首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tryptophanyl emission decay of the mesophilic beta-galactosidase from Aspergillus oryzae free in buffer and entrapped in agarose gel is investigated as a function of temperature and compared to that of the hyperthermophilic enzyme from Sulfolobus solfataricus. Both enzymes are tetrameric proteins with a large number of tryptophanyl residues, so the fluorescence emission can provide information on the conformational dynamics of the overall protein structure rather than that of the local environment. The tryptophanyl emission decays are best fitted by bimodal Lorentzian distributions. The long-lived component is ascribed to close, deeply buried tryptophanyl residues with reduced mobility; the short-lived one arises from tryptophanyl residues located in more flexible external regions of each subunit, some of which are involved in forming the catalytic site. The center of both lifetime distribution components at each temperature increases when going from the free in solution mesophilic enzyme to the gel-entrapped and hyperthermophilic enzyme, thus indicating that confinement of the mesophilic enzyme in the agarose gel limits the freedom of the polypeptide chain. A more complex dependence is observed for the distribution widths. Computer modeling techniques are used to recognize that the catalytic sites are similar for the mesophilic and hyperthermophilic beta-galactosidases. The effect due to gel entrapment is considered in dynamic simulations by imposing harmonic restraints to solvent-exposed atoms of the protein with the exclusion of those around the active site. The temperature dependence of the tryptophanyl fluorescence emission decay and the dynamic simulation confirm that more rigid structures, as in the case of the immobilized and/or hyperthermophilic enzyme, require higher temperatures to achieve the requisite conformational dynamics for an effective catalytic action and strongly suggest a link between conformational rigidity and enhanced thermal stability.  相似文献   

2.
cDNA encoding the endo-1,3-beta-d-glucanase from Spisula sachalinensis (LIV) was amplified by PCR using oligonucleotides deduced from the N-terminal end peptide sequence. Predicted enzyme structure consists of 444 amino acids with a signal sequence. The mature enzyme has 316 amino acids and its deduced amino acid sequence coincides completely with the N-terminal end (38 amino acids) of the beta-1,3-glucanase (LIV) isolated from the mollusk. The enzyme sequence from Val 121 to Met 441 reveals closest homology with Pacifastacus leniusculus lipopolysaccharide- and beta-1,3-glucan-binding protein and with coelomic cytolytic factors from Lumbricus terrestris. The mollusk glucanase also shows 36% identity and 56% similarity with beta-1,3-glucanase of the sea urchin Strongylocentrotus purpuratus. It is generally considered that invertebrate glucanase-like proteins containing the bacterial glucanase motif have evolved from an ancient beta-1,3-glucanase gene, but most of them lost their glucanase activity in the course of evolution and retained only the glucan-binding activity. A more detailed evaluation of the protein folding elicited very interesting relationships between the active site of LIV and other enzymes, which hydrolyze native glucans.  相似文献   

3.
The denaturation of pantetheinase (pantetheine hydrolase, EC 3.5.1.-) was followed in guanidinium chloride using tyrosyl and tryptophanyl residues as probes in connection with change in enzymatic activity. Movements of tryptophanyl and tyrosyl residues during denaturation were studied by second-derivative and fluorescence spectroscopy and the number of these amino acids present in the protein was calculated from spectroscopic data. Pantetheinase shows a very high resistance to denaturation, being completely unfolded at guanidinium chloride concentration higher than 6.5 M. Monitoring enzymatic activity shows that inactivation of the enzyme occurred before noticeable conformational changes were detected and it is suggested that the conformation of the active site is flexible and easily perturbable compared to the protein as a whole. This inactivation is reversible, as shown by renaturation experiments. Second-derivative and fluorescence spectra showed also that tyrosyl and tryptophanyl residues are largely exposed in the native protein, confirming its hydrophobic behavior.  相似文献   

4.
The pH-dependence of the photo-oxidation of L-tryptophan, in the presence of Rose Bengal and Methylene Blue, has been investigated. True, initial rate constants were determined in order to circumvent errors due to secondary processes. Photo-oxidation of glycoamylase I from A. niger in the presence of Methylene Blue or Rose Bengal resulted in a pH-dependent loss of enzymic activity, which was analogous to the destruction of free L-tryptophan during photo-oxidation. The loss of enzymic activity was closely associated with the destruction of tryptophan residues in the enzyme. Significant protection of both enzymic activity and tryptophanyl residues in the enzyme molecule was achieved by performing the photo-oxidation in the presence of maltose, which is a substrate for the enzyme. The tryptophanyl residues of glucoamylase I, which had been inactivated by reaction of its carboxylic acid residues with glycine methyl ester in the presence of a water-soluble carbodi-imide, were also substantially protected by maltose. It is concluded that the active centre of glucoamylase I is a cleft lined with tryptophanyl residues that participate in the binding of the substrate. One or more carboxylic acid residues are involved in bond cleavage.  相似文献   

5.
The esterase from the hyperthermophilic archaeon Archaeoglobus fulgidus is a monomeric protein with a molecular weight of about 35.5 kDa. The enzyme is barely active at room temperature, displaying the maximal enzyme activity at about 80 degrees C. We have investigated the effect of the temperature on the protein structure by Fourier-transform infrared spectroscopy. The data show that between 20 degrees C and 60 degrees C a small but significant decrease of the beta-sheet bands occurred, indicating a partial loss of beta-sheets. This finding may be surprising for a thermophilic protein and suggests the presence of a temperature-sensitive beta-sheet. The increase in temperature from 60 degrees C to 98 degrees C induced a decrease of alpha-helix and beta-sheet bands which, however, are still easily detected at 98 degrees C indicating that at this temperature some secondary structure elements of the protein remain intact. The conformational dynamics of the esterase were investigated by frequency-domain fluorometry and anisotropy decays. The fluorescence studies showed that the intrinsic tryptophanyl fluorescence of the protein was well represented by the three-exponential model, and that the temperature affected the protein conformational dynamics. Remarkably, the tryptophanyl fluorescence emission reveals that the indolic residues remained shielded from the solvent up to 80 degrees C, as shown from the emission spectra and by acrylamide quenching experiments. The relationship between enzyme activity and protein structure is discussed.  相似文献   

6.
The binding of divalent cations and nucleotide to bovine brain glutamine synthetase and their effects on the activity of the enzyme were investigated. In ADP-supported gamma-glutamyl transfer at pH 7.2, kinetic analyses of saturation functions gave [S]0.5 values of approximately 1 microM for Mn2+, approximately 2 mM for Mg2+, 19 nM for ADP.Mn, and 7.2 microM for ADP.Mg. The method of continuous variation applied to the Mn2+-supported reaction indicated that all subunits of the purified enzyme express activity when 1.0 equiv of ADP is bound per subunit. Measurements of equilibrium binding of Mn2+ to the enzyme in the absence and presence of ADP were consistent with each subunit binding free Mn2+ (KA approximately equal to 1.5 X 10(5) M-1) before binding the Mn.ADP complex (KA' approximately equal to 1.1 X 10(6) M-1). The binding of the first Mn2+ or Mg2+ to each subunit produces structural perturbations in the octameric enzyme, as evidenced by UV spectral and tryptophanyl residue fluorescence changes. The enzyme, therefore, has one structural site per subunit for Mn2+ or Mg2+ and a second site per subunit for the metal ion-nucleotide complex, both of which must be filled for activity expression. Chloride binding (KA' approximately equal to 10(4) M-1) to the enzyme was found to have a specific effect on the protein conformation, producing a substantial (30%) quench of tryptophanyl fluorescence and increasing the affinity of the enzyme 2-4-fold for Mg2+ or Mn2+. Arsenate, which activates the gamma-glutamyl transfer activity by binding to an allosteric site, and L-glutamate also cause conformational changes similar to those produced by Cl- binding. Anion binding to allosteric sites and divalent metal ion binding at active sites both produce tryptophanyl residue exposure and tyrosyl residue burial without changing the quaternary enzyme structure.  相似文献   

7.
Lactate dehydrogenase (LDH) is one of the glycolytic enzymes, which have been proved to have the capability to reverse non-specific adsorption on cellular membranous structures in vitro, as well as on the structural proteins of the contractile system of muscle cells. It has been suggested that this binding may play a physiological role, as it alters the enzyme's kinetic properties. Our previous studies on this enzyme showed that its interaction with some anionic phospholipids reveals similar characteristics and similar effect on the activity of the enzyme to those which had been observed for the interaction with membranous structures. Disruption of the lipid bilayers by nonionic detergent (Tween 20) restored the enzyme activity inhibited by the presence of phosphatidylserine (PS) liposomes. In this study, we used the measurement of enzyme tryptophanyl fluorescence spectra to monitor the interaction and possible changes in the enzyme conformation. The investigation provided further evidence of the importance of the bilayer structure in this interaction. Similarly to the effect on the activity of the enzyme, the addition of Tween 20 diminishes the quenching of the LDH tryptophanyl fluorescence, and finally completely restores the fluorescence.  相似文献   

8.
The SH groups of glutamine synthetase [EC 6.3.1.2] from Bacillus stearothermophilus were modified with 5, 5'-dithiobis(2-nitrobenzoic acid) in order to determine the number of SH groups in the molecule as well as the effect of the modification on the enzyme activity. Three SH groups per subunit were detected after complete denaturation of the enzyme with 6 M urea, one of which was essential for the enzyme activity in view of its reactivity with 5, 5'-dithiobis(2-nitrobenzoic acid) on addition of MgCl2 with loss of the activity. The CD spectra of the modified enzyme in the near ultraviolet region changed from that of the native enzyme, indicating that aromatic amino acid residues were affected by modification of the SH group. The fluorescence derived from tryptophanyl residue(s) was quenched depending on the extent of modification of the SH group, suggesting that the tryptophanyl residue(s) was located in the proximity of the SH group. The thermostability of the enzyme was remarkably decreased by modification of the SH group.  相似文献   

9.
Introduction of specific structural probes into substrate binding sites of Escherichia coli glutamine synthetase is now possible. Various analogues of ATP substituted with an amino or sulfhydryl moiety at the 6- or 8-position of the purine ring have been found to substitute for ATP in the autoinactivation reaction of the manganese enzyme with L-Met-(S)-sulfoximine at pH 7. Dissociation of enzyme complexes containing an ADP analogue, L-Met-(S)-sulfoximine phosphate, and 2 equiv of Mn2+ is negligible at neutral pH. Prior to binding of the mercapto nucleotides to active sites, 6-mercaptopurine ribonucleoside triphosphate (6-S-ATP) and 8-mercaptoadenosine 5'-triphosphate (8-S-ATP) also have been further modified with fluorescent and chromogenic probes for energy-transfer measurements [Maurizi, M. R., Kasprzyk, P. G., & Ginsburg, A. (1986) Biochemistry (following paper in this issue)] or with electron-dense markers for electron microscopic and X-ray crystallographic structural analyses. Binding 6-S-ATP or 8-S-ATP to enzyme active sites at pH 7.1 produced red shifts of approximately 6 nm in nucleotide spectra characteristic for transfer of these nucleotide analogues into more acidic and hydrophobic environments. The spectrum of 6-S-ADP at active sites was more red-shifted than that of 6-S-AMP attached to adenylylation sites. The thiol group at the 6- or 8-position of the purine ring of the bound nucleotides was accessible for reactions with alkylating or mercurial reagents. Alkylation or mercaptide formation produced large blue shifts in the spectrum of enzyme-bound 6-S-ADP or 8-S-ADP at active sites or of 6-S-AMP covalently bound at adenylylation sites. At least one of two tryptophanyl residues in each subunit is very near the nucleotide binding site, as evidenced by changes in tryptophanyl residue fluorescence on binding ATP, mercaptonucleotides, or other ATP analogues.  相似文献   

10.
A temperature-sensitive, 5-fluorotryptophan (5FT)-resistant mutant of Bacillus subtilis was isolated which forms an altered tryptophanyl transfer ribonucleic acid synthetase [l-tryptophan: sRNA ligase (AMP), EC 6.1.1.2]. The mutant grows well at 30 C but not at 42 C. At the latter temperature, protein and ribonucleic acid (RNA) synthesis are abolished while deoxyribonucleic acid (DNA) synthesis proceeds for a considerable time. Tryptophanyl-transfer RNA (tRNA) synthetase activity is not detectable in the extracts of the mutant grown at 30 C whether this activity is measured by the attachment of l-tryptophan to tRNA or the l-tryptophan-dependent exchange of (32)P-pyrophosphate with adenosine triphosphate. Mixing experiments with extracts from the wild type and the mutant have ruled out the presence of an inhibitor or the absence of an activator as possible causes. Attempts to retrieve enzyme activity in vitro by various means (different conditions for cell disruption, addition of l-tryptophan, and adenosine triphosphate to the extraction buffer containing glycerol) were unsuccessful. The mutation in the locus of the tryptophanyl tRNA synthetase (trpS) was mapped on the bacterial chromosome by transformation and transduction. It is located between argC and metA. All temperature-resistant transformants recover wild-type levels of tryptophanyl tRNA synthetase activity and sensitivity to 5FT. Spontaneous revertants to temperature resistance are 5FT sensitive, but their levels of tryptophanyl tRNA synthetase activity and the thermolability of this enzyme in cell-free extracts varies. These revertants do not support the growth of a presumed nonsense mutant of phase SPO-1. Transduction experiments with phage PBS-1 indicated that reversion must be the result of an event at the site of the original mutation or at a site extremely close to it.  相似文献   

11.
By gel filtration and titration on DEAE-cellulose filters we show that Escherichia coli tryptophanyl-tRNA synthetase forms tryptophanyl adenylate as an initial reaction product when the enzyme is mixed with ATP-Mg and tryptophan. This reaction precedes the synthesis of the tryptophanyl-ATP ester known to be formed by this enzyme. The stoichiometry of tryptophanyl adenylate synthesis is 2 mol per mole of dimeric enzyme. When this reaction is studied either by the stopped-flow method, by the fluorescence changes of the enzyme, or by radioactive ATP depletion, three successive chemical processes are identified. The first two processes correspond to the synthesis of the two adenylates, at very different rates. The rate constants of tryptophanyl adenylate synthesis are respectively 146 +/- 17 s-1 and 3.3 +/- 0.9 s-1. The third process is the synthesis of tryptophanyl-ATP, the rate constant of which is 0.025 s-1. The Michaelis constants for ATP and for tryptophan in the activation reaction are respectively 179 +/- 35 microM and 23.9 +/- 7.9 microM, for the fast site, and 116 +/- 45 microM and 3.7 +/- 2.2 microM, for the slow site. No synergy between ATP and tryptophan can be evidenced. The data are interpreted as showing positive cooperativity between the subunits associated with conformational changes evidenced by fluorometric methods. The pyrophosphorolysis of tryptophanyl adenylate presents a Michaelian behavior for both sites, and the rate constant of the reverse reaction is 360 +/- 10 s-1 with a binding constant of 196 +/- 12 microM for inorganic pyrophosphate (PPi).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Interaction of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase with negatively charged liposomes was investigated as a function of temperature. This interaction affects the temperature-dependent conformational transition in the enzyme and exerts stabilizing effect on the protein structure. It can be seen from the fluorescence quenching experiments that the accessibility of tryptophanyl residues and isoindol probe fluorophores (covalently bound with the protein amino groups) for a dynamic quencher, acrylamide, is altered upon binding. This accessibility represented by effective quenching constant (Keff) strongly depends on temperature for unmodified enzyme and for the enzyme adsorbed on liposomes, it is nearly constant over a wide range of temperatures.  相似文献   

13.
The reactive intermediates formed in the catalase-peroxidase from Synechocystis PCC6803 upon reaction with peroxyacetic acid, and in the absence of peroxidase substrates, are the oxoferryl-porphyrin radical and two subsequent protein-based radicals that we have previously assigned to a tyrosyl (Tyr()) and tryptophanyl (Trp()) radicals by using multifrequency Electron Paramagnetic Resonance (EPR) spectroscopy combined with deuterium labeling and site-directed mutagenesis. In this work, we have further investigated the Trp() in order to identify the site for the tryptophanyl radical formation, among the 26 Trp residues of the enzyme and to possibly understand the protein constraints that determine the selective formation of this radical. Based on our previous findings about the absence of the Trp() intermediate in four of the Synechocystis catalase-peroxidase variants on the heme distal side (W122F, W106A, H123Q, and R119A) we constructed new variants on Trp122 and Trp106 positions. Trp122 is very close to the iron on the heme distal side while Trp106 belongs to a short stretch (11 amino acid residues on the enzyme surface) that is highly conserved in catalase-peroxidases. We have used EPR spectroscopy to characterize the changes on the heme microenvironment induced by these mutations as well as the chemical nature of the radicals formed in each variant. Our findings identify Trp106 as the tryptophanyl radical site in Synechocystis catalase-peroxidase. The W122H and W106Y variants were specially designed to mimic the hydrogen-bond interactions of the naturally occurring Trp residues. These variants clearly demonstrated the important role of the extensive hydrogen-bonding network of the heme distal side, in the formation of the tryptophanyl radical. Moreover, the fact that W106Y is the only Synechocystis catalase-peroxidase variant of the distal heme side that recovers a catalase activity comparable to the WT enzyme, strongly indicates that the integrity of the extensive hydrogen-bonding network is also essential for the catalatic activity of the enzyme.  相似文献   

14.
Chemical modifications were used to search for catalytically important residues of rat liver arginase. The results of carbamoylation, nitration and diazotization suggest that lysyl and tyrosyl residues are not involved in the catalytic function of arginase. The modification of 5--6 tryptophanyl residues by N-bromosuccinimide or 2-hydroxy-5-nitrobenzyl bromide led to about 90% inhibition of the enzyme activity. Photooxidation of 21 histydyl residues also led to considerable inactivation of arginase. The modification of tryptophanyl and histidyl residues did not cause dissociation of the enzyme into subunits.  相似文献   

15.
3-Amino-1-chloro-indolwbutan-2-one (Trp-CH2Cl) was synthesized to be used for labeling the active site of tryptophanyl-tRNA-synthetase. Trp-CH2Cl irreversibly inhibits the beef pancreas tryptophanyl-tRNA synthetase activity. The inhibition rate was found to exhibit saturation concentration dependence typical for an affinity reagent. L-tryptophan and L-tryptophanyl adenylate protect the enzyme from inhibition. To determine the stoichiometry of inhibitor--protein binding 3H-label from NaB3H4 was incorporated into the modified enzyme. The molar ratio of inhibitor residues incorporated into the modified enzyme (dimeric molecule) is approximately 2. When one of the subunits of the enzyme was reversibly protected with relatively stable tryptophanyl adenylate, the modification of this enzyme led to the blocking of the other subunit (so called "one-site" enzyme). Some properties of the "one-site" enzyme obtained were studied.  相似文献   

16.
The melting temperature of ribonuclease T1 was studied by the fluorescent method. It was shown that in the melting region the tryptophanyl fluorescence spectrum of the protein containing a single tryptophanyl is the sum of two simple spectra typical for tryptophanyl located in the hydrophobic environment and for tryptophanyl completely accessible to aqueous solvent, correspondingly. This implies the evidence of two forms of the protein, i.e. native (folded) and denatured (unfolded), in the transition region. No intermediate states were found in measured quantities. Therefore, ribonuclease T1 melting process corresponds to the two states model. The free energy of native structure stabilization of the protein at room temperature is delta G approximately equal to 37 kJ/mol.  相似文献   

17.
Bismuto E  Nucci R  Rossi M  Irace G 《Proteins》1999,35(2):163-172
The tryptophanyl emission decay of beta-glycosidase from the extremophilic archaeon Sulfolobus solfataricus (Sbetagly) has been investigated by frequency domain fluorometry. The data were analyzed in terms of sum of discrete lifetimes as well as in terms of quasi- continuous lifetime distributions of different shape. At neutral pH the emission decay is characterized by two components: a long-lived component, centered at 7.4 ns, and a short one at 2.7 ns, irrespective of the decay scheme used for the interpretation of the experimental results. The effects of an irreversible inhibitor, that is, cyclophellitol, and that of a powerful denaturant such as guanidinium hydrochloride on the dynamics of Sbetagly has been investigated by observing the changes induced in the two components of the tryptophanyl emission decay. The addition of cyclophellitol to native Sbetagly reduces the contribution of the short-lived component but does not affect the long-lived one. Increasing concentrations of guanidinium hydrochloride differently affect the contributions of the two emission components. Higher concentrations were required to unfold the molecular regions containing the long-lived indolic fluorophores. These results indicate that the long-lived contribution arises from tryptophanyl residues deeply clustered in the interior of the protein matrix, whereas the short-lived one includes residues located in less rigid and more solvent accessible regions, some of which might be located in functionally important parts of protein. The knowledge of the crystallographic structure of Sbetagly allowed us to evaluate some average parameters for each tryptophanyl microenvironment in the Sbetagly such as hydrophobicity, structural flexibility, and ability of side chains to act as fluorescence quenchers. These results permitted to divide the tryptophanyl fluorescence of Sbetagly in the contribution of two emitting groups: one consisting of eight closely clustered tryptophans, that is, Trp 33, 36, 60, 84, 151 174, 425, and 433, responsible for the long-lived emission component and the other one, composed of nine tryptophans nearer to the subunit surface, that is, Trp 12, 156, 192, 287, 288, 316, 361, 376, 455, associable to the short-lived emission component. Finally, the examination of the tryptophanyl emission decay of the mesophilic beta-galactosidase from Escherichia coli (Cbetagal) and the Arrhenius analysis of its dependence on temperature indicated that the tryptophanyl environments of the mesophilic enzyme are rather homogeneous in consequence of a larger protein dynamics.  相似文献   

18.
Previous studies on the isolation of peptides containing tryptophanyl residues modified with 2-hydroxy-5-nitrobenzyl bromide demonstrated multiple products of reaction at the same residue as well as technical difficulties in the primary structure analysis of peptides containing the modified tryptophanyl residue. The present study was undertaken to explore the reaction of 2-hydroxy-5-nitrobenzyl bromide with the single tryptophanyl residue in a synthetic peptide, experimental allergenic encephalitogenic peptide. The modification of this peptide was accomplished in sodium acetate, pH 4.75, and reagent removed by gel filtration. Amino acid analysis of the modified peptide suggested that only the tryptophanyl residue had been modified under these experimental conditions. The modified peptide could be separated into multiple derivatives by high-performance liquid chromatography. Although it is clear that some of the observed heterogeneity reflects a difference in the degree of substitution at the single tryptophanyl residue, several of the derivatives appear to have the same extent of substitution. It is suggested that the heterogeneity observed is a reflection of the establishment of a new diastereoisomeric center in the peptide. These results are consistent with previous observations from other laboratories and provide a basis for the explanation of apparent heterogeneity of peptides obtained from modified proteins.  相似文献   

19.
The aminoacylation reaction catalyzed by the dimeric tryptophanyl-tRNA synthetase from beef pancreas was studied under pre-steady-state conditions by the quenched-flow method. The transfer of tryptophan to tRNATrp was monitored by using preformed enzyme-bis(tryptophanyl adenylate) complex. Combinations of either unlabeled or L-[14C]tryptophan-labeled tryptophanyl adenylate and of aminoacylation incubation mixtures containing either unlabeled tryptophan or L-[14C]tryptophan were used. We measured either the formation of a single labeled aminoacyl-tRNATrp per enzyme subunit or the turnover of labeled aminoacyl-tRNATrp synthesis. Four models were proposed to analyze the experimental data: (A) two independent and nonequivalent subunits; (B) a single active subunit (subunits presenting absolute "half-of-the-sites reactivity"); (C) alternate functioning of the subunits (flip-flop mechanism); (D) random functioning of the subunits with half-of-the-sites reactivity. The equations corresponding to the formation of labeled tryptophanyl-tRNATrp under each labeling condition were derived for each model. By use of least-squares criteria, the experimental curves were fitted with the four models, and it was possible to disregard models B and C as likely mechanisms. Complementary experiments, in which there was no significant excess of ATP-Mg over the enzyme-adenylate complex, emphasized an activator effect of free L-tryptophan on the rate of aminoacylation. This result disfavored model A. Model D was in agreement with all data. The analyses showed that the transfer step was not the major limiting reaction in the overall aminoacylation process.  相似文献   

20.
Exercise in general, and mechanical signals in particular, help ameliorate the neuromuscular symptoms of aging and possibly other neurodegenerative disorders by enhancing muscle function. To better understand the salutary mechanisms of such physical stimuli, we evaluated the potential for low intensity mechanical signals to promote enhanced muscle dynamics. The effects of daily brief periods of low intensity vibration (LIV) on neuromuscular functions and behavioral correlates were assessed in mice. Physiological analysis revealed that LIV increased isometric force production in semitendinosus skeletal muscle. This effect was evident in both young and old mice. Isometric force recordings also showed that LIV reduced the fatiguing effects of intensive synaptic muscle stimulation. Furthermore, LIV increased evoked neurotransmitter release at neuromuscular synapses but had no effect on spontaneous end plate potential amplitude or frequency. In behavioral studies, LIV increased mouse grip strength and potentiated initial motor activity in a novel environment. These results provide evidence for the efficacy of LIV in producing changes in the neuromuscular system that translate into performance gains at a behavioral scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号