首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A considerable part of the response of the vacuolar potentialof Nitella flexilis to the change of external KCl, NaCl, RbCl,LiCl, or CaCl2 concentration is caused by the response of thecell wall (a cation exchanger) to the external medium. The potentialswere measured on the internodes whose cell sap was exchangedfor simple salt solutions. The potential difference across theplasmalemma which is the internal potential measured againstthe cell wall phase changes largely with the change in concentrationof the external KCl, but also more or less with that of theexternal NaCl, LiCl or RbCl. CaCl2 depolarizes the plasmalemmapotential by about 50 mv when the concentration is increasedfrom 10–5 M to 10–3 M, and hyperpolarizes it againby about 40 mv from 10–3 M to 10–1 M leaving thelevel of the peak of the action potential almost unchanged. 1This work was supported by Research Grants from the Ministryof Education of Japan  相似文献   

2.
Chickpea cultivar ILC 482 was inoculated with salt-tolerantRhizobium strain Ch191 in solution culture with different saltconcentrations added either immediately with inoculation or5 d later. The inhibitory effect of salinity on nodulation ofchickpea occurred at 40 dS m–1 (34.2 mol m–3 NaCl)and nodulation was completely inhibited at 7 dS m–1 (61.6mol m–3 NaCl); the plants died at 8 dS m–1 (71.8mol m–3 NaCl). Chickpea cultivar ILC 482 inoculated with Rhizobium strain Ch191spcstrwas grown in two pot experiments and irrigated with saline water.Salinity (NaCl equivalent to 1–4 dS m–1) significantlydecreased shoot and root dry weight, total nodule number perplant, nodule weight and average nodule weight. The resultsindicate that Rhizobium strain Ch191 forms an infective andeffective symbiosis with chickpea under saline and non-salineconditions; this legume was more salt-sensitive compared tothe rhizobia, the roots were more sensitive than the shoots,and N2 fixation was more sensitive to salinity than plant growth. Key words: Cicer arietinum, nodulation, N2 fixation, Rhizobium, salinity  相似文献   

3.
The 22Na+ and 36CI exchange properties of the cell wallsof Enteromorpha intestinalis (L. ) Link in simple monovalentsalt systems have been shown to be similar to a ‘leaky’cation exchange membrane rather than a homogeneous membrane.The ion exchange properties of the cation and anion cell wallcontents are what would be expected of a cation exchange membranei. e. anion exchange is strongly dependent on the bathing electrolyteconcentration and becomes very slow in dilute salt. This wouldlead to the cell wall becoming a barrier to anions in dilutesalt. However, measurements of the anion flux across cell wallsin living and dead tissues show that anion exchange across cellwalls is facilitated by pores. The exchange kinetics of thebulk of the cell wall anions does not limit the anion flux acrosscell walls of this plant. It is concluded that the cell wallis not a critical limitation to plasmalemma fluxes of the livingplant and that unstirred layers are more important than cellwalls in the measurement of anion flux rates.  相似文献   

4.
The cardiac Ca2+-independent transient outward K+ current (Ito), a major repolarizing ionic current, is markedly affected by Cl substitution and anion channel blockers. We reexplored the mechanism of the action of anions on Ito by using whole cell patch-clamp in single isolated rat cardiac ventricular myocytes. The transient outward current was sensitive to blockade by 4-aminopyridine (4-AP) and was abolished by Cs+ substitution for intracellular K+. Replacement of most of the extracellular Cl with less permeant anions, aspartate (Asp) and glutamate (Glu), markedly suppressed the current. Removal of external Na+ or stabilization of F-actin with phalloidin did not significantly affect the inhibitory action of less permeant anions on Ito. In contrast, the permeant Cl substitute Br did not markedly affect the current, whereas F substitution for Cl induced a slight inhibition. The Ito elicited during Br substitution for Cl was also sensitive to blockade by 4-AP. The ability of Cl substitutes to induce rightward shifts of the steady-state inactivation curve of Ito was in the following sequence: NO3 > Cl Br > gluconate > Glu > Asp. Depolymerization of actin filaments with cytochalasin D (CytD) induced an effect on the steady-state inactivation of Ito similar to that of less permeant anions. Fluorescent phalloidin staining experiments revealed that CytD-pretreatment significantly decreased the intensity of FITC-phalloidin staining of F-actin, whereas Asp substitution for Cl was without significant effect on the intensity. These results suggest that the Ito channel is modulated by anion channel(s), in which the actin cytoskeleton may be implicated. transient outward potassium current; anion channel; actin cytoskeleton; myocyte; potassium ion  相似文献   

5.
The aim of this study was to investigate changes in cell wallchemical composition and polymer size in the root tip of intactcotton seedlings (Gossypium hirsutum L. cv. Acala SJ-2) grownin saline environments, in order to relate the interaction betweenhigh salinity and root growth to possible changes in cell wallmetabolism. Cotton seedlings were grown in modified Hoagland nutrient solutionwith various combinations of NaCl and CaCl2. Cell walls werefractionated into four fractions (pectin, hemicellulose 1 and2, cellulose), and analysed for their total sugar content, neutralsugar composition and size of polysaccharides. At 1 mol m–3Ca, 150 mol m–3 NaCl resulted in a significant increasein the cell wall uronic acid content, but a reduction in cellulosecontent on a per unit dry weight basis. Supplemental Ca overcamethe inhibitory effect of high Na on cellulose content. The neutralsugar composition of the cell wall fractions showed no majorchanges caused by varied Na/Ca ratios. Determinations of polysaccharidepolymer size showed that high Na at 1 mol m–3 Ca led toan increase in the amount of polysaccharides of intermediatemolecular size and a decrease in that of small size in the hemicellulose1 fraction, indicating a possible inhibition of polysaccharidedegradation by high Na. This change was not observed in the10 mol m–3 Ca treatments. The results reveal a relationshipbetween the effects of high salinity on root growth and cellwall metabolism, particularly in regard to cellulose biosynthesis Key words: Gossypium hirsutum, salinity, root, cell wall  相似文献   

6.
An inwardly rectifying swelling- and meiotic cell cycle-regulated anion current carried by the ClC channel splice variant CLH-3b dominates the whole cell conductance of the Caenorhabditis elegans oocyte. Oocytes also express a novel outwardly rectifying anion current termed ICl,OR. We recently identified a worm strain carrying a null allele of the clh-3 gene and utilized oocytes from these animals to characterize ICl,OR biophysical properties. The ICl,OR channel is strongly voltage dependent. Outward rectification is due to voltage-dependent current activation at depolarized voltages and rapid inactivation at voltages more hyperpolarized than approximately +20 mV. Apparent channel open probability is zero at voltages less than +20 mV. The channel has a 4:1 selectivity for Cl over Na+ and an anion selectivity sequence of SCN > I > Br > Cl > F. ICl,OR is relatively insensitive to most conventional anion channel inhibitors including DIDS, 4,4'-dinitrostilbene-2,2'-disulfonic acid, 9-anthracenecarboxylic acid, and 5-nitro-2-(3-phenylpropylamino)benzoic acid. However, the current is rapidly inhibited by niflumic acid, metal cations including Gd3+, Cd2+, and Zn2+, and bath acidification. The combined biophysical properties of ICl,OR are distinct from those of other anion currents that have been described. During oocyte meiotic maturation, ICl,OR activity is rapidly downregulated, suggesting that the channel may play a role in oocyte Cl homeostasis, development, cell cycle control, and/or ovulation. chloride channel; ovulation; cell cycle; meiotic maturation  相似文献   

7.
In studies of Trifolium repens nitrogen nutrition, the controlof nutrient solution pH using dipolar buffers, was evaluatedin tube culture under sterile conditions. Five buffers; MES,ADA, ACES, BES and MOPS with pK2s (20 °C) of 6.15, 6.60,6.90, 7.15 and 7.20 respectively, at a concentration of 2.0mol m–3, were provided to inoculated Trifolium repensgrowing in nutrient solution containing 7.13 mol m–3 nitrogenas (NH4)2SO4. Initial pH of each solution was adjusted to theappropriate buffer pK2 Two buffers, ADA and ACES completelyinhibited plant growth. The remaining buffers had little effectin limiting pH change, although plant dry matter was higherand nodule numbers lower in the presence of these buffers. MESand MOPS were supplied to nutrient solutions with and without7.13 mol m–3 (NH4)2SO4, at concentrations ranging from0–12 mol m–3. MES at 9 mol m–3 and 12 molm–3 reduced growth of plants reliant on the symbiosisfor providing nitrogen. The provision of MES to plants providedwith NH4+ significantly increased plant yield and reduced nodulenumber at all concentrations. MOPS did not affect plant yieldor nodule number. The use of dipolar buffers in legume nitrogennutrition studies is considered in terms of buffering capacity,and the side effects on plant growth and symbiotic development. Key words: Ammonium, Dipolar buffer, Nitrogen nutrition, pH control, Symbiosis, Trifolium repens  相似文献   

8.
Wolterbeek, H. Th. 1987. Relationships between adsorption, chemicalstate and fluxes of cadmium applied as Cd(NO3)2 in isolatedxylem cell walls of tomato.—J. exp. Bot. 38: 419–432. Isolated xylem cell wall pieces were applied as membranes inion diffusion experiments. The cell walls were isolated fromtomato internodes (Lycopersicon esculentum Mill, cv. Tiny Tim)and sealed in a two-compartment diffusion system. In flux andadsorption calculations, the cell wall was regarded as a leakymembrane with parallel fluxes through Donnan Free Space (DFS)and Water Free Space (WFS). During the experiments absorptioninto and diffusion across the walls was determined of Cd2 +, applied as 115Cd(NO3)2. Flux experiments with 82Brindicated that excluded volume effects and path tortuosity resultedin apparent WFS diffusion coefficients in the walls which were0·012 times as high as in water. The free proton concentration in the DFS was shown to be relatedto a complex formation between fixed charges and Cd2 +. Thecell wall permeability for Cd2 + and NO3 varied withapplied and absorbed concentrations, and the Cd2 + flux curveshowed an inflexion point coinciding with a buffered degreeof dissociation of fixed charges in the DFS. The necessary couplingof fluxes of opposite charges resulted in relatively high NO3and small Cd2 + permeability of the DFS for strongly dilutedsolutions (P = 10–4 m s–1 and 10–11 m s–1for NO3 and Cd2 + respectively). The results demonstratethe possible regulatory effects of the cell wall in processesof ion transfer from xylem vessels, or ion uptake in plant tissues. Key words: Cadmium, chemical state, DFS, WFS, ion flux, permeability, xylem cell walls, tomato, bromium, nitrate  相似文献   

9.
Ten-day old kidney bean plants (Phaseolus vulgaris L. cv. Shin-edogawa)were exposed to 2.0 and 4–0 parts 10–6 NO2, and0.1, 0.2, and 0.4 parts 10–6 O3 alone or in combinationfor 2, 4, and 7 d. The effects of these air pollutants wereexamined with respect to the growth, partitioning of assimilates,nitrogen uptake, soluble sugar content, and root respiration. Decreased dry matter production was significant with all treatmentsexcept 2.0 parts 10–6 NO2 and 0.1 parts 10–6 O3.Exposure to mixtures of the gases produced more severe suppressionof growth than exposure to the single gases. Root/shoot ratiowas significantly lowered at 7 d by the gas treatments otherthan 2.0 parts 10–6 NO2 and 0.1 parts 10–6 O3. Thetotal nitrogen content of plants was increased by all treatments;the higher percent of nitrogen found with O3 exposure will resultfrom the growth retardation which increases the concentrationof nitrogen in the plants because the absorption of nitrogenby roots was unaffected. The combination of O3 with NO2 significantlydecreased the assimilation of NO2 by the plants. The concentration of soluble sugars in roots was decreased bythe gas treatments. There was a strong positive correlationbetween soluble sugar content and dry weight of the roots harvestedat 7 d. Root respiration was relatively unchanged until 5 dand then decreased significantly at 7 d by 2.0 parts 10–6NO2 and 0–2 parts 10–6 O3. Retarded growth of theroots and the decreased root respiration may be due to diminishedtranslocation of sugars from leaves to roots caused by exposureto air pollutants. The uptake of soil nitrogen was not closelyrelated with root respiration in the case of O3 exposure. Key words: NO2, O3, Phaseolus vulgaris, Growth, Sugars, Root respiration  相似文献   

10.
Ion currents across the plasma membrane of the unicellular greenalga Eremosphaera viridis were characterized with electrophysiologicalmethods, especially the two electrode voltage-clamp-technique.Under different conditions, at increased external Clconcentrations or after perfusion of different anion channelblockers (A9C (anthracen-9-carboxylic acid), NPPB ((5-nitro-2-3-phenylpropylamino)benzoic acid) and ZnCl2), increased instantaneous negative currentswere observed. The negative currents were carried by cationfluxes into the cell. The transporter responsible had low selectivityamong potassium and sodium. Additionally also divalent cationswere transported. The cation influx was not affected by thepotassium channel inhibitors TEA (tetraethylammoniumsulfate),Ba2+ or Cs+ at concentrations of 1 mM, but was strongly reducedby 100 µM AlCl3. Our results with E. viridis demonstrate,for the first time for an unicellular alga, the existence ofan inwardly rectifying cation current across the plasma membrane.Parallels and differences to inwardly rectifying cation currentsand channels described in plasma membranes of other plant cellsare discussed. (Received May 10, 1993; Accepted September 13, 1993)  相似文献   

11.
Raphidophycean flagellates, Chattonella marina and C. ovata,are harmful red tide phytoplankters; blooms of these phytoplanktersoften cause severe damage to fish farming. Previous studieshave demonstrated that C. marina and C. ovata continuously producereactive oxygen species (ROS) such as superoxide anion (O2)hydrogen peroxide (H2O2) under normal growth conditions, andan ROS-mediated toxic mechanism against fish and other marineorganisms has been proposed. Although the exact mechanism ofROS generation in these phytoplankters still remains to be clarified,our previous study suggested that NADPH oxidase-like enzymelocated on the cell surface of C. marina may be involved inO2 generation. To investigate the localization of O2and H2O2 generation in C. marina and C. ovata, we employed 2-methyl-6(p-methoxyphenyl)-3,7-dihydroimidazo[1,2-a]pyrazin-3-oneand 5-(and-6)-carboxy-2',7'-dichlorodihydrodihydrofluoresceindictate, acetyl ester, which are specific fluorescent probefor detecting O2 and H2O2, respectively. Observationby fluorescence microscopy of live phytoplankters incubatedwith each probe revealed that O2 is mainly generatedon the cell surface, whereas H2O2 is generated in the intracellularcompartment in these phytoplankters. When the cells were rupturedby ultrasonic treatment, O2 levels of C. marina and C.ovata decreased significantly, whereas a few times higher levelsof H2O2 were detected in the ruptured cell suspensions whencompared with the levels of the live cell suspension. In immunoblottinganalysis, the protein recognized by anti-human gp91 phox wasdetected in both species. These results suggest that, in bothphytoplankters, the underlying mechanisms of O2 and H2O2generation may be distinct and such systems are independentlyoperating in the cells.  相似文献   

12.
The maximum excretion rate of NH4 (39 nmol mg dry wt–1h–1) was directly measured for Daphnia pulex by measuringNH4 accumulation in bottles containing D. pulex and dense, satiatingsuspensions of heat-killed algae. Ammonium release rates inthe algal suspensions were compared to those of individual animalsremoved from the suspension and placed in flow cells. Ammoniumrelease rate, R (nmol mg dry wt–1 h–1). in the flowcell decreased very rapidly with time, t (min), after removalaccording to the relation R = 26 + 25e–0.16t. Ammoniumexcretion obtained by the flow cell method after extrapolationto time zero was not significantly different from that obtainedin the bottles. The considerable experiment-to-experiment variationin NH4 excretion was in large part correlated (r2 = 0.73) withthe feeding rate on the algae.  相似文献   

13.
The generation of superoxide anion radical (O2, believedto be a causative factor in the killing of fish by the phytoplanktonChattonella antiqua, has been examined using several methods:electrochemical technique, reduction of ferricytochrome c andfluorescent laser microscope. Evidence is presented to suggestthat these organisms release superoxide continuously while theyare living, even in the resting state. Additional generationof O2 accompanies the discharge of mucocysts, and istriggered when they are exposed to mucus from the gill lamellaeof fish. Such instantaneous generation of O2 is alsoinduced when the organisms are in contact with an electrodepoised at a potential of +0.1 V versus Ag/AgCI, which is positiveenough to oxidize O2 to O2.  相似文献   

14.
Unlike many plants reported in the literature, lupins do notexcrete OH- in amounts equivalent to the net excess of inorganicanion uptake over inorganic cation uptake. To investigate themechanisms involved in the maintenance of charge balance, nutrientuptake and organic anion accumulation of lupins and peas suppliedwith a range of NO-3 concentrations, were compared. Lupins absorbed less NO-3 than peas on a dry weight basis, whichlargely accounted for the smaller excess of anion uptake overcation uptake in lupins than in peas at the same NO-3 supply.When anion uptake exceeded cation uptake, peas excreted an equivalentcharge of OH-, whereas lupins excreted much smaller amountsof OH- than the excess of anion over cation uptake. It was calculatedthat lupins excreted significant amounts of organic anions whenanion uptake exceeded cation uptake, whereas organic anion excretionfrom peas was negligible, regardless of their NO-3 supply andcation-anion balance. In this study, organic anion excretion was measured from lupinroots grown in near-sterile conditions while supplied with NO-3at 0, 500 and 2000 µM. Although complete sterility wasnot achieved, there was close agreement between the organicanion excreted and the excess anion over cation uptake.Copyright1994, 1999 Academic Press Lupinus angustifolius L., Pisum sativum L., organic acid, nutrient uptake  相似文献   

15.
Growth Response to Salinity at High Levels of Carbon Dioxide   总被引:6,自引:0,他引:6  
Plants of the C3 species Phaseolus vulgaris and Xanthium strumariumand of the C4 salt-sensitive Zea mays and the C4 halophyte Atriplexhalimus were grown with and without NaCl salt-stress at normal(340 µl I–1) and at high (2500 µl I–1)ambient CO2. In all four species growth (dry weight increment)was enhanced by CO2 supplementation. The relative response wasgreater in the salinized than in the control plants. Plant topsresponded more to CO, than the roots. CO2 supplementation appearsto increase plant tolerance of low levels of salinity. Key words: Salinity, CO2, Growth  相似文献   

16.
Two approaches to quantifying relationships between nutrientsupply and plant growth were compared with respect to growth,partitioning, uptake and assimilation of NO3 by non-nodulatedpea (Pisum sativum L. cv. Marma). Plants grown in flowing solutionculture were supplied with NO3 at relative addition rates(RAR) of 0·03, 0·06, 0·12, and 0·18d–1, or constant external concentrations ([NO3)of 3, 10, 20, and 100 mmol m–3 over 19 d. Following acclimation,relative growth rates (RGR)approached the corresponding RARbetween 0·03–0.12 d-1, although growth was notlimited by N supply at RAR =0.18 d-1. Growth rates showed littlechange with [NO3–] between 10–100 mmol m–3(RGR=0·15 –0·16 d-1). The absence of growthlimitation over this range was suggested by high unit absorptionrates of NO3, accumulation of NO3 in tissues andprogressive increases in shoot: root ratio. Rates of net uptakeof NO3 from 1 mol m–3 solutions were assessed relativeto the growth-related requirement for NO3, showing thatthe relative uptake capacity increased with RGR between 0·03–0·06d–1 , but decreased thereafter to a theoretical minimumvalue at RGR  相似文献   

17.
We examined changes in electrical and morphological properties of rat osteoclasts in response to prostaglandin (PG)E2. PGE2 (>10 nM) stimulated an outwardly rectifying Cl current in a concentration-dependent manner and caused a long-lasting depolarization of cell membrane. This PGE2-induced Cl current was reversibly inhibited by 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB), and tamoxifen. The anion permeability sequence of this current was I > Br Cl > gluconate. When outwardly rectifying Cl current was induced by hyposmotic extracellular solution, no further stimulatory effect of PGE2 was seen. Forskolin and dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP) mimicked the effect of PGE2. The PGE2-induced Cl current was inhibited by pretreatment with guanosine 5'-O-2-(thiodiphosphate) (GDPS), Rp-adenosine 3',5'-cyclic monophosphorothioate (Rp-cAMPS), N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide dihydrochloride (H-89), and protein kinase A inhibitors. Even in the absence of nonosteoclastic cells, PGE2 (1 µM) reduced cell surface area and suppressed motility of osteoclasts, and these effects were abolished by Rp-cAMPS or H-89. PGE2 is known to exert its effects through four subtypes of PGE receptors (EP1–EP4). EP2 and EP4 agonists (ONO-AE1-259 and ONO-AE1-329, respectively), but not EP1 and EP3 agonists (ONO-DI-004 and ONO-AE-248, respectively), mimicked the electrical and morphological actions of PGE2 on osteoclasts. Our results show that PGE2 stimulates rat osteoclast Cl current by activation of a cAMP-dependent pathway through EP2 and, to a lesser degree, EP4 receptors and reduces osteoclast motility. This effect is likely to reduce bone resorption. prostanoid receptor agonists; electrophysiology; motile activity; bone resorption  相似文献   

18.
Salinity-induced Malate Accumulation in Chara   总被引:3,自引:0,他引:3  
Ion absorption by Chara corallina from solutions containingpredominantly KC1 or RbCl at up to 100 mol m–3 resultedin accumulation of salts and turgor regulation. Turgor regulationdid not occur in solutions containing Na+ or Li+salts. Duringion absorption from various salts of K+ and Rb+ vacuolar cationconcentration exceeded Cl concentration. This differencewas shown to be balanced by the synthesis and accumulation ofmalate. Vacuolar malate concentration reached 48 mol m3,with accumulation occurring at rates of up to 0.45 mol m–3h–1. Malate accumulation was inhibited by low externalpH and was dependent upon external HCO3 concentration.The synthesis of malic acid and its subsequent dissociationimposed a severe acid load on the cell. Biophysical regulationof cellular pH was achieved by a H+efflux at a rate of about40 nmol m–2 s–1from the cell. The results presentedargue against cytoplasmic Cl, HCO3 or pH regulatingmalate accumulation in Chara and it is suggested that malatetransport across the tonoplast may regulate malate accumulation. Key words: Malate, Chara corallina, pH regulation, salinity  相似文献   

19.
The effects of a range of applied nitrate (NO3) concentrations(0–20 mol m3) on germination and emergence percentageof Triticum aestivum L. cv. Otane were examined at 30, 60, 90and 120 mm sowing depths. Germination percentage was not affectedby either sowing depth or applied NO3 concentration whereasemergence percentage decreased with increased sowing depth regardlessof applied NO3 concentration. Nitrate did not affectemergence percentage at 30 mm sowing depth, but at 60 to 120mm depth, emergence percentage decreased sharply with an increasedapplied NO3 concentration of 0 to 1·0 mol m–3then decreased only slightly with further increases in appliedNO3 of about 5·0 mol m–3. Root and shoot growth, NO3 accumulation and nitrate reductaseactivity (NRA) of plants supplied with 0, 1·0 and 1·0mol m–3 NO3 at a sowing depth of 60 mm were measuredprior to emergence. The coleoptile of all seedlings opened withinthe substrate. Prior to emergence from the substrate, shootextension growth was unaffected by additional NO3 butshoot fr. wt. and dry wt. were both greater at 1·0 and1·0 mol m–3 NO3 than with zero NO3.Root dry wt. was unaffected by NO3. Nitrate concentrationand NRA in root and shoot were always low without NO3.At 1·0 and 10 mol m3 NO3, NO3 accumulatedin the root and shoot to concentrations substantially greaterthan that applied and caused the induction of NRA. Regardlessof the applied NO3 concentration, seedlings which failedto emerge still had substantial seed reserves one month afterplanting. Coleoptile length was substantially less for seedlingswhich did not emerge than for seedlings which emerged, but wasnot affected by NO3. It is proposed that (a) decreasedemergence percentage with increased sowing depth was due tothe emergence of leaf I from the coleoptile within the substrateand (b) decreased emergence percentage with additional NO3was due to the increased expansion of leaf 1 within the substrateresulting in greater folding and damage of the leaf. Key words: Triticum aestivwn L., nitrate, sowing depth, seedling growth, seedling emergence  相似文献   

20.
Nucleotide metabolism was studied in apical 5.0 mm root tipsof corn plants (Zea mays L., cv. Pioneer 3906) hydroponicallycultured for 7 d and then salinized for 19 d at a rate calculatedto reduce the osmotic potential (o) of the solutions by O.1MPad–1 to a final o = -0.4 MPa. Saline treatments withtwo different molar ratios of Ca2+/Na+ were employed, viz.,0–03 (2.5 mol m–3 CaCl2 + 86.5 mol m–3 NaCl)for the NaCl treatment and 0.73 (31.5 mol m–3 CaCl2 +43.1 mol m–3 NaCl) for the NaCl + CaCl2 treatment. Bothsalt treatments reduced root growth by more than 30%. The capacityof roots to provide purine nucleotides either by de novo synthesisor by re-utilization of existing bases, e.g. salvage of hypoxanthineto adenine nucleotides, was not affected by either salt treatment.However, catabolism of hypoxanthine was accelerated more than3.5-fold by both salt treatments, demonstrating an increasedcapacity for purine catabolism which would shift the normal1: 1 ratio of synthesis: degradation of purine nucleotides observedfor the roots of healthy control plants to less than 0.2 duringsalt stress. The ratio of pyrimidine nucleotide synthesis: degradationwas also reduced. In this case, the unfavourable shift towardnucleotide degradation resulted because both salt treatmentsreduced salvage capacity by more than 25%, but had no compensatingeffect on de novo synthesis or catabolism of pyrimidines. Key words: Salinity, osmotic potential, nucleotide metabolism  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号