首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.

SUMMARY

Bacterial microcompartments (MCPs) are sophisticated protein-based organelles used to optimize metabolic pathways. They consist of metabolic enzymes encapsulated within a protein shell, which creates an ideal environment for catalysis and facilitates the channeling of toxic/volatile intermediates to downstream enzymes. The metabolic processes that require MCPs are diverse and widely distributed and play important roles in global carbon fixation and bacterial pathogenesis. The protein shells of MCPs are thought to selectively control the movement of enzyme cofactors, substrates, and products (including toxic or volatile intermediates) between the MCP interior and the cytoplasm of the cell using both passive electrostatic/steric and dynamic gated mechanisms. Evidence suggests that specialized shell proteins conduct electrons between the cytoplasm and the lumen of the MCP and/or help rebuild damaged iron-sulfur centers in the encapsulated enzymes. The MCP shell is elaborated through a family of small proteins whose structural core is known as a bacterial microcompartment (BMC) domain. BMC domain proteins oligomerize into flat, hexagonally shaped tiles, which assemble into extended protein sheets that form the facets of the shell. Shape complementarity along the edges allows different types of BMC domain proteins to form mixed sheets, while sequence variation provides functional diversification. Recent studies have also revealed targeting sequences that mediate protein encapsulation within MCPs, scaffolding proteins that organize lumen enzymes and the use of private cofactor pools (NAD/H and coenzyme A [HS-CoA]) to facilitate cofactor homeostasis. Although much remains to be learned, our growing understanding of MCPs is providing a basis for bioengineering of protein-based containers for the production of chemicals/pharmaceuticals and for use as molecular delivery vehicles.  相似文献   

3.
Abstract: Recent evidence suggests that the production and translocation of polyols will influence the phloem mobility of B in higher plants. The patterns of B distribution in plants, the procedures used to determine plant B status and the approaches used to manage B fertilization are all fundamentally affected by phloem B mobility. Detailed information on the occurrence of polyols in various species is unavailable and hence the extent of B mobility cannot be adequately predicted. Here, the phloem mobility of B has been tested in a number of plants producing polyols. Two approaches have been used, the B concentration gradient along a shoot and foliar 10B labelling. Results indicate that B exhibits significant phloem mobility in the species that produce polyols, but the extent of B retranslocation varies between species even within genera.  相似文献   

4.
Vol. 61, no. 7, p. 2705, column 2, lines 9 to 16: these sentences should read as follows. "These two sequences show 75% identity at the DNA level to the published N. europaea sequence and show 85% identity to each other. Interestingly, the regions that our primers were designed to target show 5 and 3 mismatches with the Nitrosospira sequence and 2 and 2 mismatches with the Nitrosolobus sequence for the forward and reverse primers, respectively." [This corrects the article on p. 2702 in vol. 61.].  相似文献   

5.
The same evolutionary forces that cause diversification in sexual eukaryotes are expected to cause diversification in bacteria. However, in bacteria, the wider variety of mechanisms for gene exchange (or lack thereof) increases the range of expected diversity patterns compared to those of sexual organisms. Two parallel concepts for bacterial speciation have developed, based on ecological divergence or barriers to recombination in turn. Recent evidence from DNA sequence data shows that both processes can generate independently evolving groups that are equivalent to sexual species and that represent separate arenas within which recombination (when it occurs), selection and drift occur. It remains unclear, however, how often different processes act in concert to generate simple units of diversity, or whether a more complex model of diversity is required, specifying hierarchical levels at which different cohesive processes operate. We advocate an integrative approach that evaluates the effects of multiple evolutionary forces on diversity patterns. There is also great potential for laboratory studies of bacterial evolution that test evolutionary mechanisms inferred from population genetic analyses of multi-locus and genome sequence data.  相似文献   

6.
7.
The molecular and biological consequences of UV-B radiation were investigated by studying five species of marine bacteria and one enteric bacterium. Laboratory cultures were exposed to an artificial UV-B source and subjected to various post-UV irradiation treatments. Significant differences in survival subsequent to UV-B radiation were observed among the isolates, as measured by culturable counts. UV-B-induced DNA photodamage was investigated by using a highly specific radioimmunoassay to measure cyclobutane pyrimidine dimers (CPDs). The CPDs determined following UV-B exposure were comparable for all of the organisms except Sphingomonas sp. strain RB2256, a facultatively oligotrophic ultramicrobacterium. This organism exhibited little DNA damage and a high level of UV-B resistance. Physiological conditioning by growth phase and starvation did not change the UV-B sensitivity of marine bacteria. The rates of photoreactivation following exposure to UV-B were investigated by using different light sources (UV-A and cool white light). The rates of photoreactivation were greatest during UV-A exposure, although diverse responses were observed. The differences in sensitivity to UV-B radiation between strains were reduced after photoreactivation. The survival and CPD data obtained for Vibrio natriegens when we used two UV-B exposure periods interrupted by a repair period (photoreactivation plus dark repair) suggested that photoadaptation could occur. Our results revealed that there are wide variations in marine bacteria in their responses to UV radiation and subsequent repair strategies, suggesting that UV-B radiation may affect the microbial community structure in surface water.  相似文献   

8.
9.
Most soil microbial community studies to date have focused on homogenized bulk soil samples. However, it is likely that many important microbial processes occur in spatially segregated microenvironments in the soil leading to a microscale biogeography. This study attempts to localize specific microbial populations to different fractions or compartments within the soil matrix.Microbial populations associated with macroaggregates and inner- versus total-microaggregates of three diverse soils were characterized using culture-independent, molecular methods. Despite their relative paucity in most surveys of soil diversity, representatives of Gemmatimonadetes and Actinobacteria subdivision Rubrobacteridae were found to be highly abundant in inner-microaggregates of most soils analyzed. By contrast, clones affiliated with Acidobacteria were found to be relatively enriched in libraries derived from macroaggregate fractions of nearly all soils, but poorly represented in inner-microaggregate fractions. Based upon analysis of 16S rRNA, active community members within microaggregates of a Georgian Ultisol were comprised largely of Gemmatimonadetes and Rubrobacteridae, while within microaggregates of a Nebraska Mollisol, Rubrobacteridae and Alphaproteobacteria were the predominant active bacterial lineages. This work suggests that microaggregates represent a unique microenvironment that selects for specific microbial lineages across disparate soils.  相似文献   

10.
Nitrate uptake by heterotrophic bacteria plays an important role in marine N cycling. However, few studies have investigated the diversity of environmental nitrate assimilating bacteria (NAB). In this study, the diversity and biogeographical distribution of NAB in several global oceans and particularly in the western Pacific marginal seas were investigated using both cultivation and culture-independent molecular approaches. Phylogenetic analyses based on 16S rRNA and nasA (encoding the large subunit of the assimilatory nitrate reductase) gene sequences indicated that the cultivable NAB in South China Sea belonged to the α-Proteobacteria, γ-Proteobacteria and CFB (Cytophaga-Flavobacteria-Bacteroides) bacterial groups. In all the environmental samples of the present study, α-Proteobacteria, γ-Proteobacteria and Bacteroidetes were found to be the dominant nasA-harboring bacteria. Almost all of the α-Proteobacteria OTUs were classified into three Roseobacter-like groups (I to III). Clone library analysis revealed previously underestimated nasA diversity; e.g. the nasA gene sequences affiliated with β-Proteobacteria, ε-Proteobacteria and Lentisphaerae were observed in the field investigation for the first time, to the best of our knowledge. The geographical and vertical distributions of seawater nasA-harboring bacteria indicated that NAB were highly diverse and ubiquitously distributed in the studied marginal seas and world oceans. Niche adaptation and separation and/or limited dispersal might mediate the NAB composition and community structure in different water bodies. In the shallow-water Kueishantao hydrothermal vent environment, chemolithoautotrophic sulfur-oxidizing bacteria were the primary NAB, indicating a unique nitrate-assimilating community in this extreme environment. In the coastal water of the East China Sea, the relative abundance of Alteromonas and Roseobacter-like nasA gene sequences responded closely to algal blooms, indicating that NAB may be active participants contributing to the bloom dynamics. Our statistical results suggested that salinity, temperature and nitrate may be some of the key environmental factors controlling the composition and dynamics of the marine NAB communities.  相似文献   

11.
Hoch, J. A. (University of Illinois, Urbana), and R. D. DeMoss. Physiological effects of a constitutive tryptophanase in Bacillus alvei. J. Bacteriol. 90:604-610. 1965.-Tryptophanase synthesis in B. alvei is not under the control of tryptophan and is not subject to catabolite repression. Exogenously supplied tryptophan was converted to indole by tryptophanase, and was excreted into the culture medium. The amount of indole excreted was dependent upon the concentration of tryptophan supplied. At intermediate levels of tryptophan (5 to 15 mug/ml), the excreted indole was completely reutilized by the cell, in contrast to the result with higher levels. Indole reutil zation was shown to be dependent upon a functional tryptophan synthetase. In the absience of exogenous tryptophan, indole was excreted into the culture medium at an earlier physiological age. The early indole was shown not to be a consequence of tryptophanase action. The early indole accompanied uniformly the normal process of tryptophan biosynthesis, and the fission of indole-3-glycerol phosphate was suggested as the origin of the excreted indole.  相似文献   

12.
Isolation of most ultraviolet B (UV-B)-resistant culturable bacteria that occur in the habitat of Laguna Azul, a high-altitude wetland [4554 m above sea level (asl)] from the Northwestern Argentinean Andes, was carried out by culture-based methods. Water from this environment was exposed to UV-B radiation under laboratory conditions during 36 h, at an irradiance of 4.94 W/m2. It was found that the total number of bacteria in water samples decreased; however, most of the community survived long-term irradiation (312 nm) (53.3 kJ/m2). The percentage of bacteria belonging to dominant species did not vary significantly, depending on the number of UV irradiation doses. The most resistant microbes in the culturable community were Gram-positive pigmented species (Bacillus megaterium [endospores and/or vegetative cells], Staphylococcus saprophyticus, and Nocardia sp.). Only one Gram-negative bacterium could be cultivated (Acinetobacter johnsonii). Nocardia sp. that survived doses of 3201 kJ/m2 were the most resistant bacteria to UV-B treatment. This study is the first report on UV-B resistance of a microbial community isolated from high-altitude extreme environments, and proposes a method for direct isolation of UV-B-resistant bacteria from extreme irradiated environments. This article is dedicated to the memory of Carolina Colin.  相似文献   

13.
Cyanobacteria are photosynthetic bacteria that are currently being developed as biological production platforms. They derive energy from light and carbon from atmospheric carbon dioxide, and some species can fix atmospheric nitrogen. One advantage of developing cyanobacteria for renewable production of biofuels and other biological products is that they are amenable to genetic manipulation, facilitating bioengineering and synthetic biology. To expand the currently available genetic toolkit, we have demonstrated the utility of synthetic theophylline-responsive riboswitches for effective regulation of gene expression in four diverse species of cyanobacteria, including two recent isolates. We evaluated a set of six riboswitches driving the expression of a yellow fluorescent protein reporter in Synechococcus elongatus PCC 7942, Leptolyngbya sp. strain BL0902, Anabaena sp. strain PCC 7120, and Synechocystis sp. strain WHSyn. We demonstrated that riboswitches can offer regulation of gene expression superior to that of the commonly used isopropyl-β-d-thiogalactopyranoside induction of a lacIq-Ptrc promoter system. We also showed that expression of the toxic protein SacB can be effectively regulated, demonstrating utility for riboswitch regulation of proteins that are detrimental to biomass accumulation. Taken together, the results of this work demonstrate the utility and ease of use of riboswitches in the context of genetic engineering and synthetic biology in diverse cyanobacteria, which will facilitate the development of algal biotechnology.  相似文献   

14.
The recent discoveries of the pRF and pRM plasmids of Rickettsia felis and R. monacensis have contravened the long-held dogma that plasmids are not present in the bacterial genus Rickettsia (Rickettsiales; Rickettsiaceae). We report the existence of plasmids in R. helvetica, R. peacockii, R. amblyommii, and R. massiliae isolates from ixodid ticks and in an R. hoogstraalii isolate from an argasid tick. R. peacockii and four isolates of R. amblyommii from widely separated geographic locations contained plasmids that comigrated with pRM during pulsed-field gel electrophoresis and larger plasmids with mobilities similar to that of pRF. The R. peacockii plasmids were lost during long-term serial passage in cultured cells. R. montanensis did not contain a plasmid. Southern blots showed that sequences similar to those of a DnaA-like replication initiator protein, a small heat shock protein 2, and the Sca12 cell surface antigen genes on pRM and pRF were present on all of the plasmids except for that of R. massiliae, which lacked the heat shock gene and was the smallest of the plasmids. The R. hoogstraalii plasmid was most similar to pRM and contained apparent homologs of proline/betaine transporter and SpoT stringent response genes on pRM and pRF that were absent from the other plasmids. The R. hoogstraalii, R. helvetica, and R. amblyommii plasmids contained homologs of a pRM-carried gene similar to a Nitrobacter sp. helicase RecD/TraA gene, but none of the plasmids hybridized with a probe derived from a pRM-encoded gene similar to a Burkholderia sp. transposon resolvase gene.  相似文献   

15.
In this study, we examined the bacterial endophyte community of potato (Solanum tuberosum) cultivar/clones using two different molecular-based techniques (bacterial automated ribosomal intergenic spacer analysis (B-ARISA) and pyrosequencing). B-ARISA profiles revealed a significant difference in the endophytic community between cultivars (perMANOVA, p < 0.001), and canonical correspondence analysis showed a significant correlation between the community structure and plant biomass (p = 0.001). Pyrosequencing detected, on average, 477 ± 71 bacterial operational taxonomic units (OTUs, 97% genetic similarity) residing within the roots of each cultivar, with a Chao estimated total OTU richness of 1,265 ± 313. Across all cultivars, a total of 238 known genera from 15 phyla were identified. Interestingly, five of the ten most common genera (Rheinheimera, Dyadobacter, Devosia, Pedobacter, and Pseudoxanthomonas) have not, to our knowledge, been previously reported as endophytes of potato. Like the B-ARISA analysis, the endophytic communities differed between cultivar/clones (∫-libshuff, p < 0.001) and exhibited low similarities on both a presence/absence (0.145 ± 0.019) and abundance (0.420 ± 0.081) basis. Seventeen OTUs showed a strong positive (r > 0.600) or negative (r < −0.600) correlation with plant biomass, suggesting a possible link between plant production and endophyte abundance. This study represents one of the most comprehensive assessments of the bacterial endophytic communities to date, and similar analyses in other plant species, cultivars, or tissues could be utilized to further elucidate the potential contribution(s) of endophytic communities to plant physiology and production.  相似文献   

16.
Host fitness is impacted by trillions of bacteria in the gastrointestinal tract that facilitate development and are inextricably tied to life history. During development, microbial colonization primes the gut metabolism and physiology, thereby setting the stage for adult nutrition and health. However, the ecological rules governing microbial succession are poorly understood. In this study, we examined the relationship between host lineage, captive diet, and life stage and gut microbiota characteristics in three primate species (infraorder, Lemuriformes). Fecal samples were collected from captive lemur mothers and their infants, from birth to weaning. Microbial DNA was extracted and the v4 region of 16S rDNA was sequenced on the Illumina platform using protocols from the Earth Microbiome Project. Here, we show that colonization proceeds along different successional trajectories in developing infants from species with differing dietary regimes and ecological profiles: frugivorous (fruit-eating) Varecia variegata, generalist Lemur catta, and folivorous (leaf-eating) Propithecus coquereli. Our analyses reveal community membership and succession patterns consistent with previous studies of human infants, suggesting that lemurs may serve as a useful model of microbial ecology in the primate gut. Each lemur species exhibits distinct species-specific bacterial diversity signatures correlating to life stages and life history traits, implying that gut microbial community assembly primes developing infants at species-specific rates for their respective adult feeding strategies.  相似文献   

17.
Polyamine contents in xylem (root) and phloem (leaf) exudates in two diverse species of rose, viz. Rosa damascena Mill and Rosa bourboniana Desport, were analyzed before, during, and after flowering in the main flowering season, that is, April–May. Only free putrescine (Put) was detected in the xylem and phloem exudates at these time points, and it was high during the peak flowering period. In phloem, Put content was significantly higher in R. bourboniana than in R. damascena at all three stages; whereas in the xylem exudate it was relatively higher in R. damascena at the peak flowering period. A spray of α-difluoromethylornithine (DFMO), an irreversible inhibitor of the putrescine biosynthetic inhibitor ornithine decarboxylase (ODC), markedly decreased the flowering. This effect was reversed by application of Put alone or in combination with DFMO. The significance of this finding is discussed in light of polyamine translocation during flowering. *IHBT Communication: 0354  相似文献   

18.
Riboflavin, the precursor for the cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide, is an essential metabolite in all organisms. While the functions for de novo riboflavin biosynthesis and riboflavin import may coexist in bacteria, the extent of this co-occurrence is undetermined. The RibM, RibN, RfuABCD and the energy-coupling factor-RibU bacterial riboflavin transporters have been experimentally characterized. In addition, ImpX, RfnT and RibXY are proposed as riboflavin transporters based on positional clustering with riboflavin biosynthetic pathway (RBP) genes or conservation of the FMN riboswitch regulatory element. Here, we searched for the FMN riboswitch in bacterial genomes to identify genes encoding riboflavin transporters and assessed their distribution among bacteria. Two new putative riboflavin transporters were identified: RibZ in Clostridium and RibV in Mesoplasma florum. Trans-complementation of an Escherichia coli riboflavin auxotroph strain confirmed the riboflavin transport activity of RibZ from Clostridium difficile, RibXY from Chloroflexus aurantiacus, ImpX from Fusobacterium nucleatum and RfnT from Ochrobactrum anthropi. The analysis of the genomic distribution of all known bacterial riboflavin transporters revealed that most occur in species possessing the RBP and that some bacteria may even encode functional riboflavin transporters from two different families. Our results indicate that some species possess ancestral riboflavin transporters, while others possess transporters that appear to have evolved recently. Moreover, our data suggest that unidentified riboflavin transporters also exist. The present study doubles the number of experimentally characterized riboflavin transporters and suggests a specific, non-accessory role for these proteins in riboflavin-prototrophic bacteria.  相似文献   

19.
Formation of sclerotia in a strain of Sclerotinia libertiana Fuckel using Czapek-Dox agar medium was highest at pH 4.0~6.0 and at 22~25°C. The response was better under darkness than under light. However, when a potato-extract medium was used the optimum temperature range extended, and even at 15~27°C mature sclerotia formed. The addition of indole-3-acetic acid (IAA) to the Czapek-Dox medium containing riboflavine stimulated the formation of sclerotia under fluorescent light. Though iodoacetic acid, a ?SH reagent, also had a stimulatory effect, cysteine had little inhibitory effect on sclerotial formation. Formation was markedly inhibited by p-aminobenzoic acid (PABA), especially in the presence of tyrosine or tryptophan, and excess ammonium salts in the medium also produced an inhibitory effect. It was assumed that accumulation of an intermediary metabolite with high reactivity with ?SH groups was necessary for sclerotial formation, but PABA and excess ammonium salts inhibited the accumulation.  相似文献   

20.
Crystalline tryptophanase prepared from the cells of Proteus rettgeri is inactive in the absence of added pyridoxal phosphate. Half-maximal enzyme activity is obtained at a concentration of 1.81 µm. Binding of pyridoxal phosphate to the apoenzyme is accompanied by pronounced increase in absorbance at 340 and 420 nm. Holotryptophanase requires K+ or for its maximal activity, but Na+ is inactive. No appreciable spectral change was observed on changing the ionic environments.

The amount of pyridoxal phosphate bound to the enzyme was determined by equilibrium dialysis and spectrophotometric titration to be 4 moles per mole of enzyme. Reduction of holoenzyme with sodium borohydride results in a shift of the absorption peak at 420 to 336 nm. ?-Pyridoxyllysine was isolated from the acid hydrolyzate of the reduced holoenzyme by paper chromatography and electrophoresis.

Addition of the substrate, l-tryptophan, or the competitive inhibitor, l-alanine, to the holoenzyme causes appearance of a new peak near 500 nm which disappears as the substrate is decomposed but remains unchanged in the presence of the inhibitor. The similar spectral change was observed by the addition of pyruvate, ammonia and indole to the holoenzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号