首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Sections cut from material embedded in polyester wax can be firmly attached as follows: One drop of a 2% solution of celloidin in amyl acetate is smeared on clean slides, and sections taken from the floatation water onto these slides are dried at room temperature. After drying the slides are immersed in a 2% solution of cellulose acetate in acetone for 1 min, transferred directly to absolute ethanol, through 50% ethanol, and into water. Sections affixed by this method and stained by either hematoxylin-eosin or toluidine blue schedules do not loosen and have negligible background staining.  相似文献   

2.
Sections of 6 μ from tissues fixed in Susa or in Bouin's fluid (without acetic acid) and embedded in paraffin were attached to slides with Mayer's albumen, dried at 37 C for 12 hr, deparaffinized and hydrated. The sections fixed in Susa were transferred to a I2-K1 solution (1:2:300 ml of water); rinsed in water, decolorized in 5% Na2S2O3; washed in running water, and rinsed in distilled water. Those fixed in Bouin's were transferred to 80% alcohol until decolorized, then rinsed in distilled water. All sections were stained in 1% aqueous phloxine, 10 min; rinsed in distilled water and transferred to 3% aqueous phosphotungstic acid, 1 min; rinsed in distilled water; stained 0.5 min in 0.05 azure II (Merck), washed in water; and finally, nuclear staining in Weigert's hematoxylin for 1 min was followed by a rinse in distilled water, rapid dehydration through alcohols, clearing in xylene and covering in balsam or a synthetic resin. In the completed stain, islet cells appear as follows: A cells, purple; B cells, weakly violet-blue; D cells, light blue with evident granules; exocrine cells, grayish blue with red granules.  相似文献   

3.
Lines formed by antibody-organ antigen reactions are stained particularly well by a modification utilizing the mercuric bromphenol blue (MBB) mixture of Mazia et al. (Biol. Bull., 104: 57-67, 1953). The agar covered slides are placed overnight in 0.85% NaCI at 4 C, followed by washing for 2 hr in 0.85% NaCI at 25 C. They are then rinsed for 10 min in distilled water, and dried overnight at 37 C. The precipitin lines are fixed by immersing the slides for 25 min in 95% alcohol, followed by 5 min hydration in distilled water. They are stained for 25 min in MBB mixture (HgCI2, 10 gm; bromphenol blue, 0.1 gm; 95% ethanol, 100 ml). Excess stain is removed by immersing in acidified alcohol (95% ethanol, 98 ml; glacial acetic acid, 2 ml). Finally, the slides are passed through alcohol and xylene, and resin-mounted under coverslips.  相似文献   

4.
Paraffin sections are usually rehydrated before staining. It is possible to apply aqueous dye solutions without first removing the wax. Staining then occurs more slowly, and only if the embedding medium has not melted or become unduly soft after catting. To avoid this problem, sections are flattened on water no hotter than 45 C and dried overnight at 40 C. Minor technical modifications to the staining procedures are needed. Mercury deposits are removed by iodine, and a 3% solution of sodium thiosnlfate in 60% ethanol is used to remove the iodine from paraffin sections. At room temperature, progressive staining takes 10-20 tunes longer for sections in paraffin than for hydrated sections; at 45 C, this can be shortened to about three times the regular staining time. After staining, the slides are rinsed in water, air dried, dewaxed with xylene, and coverslipped in the usual way. Nuclear staining in the presence of wax was achieved with toluidine blue, O, alum-hematoxylin and Weigert's iron-hematoxylin. Eosin and van Gieson's picric acid-acid fuchsine were effective anionic counterstains. A one-step trichrome mixture containing 3 anionic dyes and phosphomolybdic acid was unsuitable for sections in wax because it Imparted colors that were nninformative and quite different from those obtained with hydrated sections. Advantages of staining in the presence of wax include economy of solvents, reduced risk of overstaining and strong adhesion of sections to slides.  相似文献   

5.
Paraffin sections are usually rehydrated before staining. It is possible to apply aqueous dye solutions without first removing the wax. Staining then occurs more slowly, and only if the embedding medium has not melted or become unduly soft after catting. To avoid this problem, sections are flattened on water no hotter than 45 C and dried overnight at 40 C. Minor technical modifications to the staining procedures are needed. Mercury deposits are removed by iodine, and a 3% solution of sodium thiosnlfate in 60% ethanol is used to remove the iodine from paraffin sections. At room temperature, progressive staining takes 10–20 tunes longer for sections in paraffin than for hydrated sections; at 45 C, this can be shortened to about three times the regular staining time. After staining, the slides are rinsed in water, air dried, dewaxed with xylene, and coverslipped in the usual way. Nuclear staining in the presence of wax was achieved with toluidine blue, O, alum-hematoxylin and Weigert's iron-hematoxylin. Eosin and van Gieson's picric acid-acid fuchsine were effective anionic counterstains. A one-step trichrome mixture containing 3 anionic dyes and phosphomolybdic acid was unsuitable for sections in wax because it Imparted colors that were nninformative and quite different from those obtained with hydrated sections. Advantages of staining in the presence of wax include economy of solvents, reduced risk of overstaining and strong adhesion of sections to slides.  相似文献   

6.
Fresh ileum of adult rats and vertebrae and calvariae of newborn rats were immersed in a staining solution containing 0.1 gm of glyoxal bis(2-hydroxyanil) (GBHA) per 2 ml of 3.4% NaOH in 75% ethanol, dehydrated in absolute ethanol, cleared in xylene, and embedded in paraffin. Paraffin sections of stained material, 7 μ thick, were affixed to albumenized slides, immersed in 90% ethanol saturated with Na2CO4 and KCN to ensure specificity for calcium, rinsed in 95% ethanol, counterstained in 50% ethanol containing 0.1% methylene blue, dehydrated in absolute ethanol, deparaffinized and cleared in xylene, and mounted in neutral synthetic resin. By this procedure, red Ca-GBHA granules were deposited in goblet and Paneth cells, and in the cytoplasm of osteoblasts, osteocytes, chondrocytes, and periosteal cells of developing bones. Calcium in apatite did not stain. In osseous tissues sectioned in a cryostat or processed by the freeze-dry or freeze-substitution method, epiphyseal chondrocyte calcium was removed, and apatite stained so intensely red that it obscured calcium in the bone cells. Failure of control osseous tissues to stain after immersion in a 1% solution of disodium salt of ethylenediaminetetraacetic acid or in the alcoholic, alkaline solvent of the GBHA solution, indicated that the red granules in the cells of developing bone were due to calcium present in the cells in vivo and not due to absorption of GBHA by tissue components other than calcium, or to diffusion of Ca++ during staining. Calcium localized in the cytoplasm and processes of the osteogenic cells suggests the need to re-evaluate the role of osteoblasts as depositors of calcium during osteogenesis.  相似文献   

7.
A simple technique for staining synaptonemal complexes with Coomassie brilliant blue for light microscopy has been described. The testis cells were exposed to prolonged hypotonic treatment and dropped on Formvar-coated slides. Following fixation with paraformaldehyde the slides were stained with Coomassie brilliant blue for 15 min to 1 h at room temperature and rinsed in distilled water. For its simplicity and rapidity this technique may serve as an effective alternative to silver staining for light microscopic observation of synaptonemal complexes.  相似文献   

8.
This bromine-iodine-gold chloride-reduction sequence stains reticulin in formalin-fixed paraffin sections without risk of sections becoming detached. After hydration, sections are exposed to 0.2% bromine water containing 0.01% KBr for 1 hr, then rinsed and placed for 5 min in a solution consisting of KI, 2 gm; iodine crystals, 1 gm; and distilled water, 100 ml. After this the sections are well washed in distilled water, immersed for 5 min in 1% w/v aqueous solution of chloro-auric acid, again rinsed in distilled water, and the gold is reduced by placing in freshly made 3% H2O2 for 2-4 hr at 37 C, or in 2% oxalic acid for 1-3 hr at the same temperature.  相似文献   

9.
Specimens of both vertebrate and invertebrate nerve-containing tissues were fixed 2-3 days in Bouin's fluid, soaked 2 days in alcohol containing 2% strong ammonia water, dehydrated and embedded in paraffin. The sections were mounted with gelatin adhesive according to Masson's procedure, dewaxed, passed through graded alcohols to water, then back to 2% ammoniated 80% alcohol for 12-24 hours. The slides were rinsed 3-5 seconds in distilled water, impregnated about one and a half hours in 40% AgNO3 at increasing temperature up to 45°C. The slides were flooded with 62.5% formalin and this solution allowed to remain 3-5 minutes; they were then blotted with filter paper. A second impregnation in ammoniated silver carbonate, controlled under the microscope, was followed by a 10-minute treatment with 10% aqueous acetic acid, toning with gold chloride, then thiosulfate and finally washing. Counterstaining with ponceau red or acid fuchsin, eventually followed by aniline blue or fast green, dehydration and covering, completed the process.  相似文献   

10.
Specimens of both vertebrate and invertebrate nerve-containing tissues were fixed 2-3 days in Bouin's fluid, soaked 2 days in alcohol containing 2% strong ammonia water, dehydrated and embedded in paraffin. The sections were mounted with gelatin adhesive according to Masson's procedure, dewaxed, passed through graded alcohols to water, then back to 2% ammoniated 80% alcohol for 12-24 hours. The slides were rinsed 3-5 seconds in distilled water, impregnated about one and a half hours in 40% AgNO3 at increasing temperature up to 45°C. The slides were flooded with 62.5% formalin and this solution allowed to remain 3-5 minutes; they were then blotted with filter paper. A second impregnation in ammoniated silver carbonate, controlled under the microscope, was followed by a 10-minute treatment with 10% aqueous acetic acid, toning with gold chloride, then thiosulfate and finally washing. Counterstaining with ponceau red or acid fuchsin, eventually followed by aniline blue or fast green, dehydration and covering, completed the process.  相似文献   

11.
A modification of the Del Rio-Hortega method for the demonstration of central nervous system elements is presented. This silver impregnation technique is particularly useful for the classification of cell types for quantitative differential cell counts. Formalin fixed paraffin sections are immersed in formol-ammonium bromide for 1 1/2 hours; this solution is an excellent mordant for various silver nitrate stains. The samples are stained for 20 to 60 minutes in a silver carbonate solution (25 ml of 25% silver nitrate combined with 200 ml of 5% sodium carbonate) and then reduced in a 1% formaldehyde solution to which 20 drops of acetic acid have been added. Finally, the slides are fixed in sodium thiosulfate, rinsed in tap water, dehydrated, cleared, and mounted. This procedure will enable this investigator to identify neurons, oligodendroglia, and astrocytes on the basis of their nuclear staining as well as to demonstrate the laminae of brain tissue since the method allows differentiation of cell layers and fiber tracts.  相似文献   

12.
Frozen sections, 25-50 /j. thick, of formalin-fixed nervous tissues are mounted following the Albrecht gelatin technic. Paraffin sections, 15 p., are deparaffinized and transferred to absolute ethanol. The slides are then coated with celloidin. Both frozen and paraffin sections subsequently follow the same steps: absolute ethanol-chloroform (equal parts) for at least 20 min, 95% ethanol, 70% ethanol (1-3 min), then rinsed in distilled water. Sections are stained in Cresylechtviolett (Chroma) 0.5% aqueous solution containing 4 drops of glacial acetic acid per 100 ml, rinsed in distilled water, agitated in 70% ethanol until excess stain leaves the slide, and rinsed in 95% ethanol. Sections are then dehydrated in absolute ethanol, followed by butanol, cleared in xylene, and enclosed in permount.  相似文献   

13.
Sections of aldehyde-fixed and osmium-stained insect tissues embedded in various epoxy resins were affixed to glass slides by use of a slide cover and hotplate combination. A high concentration of solvent vapor over the sections was thus maintained while they dried down on the slides, resulting in excellent flatness and adhesion. Sections were then stained at an elevated temperature with a mixture of equal parts of 3 dye solutions: 1% toluidine blue O, 1% safranin O, and saturated auramine O, all made up in 1% solution of borax in water. The method resulted in excellent differentiation of all insect tissue components including lightly chitinized structures.  相似文献   

14.
Fresh hearts of dog were perfused through the coronary vessels with 1000 ml. of fixative (chloral hydrate, 5 g. per 100 ml. of 70% ethyl alcohol) and blocks of tissue 2 × 5 mm. from epicardium to endocardium fixed 48 hours in the same fixative. The blocks were placed in 95% alcohol containing 0.3% addition of strong ammonia for 4 hours, followed by 2 changes of plain 95% alcohol of 1 hour each, then cleared and infiltrated with paraffin. Mounted sections 12-15 µ thick were incubated in 1% silver proteinate (obtained from Serumvertrieb, Marburg, Germany)2 at 38° C. for 48 hours in the presence of 10 g. of 15 gauge copper wire per 200 ml. of solution. The slides were rinsed gently in 3 changes of distilled water for 2 minutes, 1 minute and 1 minute, respectively, and reduced in 1% hydroquinone and 5% sodium sulfite for 5 minutes. They were washed 5 minutes in tap water and 5 minutes in 2 changes of distilled water and toned 3-5 minutes in 0.25% gold chloride, rinsed in distilled water 10 seconds, reduced 10 seconds in 1 % oxalic acid, rinsed 1 minute, fixed in 5% sodium thiosulfate 5 minutes, washed in tap water through 3 changes, dehydrated, cleared and covered. All solutions were made with distilled water except where otherwise specified. The results gave good impregnation of fine nerve fibers without the usual confusing staining of reticular tissue.  相似文献   

15.
Metaphase chromosome preparations were made from leukocyte cultures of normal individuals. The cells were fixed in methanol:acetic acid (3:1 v/v), then dropped on cold, wet slides which were air-dried before storage at 4 degrees C. The slides were stained to identify the chromosomes by one of the following procedures: (1) Quinacrine. Slides were stained for 10 min in quinacrine mustard solution, rinsed in running tap water for 2 min, and mounted in Tris-maleat buffer, pH 5.6.  相似文献   

16.
Secretions from amphids, phasmids, and excretory system were stained by incubating nematodes in 0.1% coomassie brilliant blue G-250 in 40% aqueous methanol containing 10% acetic acid on slides with coverslips sealed with nail polish or Zut. Nematodes incubated in this staining solution usually produced copious amounts of secretions from their amphids and excretory pore. Phasmids also stained dark blue, enabling them to be easily observed. Other biological dyes stained these secretions or were useful for differentiating specific morphological features of nematodes.  相似文献   

17.
In this technique alpha cells are stained by basic fuchsin, beta cells by iron-hematoxylin, reticular fibers by ferric tannate, and much by alcian blue. Among 6 commonly used fixatives tested, Bouin's fluid fixation (8-12 hr) gave the best staining results. Procedure: paraffin sections to water; 0.5% Li2CO3 to remove picric acid; 20% tannic acid, 15 min; wash well; 2-4 sec in 0.5% basic fuchsin containing 10% alcohol; rinse, then differentiate in 1% aniline in 90% alcohol until alpha cells are red and beta cells pink; 1% phosphomolybdic acid, 1 min; 5% hematoxylin in 2% iron alum, 0.5 min; wash well; 1% filtered alcian blue SGX, 15 sec; rinse, dehydrate, clear, and mount in synthtic resin. Results: reticular fibers, black; acinar cells, orange to gray; alpha cells, red; collagenous fibers, red; beta cells, gray granules; ducts, bluish-green. The method was tested on rat, rabbit, dog, hamster, cow and man.  相似文献   

18.
A method has been developed to enable correlative light microscopy (LM) and scanning electron microscopy (SEM) on the same section of wheat (Triticum aestivum L.) leaves infested by greenbug aphids (Schizaphis gra-minum Rondani). Segments of infested leaf tissue were fixed, embedded in paraffin, sectioned, and affixed to slides by standard histological techniques. Serial sections were viewed by LM as temporary mounts in xylene. Sections of interest were identified and re-embedded in fingernail polish, affixed to aluminum stubs, freed of polish with ethyl acetate or acetone, and sputter-coated for SEM. SEM of re-embedded leaf sections showed excellent preservation of leaf anatomy. The same aphid tracks and regions of cell damage identified by LM were visible. SEM increased resolution and provided a much clearer sense of the three-dimensional relations involved in the interaction between plant and insect.  相似文献   

19.
A method has been developed to enable correlative light microscopy (LM) and scanning electron microscopy (SEM) on the same section of wheat (Triticum aestivum L.) leaves infested by greenbug aphids (Schizaphis gra-minum Rondani). Segments of infested leaf tissue were fixed, embedded in paraffin, sectioned, and affixed to slides by standard histological techniques. Serial sections were viewed by LM as temporary mounts in xylene. Sections of interest were identified and re-embedded in fingernail polish, affixed to aluminum stubs, freed of polish with ethyl acetate or acetone, and sputter-coated for SEM. SEM of re-embedded leaf sections showed excellent preservation of leaf anatomy. The same aphid tracks and regions of cell damage identified by LM were visible. SEM increased resolution and provided a much clearer sense of the three-dimensional relations involved in the interaction between plant and insect.  相似文献   

20.
Rabbit spermatozoa suspended in Krebs-Ringer-phosphate containing 0.25% glucose were smeared on polylysine-coated slides and dried in air at room temperature for 30 min at room temperature, blotted, rinsed in 1.0% aqueous acetic acid for 10-15 sec, drained and stained for 7 min in a mixture of equal parts of aqueous naphthol yellow S and erythrosin B (final concentration of each dye 0.1% w/v) at pH 4.6-5.0 (pH adjusted with acetic acid). Stained slides were well rinsed in distilled water adjusted to pH 4.6-5.0 with acetic acid, blotted, allowed to dry completely, rinsed in xylene and mounted in synthetic resin. Acrosomal caps were stained cherry-red (apical ridge) to pink (dorsal and ventral aspects); postnuclear caps stained pale pink; nuclei were either unstained or stained a very faint yellowish-pink. The mid-piece and flagellum were stained different shades of pink. The procedure is simple, rapid, and gives highly reproducible results. When present, acrosomes are easily detected regardless of the density of the smear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号