. Subsequently, the fertilization steps at which this blocking effect could be exerted were investigated, i.e., sperm penetration of the cumulus oophorus, sperm-zona binding, acrosome reaction, sperm-oolemma binding, and/or sperm-oocyte fusion. Inseminating cumulus-enclosed and cumulus-denuded oocytes in the presence of 50 mM APMP significantly decreased the fertilization rate to a comparable minimum level (P < 0.05). There was no significant relationship between the number of spermatozoa bound to the zona pellucida and the APMP concentration, and APMP nor d-mannosylated bovine serum albumin (BSA) suppressed or stimulated sperm acrosomal status. Inseminating zona-free oocytes in the presence of 50 mM APMP did not influence sperm-oolemma binding, but significantly inhibited sperm-oocyte fusion (P < 0.05). Preincubating zona-free oocytes with 200 microg/ml Con A but not with 50 mM APMP inhibited the sperm-oocyte fusion rate to the same extent as when the gametes were simultaneously exposed to 50 mM APMP. These data indicate that the blocking effect of APMP on bovine fertilization is mainly due to an inhibition of sperm-oocyte fusion, probably by specific obstruction of the sperm receptor sites that are responsible for the fusion process.  相似文献   

20.
The synthesis of inflammation mediators produced from arachidonic acid is regulated primarily by the cellular concentration of free arachidonic acid. Since intracellular arachidonic acid is almost totally present as phospholipid esters, the concentration of intracellular arachidonic acid is primarily dependent on the balance between the release of arachidonic acid from membrane phospholipids and the uptake of arachidonic acid into membrane phospholipids. Cytosolic phospholipase A(2) is a calciumdependent enzyme that catalyzes the stimulus-coupled hydrolysis of arachidonic acid from membrane phospholipids. Following exposure of macrophages to various foreign or endogenous stimulants, cytosolic phospholipase A(2) is activated. Treatment with these compounds may also stimulate phospholipase D activity, and, in the presence of ethanol, phospholipase D catalyzes the synthesis of phosphatidylethanol. A cell-free system was used to evaluate the effect of phosphatidylethanol on cytosolic phospholipase A(2) activity. Phosphatidylethanol (0.5 microM) added to 1-stearoyl-2-[(3)H]-arachidonoyl-sn-glycero-3-phosphocholine vesicles stimulated cytosolic phospholipase A(2) activity. However, high concentrations (20-100 microM) of phosphatidylethanol inhibited cytosolic phospholipase A(2) activity. Phosphatidic acid, the normal phospholipase D product, also stimulated cytosolic phospholipase A(2) activity at 0.5 microM, but had an inhibitory effect on cytosolic phospholipase A(2) activity at concentrations of 50 and 100 microM. Ethanol (20-200 mM), the precursor of phosphatidylethanol, added directly to the assay did not alter cytosolic phospholipase A(2) activity. These results suggest that phosphatidylethanol alters the physical properties of the substrate, and at lower concentrations of anionic phospholipids the substrate is more susceptible to hydrolysis. However, at high concentrations, phosphatidylethanol either reverses the alterations in physical properties of the substrate or phosphatidylethanol may be competing as the substrate. Both interactions may result in lower cytosolic phospholipase A(2) activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号