共查询到20条相似文献,搜索用时 0 毫秒
1.
Four isozymes of β-N-acetylhexosaminidase (β-NAHA) from pea seeds (Pisum sativum L.) have been separated, with one, designated β-NAHA-II, purified to apparent homogeneity by means of an affinity column constructed by ligating p-aminophenyl-N-acetyl-β-d-thioglucosaminide to Affi-Gel 202. The other three isozymes have been separated and purified 500- to 1750-fold by chromatography on Concanavalin A-Sepharose, Zn2+ charged immobilized metal affinity chromatography, hydrophobic chromatography, and ion exchange chromatography on CM-Sephadex. All four isozymes are located in the protein bodies of the cotyledons. The molecular weight of each isozyme is 210,000. β-NAHA-II is composed of two heterogenous subunits. The subunits are not held together by disulfide bonds, but sulfhydryl groups are important for catalysis. All four isozymes release p-nitrophenol from both p-nitrophenyl-N-acetyl-β-d-glucosaminide and p-nitrophenyl-N-acetyl-β-d-galactosaminide. The ratio of activity for hydrolysis of the two substrates is pH dependent. The Km value for the two substrates and pH optima of the isozymes are comparable to β-NAHAs from other plant sources. 相似文献
2.
A transaminase (aminotransferase, EC 2.6.1) fraction was partially purified from shoot tips of pea (Pisum sativum L. cv. Alaska) seedlings. With α-ketoglutarate as co-substrate, the enzyme transaminated the following aromatic amino acids: d,l-tryptophan, d,l-tyrosine, and d,l-phenylalanine, as well as the following aliphatic amino acids: d,l-alanine, d,l-methionine, and d,l-leucine. Of other α-keto acids tested, pyruvate and oxalacetate were more active than α-ketoglutarate with d,l-tryptophan. Stoichiometric yields of indolepyruvate and glutamate were obtained with d,l-tryptophan and α-ketoglutarate as co-substrates. The specific activity was three times higher with d-tryptophan than with l-tryptophan. 相似文献
3.
The occurrence of DNA recombination in plastids of higher plants is well documented. However, little is known at the enzymic level. To begin dissecting the biochemical mechanism(s) involved we focused on a key step: strand transfer between homologous parental DNAs. We detected a RecA-like strand transfer activity in stromal extracts from pea (Pisum sativum L.) chloroplasts. Formation of joint molecules requires Mg2+, ATP, and homologous substrates. This activity is inhibited by excess single-stranded DNA (ssDNA), suggesting a necessary stoichiometric relation between enzyme and ssDNA. In a novel assay with Triton X-100-permeabilized chloroplasts, we also detected strand invasion of the endogenous chloroplast DNA by 32P-labeled ssDNA complementary to the 16S rRNA gene. Joint molecules, analyzed by electron microscopy, contained the expected displacement loops. 相似文献
4.
5.
Explants fromPisum sativum shoot cultures and epicotyls were transformed by cocultivation withAgrobacterium tumefaciens vectors carrying plant selectable markers and transformants could be selected on a medium containing kanamycin. Transformants could also be obtained at a low frequency by cocultivating small protoplast-derived colonies. The transformed nature of the calli obtained from selection was confirmed by opine assay and DNA analysis. In addition five cultivars of pea were tested for their response to seven differentAgrobacterium tumefaciens strains. The response pattern coincided largely between the different pea cultivars, being more dependent on the bacterial strain than the cultivar used.Abbreviations 2,4-D
2,4-dichlorophenoxyacetic acid
- BA
6-benzyladenine
- Km
kanamycin
- NAA
-naphthaleneacetic acid
- NOS
nopaline synthase
- NPT
neomycin phosphotransferase
- OCS
octopine synthase 相似文献
6.
Purification and Characterization of Ornithine Transcarbamylase from Pea (Pisum sativum L.) 下载免费PDF全文
Pea (Pisum sativum) ornithine transcarbamylase (OTC) was purified to homogeneity from leaf homogenates in a single-step procedure, using δ-N-(phosphonacetyl)-l-ornithine-Sepharose 6B affinity chromatography. The 1581-fold purified OTC enzyme exhibited a specific activity of 139 micromoles citrulline per minute per milligram of protein at 37°C, pH 8.5. Pea OTC represents approximately 0.05% of the total soluble protein in the leaf. The molecular weight of the native enzyme was approximately 108,200, as estimated by Sephacryl S-200 gel filtration chromatography. The purified protein ran as a single molecular weight band of 36,500 in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. These results suggest that the pea OTC is a trimer of identical subunits. The overall amino acid composition of pea OTC is similar to that found in other eukaryotic and prokaryotic OTCs, but the number of arginine residues is approximately twofold higher. The increased number of arginine residues probably accounts for the observed isoelectric point of 7.6 for the pea enzyme, which is considerably more basic than isoelectric point values that have been reported for other OTCs. 相似文献
7.
8.
Decapitation resulted in the transport of significant amountsof 14C to the axillary buds from either point of application,but pretreatment of the cut internode surface of decapitatedplants with IAA (alone or in combination with unlabelled kinetin)inhibited the transport of label to the axillary buds and resultedin its accumulation in the IAA-treated region of the stem. Inintact plants to which labelled kinetin was applied to the apicalbud there was little movement of 14C beyond the internode subtendingthis bud; when labelled kinetin was applied to the roots ofintact plants, 14C accumulated in the stem and apical bud butwas not transported to the axillary buds. A considerable proportionof the applied radioactivity became incorporated into ethanol-insoluble/NaOH-solublecompounds in the apical bud of intact plants, in internodestreated with IAA, and in axillary buds released from dominanceby removal of the apical bud. The results are discussed in relation to the possible role ofhormone-directed transport of cytokinins m the regulation ofaxillary bud growth. 相似文献
9.
''Wando'' pea is susceptible to Ditylenchus dipsaci from Raleigh, N. C. (RNC) but resistant to the same species from Waynesville, N. C. (WNC). Homogenates of RNC and WNC were analyzed for pectolytic and cellulolytic enzyme activity; both had high Cx activity with WNC two to three times more active than RNC. Polymethylglacturonase activity was three to five times higher in RNC, but polygalacturonase was up to 100 times higher in WNC. Polygalacturonate-trans-eliminase was not detected although a Ca++-stimulated pectin methyl-trans-eliminase was present. Enzyme analyses of healthy and infected pea tissue showed only slight enzyme activity unrelated to that in nematode homogenates. No correlation between enzyme activity and the differing pathogenicities could be detected. 相似文献
10.
11.
Jan E. Grant Pauline A. Cooper Alastair E. McAra Tonya J. Frew 《Plant cell reports》1995,15(3-4):254-258
A reliable Agrobacterium tumefaciens-mediated transformation method has been developed for peas (Pisum sativum) using immature cotyledons as the explant source. Transgenic plants were recovered from the four cultivars tested: Bolero, Trounce, Bohatyr and Huka. The method takes approximately 7 months from explant to seed-bearing primary regenerant. The binary vector used carried genes for kanamycin and phosphinothricin resistance. Transformed pea plants were selected on 10 mg/l phosphinothricin. The nptII and bar genes were shown to be stably inherited through the first sexual generation of transformed plants. Expression of the phosphinothricin-resistance gene in the transformed plants was demonstrated using the Buster (=Basta) leaf-paint test and the phosphinothricin acetyl transferase enzyme assay.Abbreviations BA
6-benzylaminopurine 相似文献
12.
Most of the activity of an α-amylase present in crude pea (Pisum sativum L. cv Laxton's Progress No. 9) leaf preparations cannot be found in isolated pea leaf protoplasts. The same extrachloroplastic α-amylase is present in pea stems, representing approximately 6% of total stem amylolytic activity and virtually all of the α-amylase activity. By a simple infiltration-extraction procedure, the majority (87%) of this α-amylase activity was recovered from the pea stem apoplast without significantly disrupting the symplastic component of the tissue. Only 3% of the β-amylase activity and less than 2% of other cellular marker enzymes were removed during infiltration-extraction. 相似文献
13.
14.
Characterization of alpha-Amylase from Shoots and Cotyledons of Pea (Pisum sativum L.) Seedlings 下载免费PDF全文
The most abundant α-amylase (EC 3.2.1.1) in shoots and cotyledons from pea (Pisum sativum L.) seedlings was purified 6700-and 850-fold, respectively, utilizing affinity (amylose and cycloheptaamylose) and gel filtration chromatography and ultrafiltration. This α-amylase contributed at least 79 and 15% of the total amylolytic activity in seedling cotyledons and shoots, respectively. The enzyme was identified as an α-amylase by polarimetry, substrate specificity, and end product analyses. The purified α-amylases from shoots and cotyledons appear identical. Both are 43.5 kilodalton monomers with pls of 4.5, broad pH activity optima from 5.5 to 6.5, and nearly identical substrate specificities. They produce identical one-dimensional peptide fingerprints following partial proteolysis in the presence of SDS. Calcium is required for activity and thermal stability of this amylase. The enzyme cannot attack maltodextrins with degrees of polymerization below that of maltotetraose, and hydrolysis of intact starch granules was detected only after prolonged incubation. It best utilizes soluble starch as substrate. Glucose and maltose are the major end products of the enzyme with amylose as substrate. This α-amylase appears to be secreted, in that it is at least partially localized in the apoplast of shoots. The native enzyme exhibits a high degree of resistance to degradation by proteinase K, trypsin/chymostrypsin, thermolysin, and Staphylococcus aureus V8 protease. It does not appear to be a high-mannose-type glycoprotein. Common cell wall constituents (e.g. β-glucan) are not substrates of the enzyme. A very low amount of this α-amylase appears to be associated with chloroplasts; however, it is unclear whether this activity is contamination or α-amylase which is integrally associated with the chloroplast. 相似文献
15.
Pyrroline-5-Carboxylate Reductase Is in Pea (Pisum sativum L.) Leaf Chloroplasts 总被引:3,自引:2,他引:1 下载免费PDF全文
Proline accumulation is a well-known response to water deficits in leaves. The primary cause of accumulation is proline synthesis. Δ1-Pyrroline-5-carboxylate reductase (PCR) catalyzes the final reaction of proline synthesis. To determine the subcellular location of PCR, protoplasts were made from leaves of Pisum sativum L., lysed, and fractionated by differential and Percoll density gradient centrifugation. PCR activity comigrated on the gradient with the activity of the chloroplast stromal marker NADPH-dependent triose phosphate dehydrogenase. We conclude that PCR is located in chloroplasts, and therefore that chloroplasts can synthesize proline. PCR activities from chloroplasts and etiolated shoots were compared. PCR activity from both extracts is stimulated at least twofold by 100 millimolar KCl or 10 millimolar MgCl2. The pH profiles of PCR activity from both extracts reveal two separate optima at pH 6.5 and 7.5. Native isoelectric focusing gels of sampies from etiolated tissue reveal a single band of PCR activity with a pl of 7.8. 相似文献
16.
17.
The stipule mutant cochleata(coch) and the simple-leaf mutantunifoliata(uni) are utilized to increase understanding of the controlof compound leaf and flower development in pea. The phenotypeof the coch mutant, which affects the basal stipules of thepea leaf, is described in detail. Mutant coch flowers have supernumeraryorgans, abnormal fusing of flower parts, mosaic organs and partialmale and female sterility. The wild-type Coch gene is shownto have a role in inflorescence development, floral organ identityand in the positioning of leaf parts. Changes in meristem sizemay be related to changes in leaf morphology. In the coch mutant,stipule primordia are small and their development is retardedin comparison with that of the first leaflet primordia. Thediameter of the shoot apical meristem of the uni mutant is approx.25% less than that of its wild-type siblings. This is the firsttime that a significant difference in apical meristem size hasbeen observed in a pea leaf mutant. Genetic controls in thebasal part of the leaf are illustrated by interactions betweencoch and other mutants. The mutantcoch gene is shown to changestipules into a more compound leaf-like identitywhich is not affected by thestipules reduced mutation. The interactionof coch and tendril-less(tl) genes reveals that the expressionof the wild-type Tl gene is reduced at the base of the leaf,supporting the theories of gradients of gene action. Copyright2001 Annals of Botany Company Pisum sativum, garden pea, leaf morphogenesis, compound leaf, leaf mutants, flower morphology 相似文献
18.
豌豆种质资源形态标记遗传多样性分析 总被引:4,自引:1,他引:4
通过对国内外不同地理来源624份豌豆资源20个形态性状的评价,初步了解其遗传多样性特点,为解决种质创新与品种改良遗传基础狭窄问题提供思路.对性状表现平均值、变异系数、遗传多样性指数研究结果表明,国内外不同地理来源豌豆资源群闻的遗传变异大;三维主成分分析探测到参试资源由国内和国外两大基因库构成;资源群体间遗传距离的UPG-MA聚类分析结果也表明,国内外豌豆资源聚成两大不同类群,印证了三维主成分分析得到的豌豆资源两大基因库构成的结论.本研究证明基于形态性状评价的遗传多样性分析结果同样可靠. 相似文献
19.
The excision of cotyledons from two cultivars of peas soon aftergermination resulted in a lowering of the node of first floweringas well as a delay in both flower initiation and flowering,especially in the late cultivar Greenfeast. This is contraryto the usual view that, when cotyledon excision reduces nodeof first flowering, flower initiation and flowering are hastened,and it seems irreconcilable with the colysanthin theory of Barber(1959). An alternative explanation is proposed. 相似文献
20.
Guard cell protoplasts (GCP) from leaves of pea (Pisum sativum)were capable of reducing/oxidizing the membrane impermeableelectron carriers, ferricyanide/NADH. The redox activity ofGCP required the presence of both ferricyanide and NADH, althoughsome ferricyanide reduction occurred even in the absence ofNADH. The GCP preferred NADH to NADPH during ferricyanide reductionand the reduction was slow with DCPIP or cytochrome c. A stoichiometryof about 2 existed between moles of ferricyanide reduced andNADH oxidized by GCP. The redox activities of GCP were severaltimes greater than those of mesophyll protoplasts from pea leaves.The ferricyanide reduction or NADH oxidation by GCP was unaffectedby abscisic acid or sodium orthovanadate and fusicoccin indicatingthe non-involvement of plasma membrane ATPase in these redoxreactions.The redox activities were markedly inhibited by chloroquineor 8-hydroxyquinoline. The findings are discussed in relationto the possible regulatory role of a guard cell plasma membraneredox system in stomatal function. Key words: Plasma membrane redox system, mesophyll protoplasts, pea, guard cell protoplasts, stomatal function 相似文献