首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mindlin SZ  Petrova MA  Bass IA  Gorlenko ZhM 《Genetika》2006,42(11):1495-1511
Current views on the mechanisms responsible for the emergence of multiple drug resistance in clinical bacterial isolates are considered. Hypotheses on the origin of resistance genes derived from determinants of actinomycetes, antibiotic producers, and chromosomal genes of bacteria involved in cellular metabolism are reviewed. The mechanisms underlying the diffusion of resistance determinants by means of bacterial mobile elements (plasmids, transposons, and integrons) are discussed. Examples of the horizontal transfer of resistance determinants between Gram-positive and Gram-negative bacteria are presented.  相似文献   

2.
Antimicrobial resistance is a serious threat to public health that dramatically undermines our ability to treat bacterial infections. Microorganisms exhibit resistance to different drug classes by acquiring resistance determinants through multiple mechanisms including horizontal gene transfer. The presence of drug resistance genotypes is mostly associated with corresponding phenotypic resistance against the particular antibiotic. However, bacterial communities harbouring silent antimicrobial resistance genes—genes whose presence is not associated with a corresponding resistant phenotype do exist. Under suitable conditions, the expression pattern of such genes often revert and regain resistance and could potentially lead to therapeutic failure. We often miss the presence of silent genes, since the current experimental paradigms are focused on resistant strains. Therefore, the knowledge on the prevalence, importance and mechanism of silent antibiotic resistance genes in bacterial pathogens are very limited. Silent genes, therefore, provide an additional level of complexity in the war against drug-resistant bacteria, reminding us that not only phenotypically resistant strains but also susceptible strains should be carefully investigated. In this review, we discuss the presence of silent antimicrobial resistance genes in bacteria, their relevance and their importance in public health.  相似文献   

3.
4.
Antimicrobial silver: uses, toxicity and potential for resistance   总被引:1,自引:0,他引:1  
This review gives a comprehensive overview of the widespread use and toxicity of silver compounds in many biological applications. Moreover, the bacterial silver resistance mechanisms and their spread in the environment are discussed. This study shows that it is important to understand in detail how silver and silver nanoparticles exert their toxicity and to understand how bacteria acquire silver resistance. Silver ions have shown to possess strong antimicrobial properties but cause no immediate and serious risk for human health, which led to an extensive use of silver-based products in many applications. However, the risk of silver nanoparticles is not yet clarified and their widespread use could increase silver release in the environment, which can have negative impacts on ecosystems. Moreover, it is shown that silver resistance determinants are widely spread among environmental and clinically relevant bacteria. These resistance determinants are often located on mobile genetic elements, facilitating their spread. Therefore, detailed knowledge of the silver toxicity and resistance mechanisms can improve its applications and lead to a better understanding of the impact on human health and ecosystems.  相似文献   

5.
Plasmid-mediated resistance to tellurite: expressed and cryptic.   总被引:9,自引:0,他引:9  
E G Walter  D E Taylor 《Plasmid》1992,27(1):52-64
The ability of some bacteria to grow in the presence of high concentrations of tellurium compounds has been recognized for almost 100 years. Since then, interest in this phenomenon has generated a slow but steady trickle of literature. In the past few years, the use of modern techniques in molecular biology has led to a dramatic increase in our understanding of the genetics of several bacterial determinants for resistance to tellurium compounds. These determinants are frequently found to be encoded by plasmids which carry multiple antibiotic resistance determinants. Our understanding of the biochemistry of these systems remains limited. In this article, the history of the study of bacterial resistance to tellurium compounds is briefly reviewed. This is followed by an analysis of the recent developments in the study of plasmid-mediated resistance determinants. Finally, preliminary investigations on the possible mechanisms of bacterial resistance to tellurium compounds are presented.  相似文献   

6.
A collection of bacterial antibiotic resistance strains isolated from arctic permafrost subsoil sediments of various age and genesis was created. The collection included approximately 100 strains of Gram-positive (Firmicutes, Arthrobacter) and Gram-negative bacteria (Bacteroidetes, gamma-Proteobacteria, and alpha-Proteobacteria) resistant to aminoglycoside antibiotics (gentamycin, kanamycin, and streptomycin), chloramphenicol and tetracycline. Antibiotic resistance spectra were shown to differ in Gram-positive and Gram-negative bacteria. Multidrug resistance strains were found for the first time in ancient bacteria. In studies of the molecular nature of determinants for streptomycin resistance, determinants of the two types were detected: strA-strB genes coding for aminoglycoside phosphotransferases and genes aadA encoding aminoglycoside adenylyltransferases. These genes proved to be highly homologous to those of contemporary bacteria.  相似文献   

7.
8.
Modern data on prevalence, structural and functional organization of the tetracycline resistance determinants in bacteria are reviewed. The three mechanisms of the antibiotic resistance are the tetracycline efflux, the ribosomal protection and the antibiotic modification. The problems of evolution of tetracycline resistance genes are discussed.  相似文献   

9.
The results of studying the horizontal transfer of mercury resistance determinants in environmental bacterial populations are reviewed. Identical or highly homologous mercury resistance (mer) operons and transposons were found in bacteria of different taxonomic groups from geographically distant regions. Recombinant mer operons and transposons were revealed. The data suggest high frequencies of horizontal transfer and of recombination for mercury resistance determinants. The mechanisms of horizontal gene transfer were elucidated in Gram-negative and Gram-positive bacteria. New transposons were found and analyzed.  相似文献   

10.
The ocean is a natural habitat for antibiotic-producing bacteria, and marine aquaculture introduces antibiotics into the ocean to treat infections and improve aquaculture production. Studies have shown that the ocean is an important reservoir of antibiotic resistance genes. However, there is a lack of understanding and knowledge about the clinical importance of the ocean resistome. We investigated the relationship between the ocean bacterial resistome and pathogenic resistome. We applied high-throughput sequencing and metagenomic analyses to explore the resistance genes in bacterial plasmids from marine sediments. Numerous putative resistance determinants were detected among the resistance genes in the sediment bacteria. We also found that several contigs shared high identity with transposons or plasmids from human pathogens, indicating that the sediment bacteria recently contributed or acquired resistance genes from pathogens. Marine sediment bacteria could play an important role in the global exchange of antibiotic resistance.  相似文献   

11.
The community structure in two different agricultural soils has been investigated. Phenotypic diversity was assessed by applying BIOLOG-profiles on a total of 208 bacterial isolates. Diversity indices were calculated from cluster analysis of the BIOLOG data. The bacterial isolates were also evaluated for resistance towards six different antibiotics, mercury resistance and the presence of plasmids. The presence of tetracycline-resistant determinants class A to E among Gram-negative bacteria was analysed with DNA probes. The distribution of tetracycline resistance markers among colonies growing on non-selective and tetracycline-selective plates were compared. The phenotypic approach demonstrated some difference in the diversity within the two soils. The frequency of antibiotic resistance isolates was high in both soils, whereas the frequency of mercury resistance differed significantly. We found no correlation between plasmid profiles and antibiotic resistance patterns. We found all the tetracycline resistance determinants except class B, indicating that the diversity of the tetracycline resistance determinants was complex in populations of resident soil bacteria under no apparent selective pressure for the genes in question.  相似文献   

12.
Modern data on spreading, structural and functional organization and evolution of the genetic determinants of antibiotic resistance in the gram-negative bacteria are reviewed. Some mechanisms for resistance to trimethoprime, sulphonamides, tetracyclines, chloramphenicol aminoglycosides, beta-lactam antibiotics controlled by the plasmid and chromosomal genes are presented. The problem of using the molecular DNA-probes containing the genetical determinants for antibiotic resistance in the practical work of clinical laboratories is discussed.  相似文献   

13.
N L Brown  D A Rouch  B T Lee 《Plasmid》1992,27(1):41-51
Copper is an essential trace element that is utilized in a number of oxygenases and electron transport proteins, but it is also a highly toxic heavy metal, against which all organisms must protect themselves. Known bacterial determinants of copper resistance are plasmid-encoded. The mechanisms which confer resistance must be integrated with the normal metabolism of copper. Different bacteria have adopted diverse strategies for copper resistance, and this review outlines what is known about bacterial copper resistance mechanisms and their genetic regulation.  相似文献   

14.
The Great Oxidation Event resulted in integration of soft metals in a wide range of biochemical processes including, in our opinion, killing of bacteria by protozoa. Compared to pressure from anthropologic copper contamination, little is known on impacts of protozoan predation on maintenance of copper resistance determinants in bacteria. To evaluate the role of copper and other soft metals in predatory mechanisms of protozoa, we examined survival of bacteria mutated in different transition metal efflux or uptake systems in the social amoeba Dictyostelium discoideum. Our data demonstrated a strong correlation between the presence of copper/zinc efflux as well as iron/manganese uptake, and bacterial survival in amoebae. The growth of protozoa, in turn, was dependent on bacterial copper sensitivity. The phagocytosis of bacteria induced upregulation of Dictyostelium genes encoding the copper uptake transporter p80 and a triad of Cu(I)‐translocating PIB‐type ATPases. Accumulated Cu(I) in Dictyostelium was monitored using a copper biosensor bacterial strain. Altogether, our data demonstrate that Cu(I) is ultimately involved in protozoan predation of bacteria, supporting our hypothesis that protozoan grazing selected for the presence of copper resistance determinants for about two billion years.  相似文献   

15.
The results of studying the horizontal transfer of mercury resistance determinants in environmental bacterial populations are reviewed. Identical or highly homologous mercury resistance (mer) operons and transposons were found in bacteria of different taxonomic groups from geographically distant regions. Recombinant mer operons and transposons were revealed. The data suggest high frequencies of horizontal transfer and of recombination for mercury resistance determinants. The mechanisms of horizontal gene transfer were elucidated in Gram-negative and Gram-positive bacteria. New transposons were found and analyzed.  相似文献   

16.
Antimicrobial resistant strains of bacteria are an increasing threat to animal and human health. Resistance mechanisms to circumvent the toxic action of antimicrobials have been identified and described for all known antimicrobials currently available for clinical use in human and veterinary medicine. Acquired bacterial antibiotic resistance can result from the mutation of normal cellular genes, the acquisition of foreign resistance genes, or a combination of these two mechanisms. The most common resistance mechanisms employed by bacteria include enzymatic degradation or alteration of the antimicrobial, mutation in the antimicrobial target site, decreased cell wall permeability to antimicrobials, and active efflux of the antimicrobial across the cell membrane. The spread of mobile genetic elements such as plasmids, transposons, and integrons has greatly contributed to the rapid dissemination of antimicrobial resistance among several bacterial genera of human and veterinary importance. Antimicrobial resistance genes have been shown to accumulate on mobile elements, leading to a situation where multidrug resistance phenotypes can be transferred to a susceptible recipient via a single genetic event. The increasing prevalence of antimicrobial resistant bacterial pathogens has severe implications for the future treatment and prevention of infectious diseases in both animals and humans. The versatility with which bacteria adapt to their environment and exchange DNA between different genera highlights the need to implement effective antimicrobial stewardship and infection control programs in both human and veterinary medicine.  相似文献   

17.
Genetics of antimicrobial resistance   总被引:5,自引:0,他引:5  
Antimicrobial resistant strains of bacteria are an increasing threat to animal and human health. Resistance mechanisms to circumvent the toxic action of antimicrobials have been identified and described for all known antimicrobials currently available for clinical use in human and veterinary medicine. Acquired bacterial antibiotic resistance can result from the mutation of normal cellular genes, the acquisition of foreign resistance genes, or a combination of these two mechanisms. The most common resistance mechanisms employed by bacteria include enzymatic degradation or alteration of the antimicrobial, mutation in the antimicrobial target site, decreased cell wall permeability to antimicrobials, and active efflux of the antimicrobial across the cell membrane. The spread of mobile genetic elements such as plasmids, transposons, and integrons has greatly contributed to the rapid dissemination of antimicrobial resistance among several bacterial genera of human and veterinary importance. Antimicrobial resistance genes have been shown to accumulate on mobile elements, leading to a situation where multidrug resistance phenotypes can be transferred to a susceptible recipient via a single genetic event. The increasing prevalence of antimicrobial resistant bacterial pathogens has severe implications for the future treatment and prevention of infectious diseases in both animals and humans. The versatility with which bacteria adapt to their environment and exchange DNA between different genera highlights the need to implement effective antimicrobial stewardship and infection control programs in both human and veterinary medicine.  相似文献   

18.
The Dsb proteins are involved in disulfide bond formation, reduction and isomerisation in a number of Gram-negative bacteria. Mutations in dsbA or dsbB, but not dsbC, increase the proportion of proteins with free thiols in the periplasm compared to wild-type. We investigated the effects of mutations in these genes on the bacterial resistance to mercuric and cadmium salts. Mutations in genes involved primarily in disulfide formation (dsbA and dsbB) generally enhanced the sensitivity to Hg2+ and Cd2+ while a mutation of the dsbC gene (primarily an isomerase of disulfide bonds) had no effect. Mutations of the dsb genes had no effect on the expression of the mercury-resistance determinants of the transposon Tn501.  相似文献   

19.
A collection of bacterial antibiotic resistance strains isolated from arctic permafrost subsoil sediments of various age and genesis was created. The collection included approximately 100 strains of Gram-positive (Firmicutes, Arthrobacter) and Gram-negative bacteria (Bacteroidetes, γ-Proteobacteria, and α-Proteobacteria) resistant to aminoglycoside antibiotics (gentamicin, kanamycin, and streptomycin), chloramphenicol and tetracycline. Antibiotic resistance spectra were shown to differ in Gram-positive and Gram-negative bacteria. Multidrug resistance strains were found for the first time in ancient bacteria. In studies of the molecular nature of determinants for streptomycin resistance, determinants of the two types were detected: strA-strB genes coding for aminoglycoside phosphotransferases and genes aadA encoding aminoglycoside adenylyltransferases. These genes proved to be highly homologous to those of contemporary bacteria.  相似文献   

20.
The food safety perspective of antibiotic resistance   总被引:7,自引:0,他引:7  
Bacterial antimicrobial resistance in both the medical and agricultural fields has become a serious problem worldwide. Antibiotic resistant strains of bacteria are an increasing threat to animal and human health, with resistance mechanisms having been identified and described for all known antimicrobials currently available for clinical use. There is currently increased public and scientific interest regarding the administration of therapeutic and sub-therapeutic antimicrobials to animals, due primarily to the emergence and dissemination of multiple antibiotic resistant zoonotic bacterial pathogens. This issue has been the subject of heated debates for many years, however, there is still no complete consensus on the significance of antimicrobial use in animals, or resistance in bacterial isolates from animals, on the development and dissemination of antibiotic resistance among human bacterial pathogens. In fact, the debate regarding antimicrobial use in animals and subsequent human health implications has been going on for over 30 years, beginning with the release of the Swann report in the United Kingdom. The latest report released by the National Research Council (1998) confirmed that there were substantial information gaps that contribute to the difficulty of assessing potential detrimental effects of antimicrobials in food animals on human health. Regardless of the controversy, bacterial pathogens of animal and human origin are becoming increasingly resistant to most frontline antimicrobials, including expanded-spectrum cephalosporins, aminoglycosides, and even fluoroquinolones. The lion's share of these antimicrobial resistant phenotypes is gained from extra-chromosomal genes that may impart resistance to an entire antimicrobial class. In recent years, a number of these resistance genes have been associated with large, transferable, extra-chromosomal DNA elements, called plasmids, on which may be other DNA mobile elements, such as transposons and integrons. These DNA mobile elements have been shown to transmit genetic determinants for several different antimicrobial resistance mechanisms and may account for the rapid dissemination of resistance genes among different bacteria. The increasing incidence of antimicrobial resistant bacterial pathogens has severe implications for the future treatment and prevention of infectious diseases in both animals and humans. Although much scientific information is available on this subject, many aspects of the development of antimicrobial resistance still remain uncertain. The emergence and dissemination of bacterial antimicrobial resistance is the result of numerous complex interactions among antimicrobials, microorganisms, and the surrounding environments. Although research has linked the use of antibiotics in agriculture to the emergence of antibiotic-resistant foodborne pathogens, debate still continues whether this role is significant enough to merit further regulation or restriction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号