首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dihydrocalcein (H2-calcein) is recommended as a superior probe for intracellular radical (ROS) detection as different to dichlorodihydrofluorescein (H2-DCF), its oxidation product calcein is thought not to leak out of cells. We determined whether H2-calcein is a useful tool to measure ROS in vascular smooth muscle cells. In vitro, both compounds were oxidized by peroxynitrite, hydroxyl radicals and peroxidase, but not hydrogen peroxide or nitric oxide. The intracellular half-life of calcein was several hours whereas that of DCF was approximately 5?min. Intracellular ROS, as generated by the angiotensin II (Ang II)-activated NADPH oxidase, did not increase the oxidation of H2-calcein but increased the oxidation of H2-DCF by approximately 50%. Similar changes were detected using electron spin resonance spectroscopy. Inhibition of the NADPH oxidase using gp91ds-tat prevented the Ang II-induced increase in DCF fluorescence, without affecting cells loaded with H2-calcein. Diphenylene iodonium (DPI), which inhibits all flavin-dependent enzymes, including those in the respiratory chain, had little effect on the basal but prevented the Ang II-induced oxidation of H2-DCF. In contrast, DPI inhibited H2-calcein oxidation in non-stimulated cells by almost 50%. Blockade of respiratory chain complex I inhibited H2-calcein oxidation, whereas inhibitors of complex III were without effect. Calcein accumulated in the mitochondria, whereas DCF was localized in the cytoplasm. In submitochondrial particles, H2-calcein, but not H2-DCF inhibited complex I activity.

These observations indicate that H2-DCF is an indicator for intracellular ROS, whereas the oxidation of H2-calcein most likely occurs as a consequence of direct electron transfer to mitochondrial complex I.  相似文献   

2.
Rapid dissociated Fe(III)-ascorbic acid complexes are formed after the mixing of Fe(II) (100 mkM) with ascorbic acid (1 mM) at pH-7,4. As a result of these complexes formation Fe(II) concentration was decreased in solution, but o-phenantrolin addition or pH decreased up to 6.1 lead to the destruction of these complexes and reduction of iron up to Fe(II). Iron-ascorbic acid paramagnetic complexes were not observed in the perfused rat liver homogenate. Probably, these facts were due to the presence of other stronger reductants in the tissue.  相似文献   

3.
Iron chelating agents are essential for treating iron overload in diseases such as beta-thalassemia and are potentially useful for therapy in non-iron overload conditions, including free radical mediated tissue injury. Deferoxamine (DFO), the only drug available for iron chelation therapy, has a number of disadvantages (e.g., lack of intestinal absorption and high cost). The tridentate chelator pyridoxal isonicotinoyl hydrazone (PIH) has high iron chelation efficacy in vitro and in vivo with high selectivity and affinity for iron. It is relatively non-toxic, economical to synthesize and orally effective. We previously demonstrated that submillimolar levels of PIH and some of its analogues inhibit lipid peroxidation, ascorbate oxidation, 2-deoxyribose degradation, plasmid DNA strand breaks and 5,5-dimethylpyrroline-N-oxide (DMPO) hydroxylation mediated by either Fe(II) plus H(2)O(2) or Fe(III)-EDTA plus ascorbate. To further characterize the mechanism of PIH action, we studied the effects of PIH and some of its analogues on the degradation of 2-deoxyribose induced by Fe(III)-EDTA plus ascorbate. Compared with hydroxyl radical scavengers (DMSO, salicylate and mannitol), PIH was about two orders of magnitude more active in protecting 2-deoxyribose from degradation, which was comparable with some of its analogues and DFO. Competition experiments using two different concentrations of 2-deoxyribose (15 vs. 1.5 mM) revealed that hydroxyl radical scavengers (at 20 or 60 mM) were significantly less effective in preventing degradation of 2-deoxyribose at 15 mM than 2-deoxyribose at 1.5 mM. In contrast, 400 microM PIH was equally effective in preventing degradation of both 15 mM and 1.5 mM 2-deoxyribose. At a fixed Fe(III) concentration, increasing the concentration of ligands (either EDTA or NTA) caused a significant reduction in the protective effect of PIH towards 2-deoxyribose degradation. We also observed that PIH and DFO prevent 2-deoxyribose degradation induced by hypoxanthine, xanthine oxidase and Fe(III)-EDTA. The efficacy of PIH or DFO was inversely related to the EDTA concentration. Taken together, these results indicate that PIH (and its analogues) works by a mechanism different than the hydroxyl radical scavengers. It is likely that PIH removes Fe(III) from the chelates (either Fe(III)-EDTA or Fe(III)-NTA) and forms a Fe(III)-PIH(2) complex that does not catalyze oxyradical formation.  相似文献   

4.
The formation of hydroxyl radicals in beta-glucan solutions treated with ascorbic acid and iron(II) was demonstrated by ESR spin trapping based methods. Two different spin traps were tested, namely DMPO which is commonly used to detect hydroxyl radicals, and POBN often used to detect carbon centered radicals. The experiments performed showed that the presence of iron(II) with DMPO led to low DMPO-OH adduct stability and further to DMPO dimerization. The level of hydroxyl radicals formed during the beta-glucan radical mediated degradation was evaluated using two ESR spin trapping methods based on the use POBN together with either 2% (v/v) EtOH or DMSO. The addition of ascorbic acid together with iron(II) in beta-glucan solution led to an immediate maximal production of hydroxyl radicals while the presence of ascorbic acid alone led to a progressive production of radical. Further hydroxyl radicals were found to be formed when iron(II) was added alone in beta-glucan solutions. The viscosity loss observed in the three last mentioned beta-glucan solutions were found to relate with the formation of hydroxyl radicals. These data confirm the involvement of hydroxyl radical in the beta-glucan degradation.  相似文献   

5.
Interaction between iron(II) and acetohydroxamic acid (Aha), alpha-alaninehydroxamic acid (alpha-Alaha), beta-alaninehydroxamic acid (beta-Alaha), hexanedioic acid bis(3-hydroxycarbamoyl-methyl)amide (Dha) or desferrioxamine B (DFB) under anaerobic conditions was studied by pH-metric and UV-Visible spectrophotometric methods. The stability constants of complexes formed with Aha, alpha-Alaha, beta-Alaha and Dha were calculated and turned out to be much lower than those of the corresponding iron(II) complexes. Stability constants of the iron(II)-hydroxamate complexes are compared with those of other divalent 3d-block metal ions and the Irving-Williams series of stabilities was found to be observed. Above pH 4, in the reactions between iron(II) and desferrioxamine B, the oxidation of the metal ion to iron(III) by the ligand was found. The overall reaction that resulted in the formation of the tris-hydroxamato complex [Fe(HDFB)]+ and monoamide derivative of DFB at pH 6 is: 2Fe2+ + 3H4DFB+ = 2[Fe(HDFB)]+ + H3DFB-monoamide+ + H2O + 4H+. Based on these results, the conclusion is that desferrioxamine B can uptake iron in iron(III) form under anaerobic conditions.  相似文献   

6.
Three salen-Mn(II) complexes bearing hydroxyl groups in either the ortho, para or meta positions have been synthesized and the structures of the metal complexes and their potential to produce free radicals investigated by electron spin resonance (ESR) and X-ray absorption near edge structures (XANES) spectroscopy. All three compounds were shown to generate a high level of superoxide anions in dimethyl sulfoxide (DMSO) solution. The production of oxygen radicals results from a one electron process oxidation of Mn(II) species leading to the formation Mn(III) redox state species, as revealed by a higher XANES edge energy of 2.7 eV. The formation of superoxide anion was characterized by ESR, both directly and via the use of a spin-trapping method. Under reductive condition in the presence of ascorbic acid, the reduction of Mn(III) to Mn(II) leads to the production of hydroxyl radicals by the ortho and para compounds. The efficient production O(2)*- by such salen-Mn complexes could be useful to evaluate the scavenging properties of antioxidant molecules.  相似文献   

7.
We have employed the electron spin resonance spin-trapping technique to study the reaction of Co(II) with hydrogen peroxide in a chemical system and in a microsomal system. In both cases, we employed the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) and were able to detect the formation of DMPO/.OH and DMPO/.OOH. DMPO/.OOH was the predominant radical adduct formed in the chemical system, while the two adducts were of similar concentrations in the microsomal system. The formation of both of these adducts in either reaction system was inhibited by the addition of superoxide dismutase or catalase, and by chelating the cobalt with either ethylenediaminetetraacetic acid (EDTA) or diethylenetriaminepentaacetic acid (DTPA). The incorporation of the hydroxyl radical scavengers ethanol, formate, benzoate, or mannitol inhibited the formation of DMPO/.OH in both systems. We also repeated the study using Fe(II) in place of Co(II). In contrast to the Co(II) results, Fe(II) reacted with hydrogen peroxide to yield only DMPO/.OH, and this adduct formation was relatively insensitive to the presence of added superoxide dismutase. In addition, Fe(II)-mediated DMPO/.OH formation increased when the iron was chelated to either EDTA or DTPA rather than being inhibited as for Co(II). Thus, we propose that Co(II) does not react with hydrogen peroxide by the classical Fenton reaction at physiological pH values.  相似文献   

8.
The antioxidant activity of tannic acid (TA), a plant polyphenol claimed to possess antimutagenic and anticarcinogenic activities, was studied by monitoring (i) 2-deoxyribose degradation (a technique for OH detection), (ii) ascorbate oxidation, (iii) ascorbate radical formation (determined by EPR analysis) and (iv) oxygen uptake induced by the system, which comprised Fe(III) complexes (EDTA, nitrilotriacetic acid (NTA) or citrate as co-chelators), ascorbate and oxygen. TA removes Fe(III) from the co-chelators (in the case of EDTA, this removal is slower than with NTA or citrate), forming an iron-TA complex less capable of oxidizing ascorbate into ascorbate radical or mediating 2-deoxyribose degradation. The effectiveness of TA against 2-deoxyribose degradation, ascorbate oxidation and ascorbate radical formation was substantially higher in the presence of iron-NTA (or iron-citrate) than with iron-EDTA, which is consistent with the known formation constants of the iron complexes with the co-chelators. Oxygen uptake and 2-deoxyribose degradation induced by Fe(II) autoxidation were also inhibited by TA. These results indicate that TA inhibits OH formation induced by Fe(III)/ascorbate/O(2) mainly by arresting Fe(III)-induced ascorbate oxidation and Fe(II) autoxidation (which generates Fe(II) and H(2)O(2), respectively), thus limiting the production of Fenton reagents and OH formation. We also hypothesize that the Fe(II) complex with TA exhibits an OH trapping activity, which explains the effect of TA on the Fenton reaction.  相似文献   

9.
High molecular weight poly(ethylene glycol) (PEG) derivatized iron tris(bipyridine) complexes, presenting hydroxyl end groups for further modification as bioconjugates, copolymers, or cross-linking agents, were synthesized via ring-opening anionic polymerization of ethylene oxide from hydroxyl-functionalized bipyridine (bpy) initiators and subsequent chelation to iron(II). Bpy-centered PEG macroligands (bpyPEG(2)) with molecular weights ranging from 4,000 to 17,000 and low polydispersity indices (<1.1) were obtained. Chelation of the bpyPEG(2) macroligands to iron(II) sulfate was studied in aqueous solution by titration and kinetics experiments, which revealed unexpected air sensitivity compared to nonpolymeric iron tris(bipyridine) complexes. Red-violet aqueous solutions of [Fe(bpyPEG(2))(3)](2+) begin to bleach within hours when exposed to air. Enhanced polymer degradation and gel formation of acrylate-modified bpyPEG(2) in the presence of Fe(2+) suggest that radicals may be involved. Under argon, the chromophores are stable. Polymeric iron complexes are slower to form and faster to degrade in air with increasing bpyPEG(2) molecular weight. These studies demonstrate the influence of molecular weight in polymeric iron tris(bipyridine) complex coordination chemistry and reactivity.  相似文献   

10.
Solution properties of the iron-(III) 'picket-fence-like' porphyrin, Fe(III)-alpha,alpha,alpha, beta-tetra-ortho (N-methyl-isonicotinamidophenyl) porphyrin, (Fe(III)PFP) were investigated. These were acid/base properties of the aquo complex with pKa of 3.9 and its aggregation (formation of dimer with K = 1 X 10(-10) dm3 mol-1), complex formation with cyanide ions and 1-methyl imidazole (1-MeIm), spectral properties of the three iron complexes in their ferric and ferrous form and the one-electron reduction potential of these complexes. Knowing these properties, the reaction of the ferric complexes, aquo, dicyano and bis (1-MeIm), with the superoxide radical and other reducing radicals were studied using the pulse radiolysis technique. The second-order reaction rate constant of O2- with the iron (III) aquo complex which governs the catalytic efficiency of the metalloporphyrin upon the disproportionation of the superoxide radical was 7.6 X 10(7) dm3 mol-1 s-1, two orders of magnitude faster when compared to the reaction of each of the other complexes. The reduction by other radicals with all iron (III) complexes had similar second-order rate constants (10(9) to 10(10) dm3 mol-1 s-1). The reduction reaction in all cases produced Fe(II)PEP and no intermediate was found. The oxidation reaction of Fe(II)PEP by O2- was one order of magnitude faster when compared to the reduction of Fe(III)PFP by the same radical. Since the reactivity of O2- toward the three iron (III) porphyrin complexes follows their reduction potentials, it is suggesting the formation of a peroxo Fe(II) porphyrin as an intermediate. The reactions of the Fe(II)PFP complexes with dioxygen were also studied. The aquo complex was found to be first order in O2 and second order in Fe(II)PFP, suggesting the formation of a peroxo Fe(II) porphyrin as an intermediate. The intermediate formation was corroborated by evidence of the rapid CO binding reaction to the aquo complex of Fe(II)PFP. The two other complexes reacted very slowly with O2 as well as with CO.  相似文献   

11.
The ability of lactoferrin to catalyse hydroxyl radical production was determined by measuring ethylene production from methional (2-amino-4-methylthiobutyraldehyde) or 4-methylthio-2-oxobutyrate. Lactoferrin, isolated from human milk and saturated by adding the exact equivalents of Fe3+-nitrilotriacetic acid and dialysing, give little if any catalysis of the reaction between H2O2 and either O2-. or ascorbic acid at either pH 7.4 or pH 5.0. However, in the presence of chelating agents such as EDTA or nitrilotriacetic acid that can complex with lactoferrin, hydroxyl radical production by both mechanisms was observed.  相似文献   

12.
Formation of DNA-protein crosslinks (DPCs) in mammalian cells upon treatment with iron or copper ions was investigated. Cultured murine hybridoma cells were treated with Fe(II) or Cu(II) ions by addition to the culture medium at various concentrations. Subsequently, chromatin samples were isolated from treated and control cells. Analyses of chromatin samples by gas chromatography/mass spectrometry after hydrolysis and derivatization revealed a significant increase over the background amount of 3-[(1,3-dihydro-2,4-dioxopyrimidin-5-yl)-methyl]- -tyrosine (Thy-Tyr crosslink) in cells treated with Fe(II) ions in the concentration range of 0.01 to 1 mM. In contrast, Cu(II) ions at the same concentrations did not produce this DPC in cells. No DNA base damage was observed in cells treated with Cu(II) ions, either. Preincubation of cells with ascorbic acid or coincubation with dimethyl sulfoxide did not significantly alleviate the Fe(II) ion-mediated formation of DPCs. In addition, a modified fluorometric analysis of DNA unwinding assay was used to detect DPCs formed in cells. Fe(II) ions caused significant formation of DPCs, but Cu(II) ions did not. The nature of the Fe(II)-mediated DPCs suggests the involvement of the hydroxyl radical in their formation. The Thy-Tyr crosslink may contribute to pathological processes associated with free radical reactions.  相似文献   

13.
The gaseous plant hormone ethylene modulates a wide range of biological processes, including fruit ripening. It is synthesized by the ascorbate-dependent oxidation of 1-aminocyclopropyl-1-carboxylate (ACC), a reaction catalyzed by ACC oxidase. Recombinant avocado (Persea americana) ACC oxidase was expressed in Escherichia coli and purified in milligram quantities, resulting in high levels of ACC oxidase protein and enzyme activity. An optimized assay for the purified enzyme was developed that takes into account the inherent complexities of the assay system. Fe(II) and ascorbic acid form a binary complex that is not the true substrate for the reaction and enhances the degree of ascorbic acid substrate inhibition. The K(d) value for Fe(II) (40 nM, free species) and the K(m)'s for ascorbic acid (2.1 mM), ACC (62 microM), and O(2) (4 microM) were determined. Fe(II) and ACC exhibit substrate inhibition, and a second metal binding site is suggested. Initial velocity measurements and inhibitor studies were used to resolve the kinetic mechanism through the final substrate binding step. Fe(II) binding is followed by either ascorbate or ACC binding, with ascorbate being preferred. This is followed by the ordered addition of molecular oxygen and the last substrate, leading to the formation of the catalytically competent complex. Both Fe(II) and O(2) are in thermodynamic equilibrium with their enzyme forms. The binding of a second molecule of ascorbic acid or ACC leads to significant substrate inhibition. ACC and ascorbate analogues were used to confirm the kinetic mechanism and to identify important determinants of substrate binding.  相似文献   

14.
The degradation of high-molar-mass hyaluronan (HA) by copper(II) chloride and ascorbate was studied by means of rotational viscometry. It was found that even small amounts of CuCl(2) present in the oxidative system led to the pronounced degradation of HA, reflected in a rapid decrease of the dynamic viscosity of the biopolymer solution. Such degradation was induced by free radicals generated in elevated amounts in the presence of copper ions. Electron paramagnetic resonance investigations performed on a model oxidative system containing Cu(II) and ascorbic acid proved the formation of relatively stable ascorbate anion radicals resulting from the reaction of ascorbic acid with hydroxyl radicals. In this way, by scavenging the hydroxyl radicals, ascorbic acid protected HA from their degradative action. Matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry was applied to analyze the degraded HA. The results showed that only regular fragmentation of hyaluronan occurred using the mentioned oxidative system that led to the formation of HA oligomers with unaffected primary chemical structure.  相似文献   

15.
Modification of heme·heme oxygenase by iron(III) and cobalt(II) tetrasulfonated phthalocyanines has been performed. New compounds have been isolated and their properties have been investigated by difference spectroscopy, electrophoresis, molecular weight estimation, electron paramagnetic resonance (EPR) and carboxymethylation at histidyl groups. Spectrophotometric titration data indicate the ratio of the reagents in this process to be 1:1. The visible absorption spectra show the main peak at 650 nm for the iron compound and 682 nm for the cobalt one. Electrophoresis and molecular weight estimation show both complexes to be monomers. Cobalt(II) tetrasulfonated phthalocyanine, under aerobic conditions with heme oxygenase protein, undergoes autooxidation to the cobalt(III) complex, as has been proved by EPR and spectroscopic data. Iron and cobalt phthalocyanine modified heme·heme oxygenase with excess dithionite is reduced at the phthalocyanine ligand. In the presence of oxygen, the reduction product transforms into oxygenated Fe(III)Lheme oxygenase or Co(III)heme oxygenase, respectively. Reduction of the iron(III) model complex with ascorbic acid under anaerobic conditions leads to degradation of the phthalocyanine moiety, while Co(III)heme oxygenase with ascorbic acid is reduced to Co(II)Lheme oxygenase. As has been shown by carboxymethylation of the heme oxygenase protein at the histidine residues, the predominant binding site of both phthalocyanine complexes is the heme-binding histidyl residue. There is evidence that there is a second binding site with lower affinity towards Co(II)L on the heme oxygenase protein. Iron and cobalt tetrasulfonated phthalocyanines are not able to displace heme from the heme·heme oxygenase complex. In this reaction the iron complex undergoes degradation and the cobalt one gives a hybrid compound with heme·heme oxygenaseHeme oxygenase protein complexes with iron and cobalt tetrasulfonated phthalocyanines do not exhibit activity in their oxidative degradation.  相似文献   

16.
A solution study on the ability of some derivatised sugars [glucuronic acid (GluA), galacturonic acid (GalA) and glucosaminic acid (GlNA)] to complex the Hg(II) ion is reported. The stability constants of the complex species were determined by potentiometric measurements while (1)H NMR experiments allow to define the coordination sites of sugar molecules. GluA coordinates the metal ion through the carboxylic oxygen and the O-4 hydroxyl group and is found to form more stable complexes with respect to GalA in which metal ligation is from the carboxylic oxygen and the O-5 ring oxygen. GlNA forms stable complexes chelating Hg(II) ion through carboxylic oxygen and the alpha-amino group. The ternary 2,2'-bipyridine containing systems were also investigated by means of potentiometric studies. The ML(2) complexes were also isolated in the solid state and characterised by IR spectroscopy.  相似文献   

17.
Ascorbic acid (vitamin C) induced hydrogen peroxide (H2O2) formation was measured in household drinking water and metal supplemented Milli-Q water by using the FOX assay. Here we show that ascorbic acid readily induces H2O2 formation in Cu(II) supplemented Milli-Q water and poorly buffered household drinking water. In contrast to Cu(II), iron was not capable to support ascorbic acid induced H2O2 formation during acidic conditions (pH: 3.5-5). In 12 out of the 48 drinking water samples incubated with 2 mM ascorbic acid, the H2O2 concentration exceeded 400 μM. However, when trace amounts of Fe(III) (0.2 mg/l) was present during incubation, the ascorbic acid/Cu(II)-induced H2O2 accumulation was totally blocked. Of the other common divalent or trivalent metal ions tested, that are normally present in drinking water (calcium, magnesium, zinc, cobalt, manganese or aluminum), only calcium and magnesium displayed a modest inhibitory activity on the ascorbic acid/Cu(II)-induced H2O2 formation. Oxalic acid, one of the degradation products from ascorbic acid, was confirmed to actively participate in the iron induced degradation of H2O2. Ascorbic acid/Cu(II)-induced H2O2 formation during acidic conditions, as demonstrated here in poorly buffered drinking water, could be of importance in host defense against bacterial infections. In addition, our findings might explain the mechanism for the protective effect of iron against vitamin C induced cell toxicity.  相似文献   

18.
Adriamycin forms a chelate with Fe(III) that exhibits complex redox chemistry. The drug ligand is able to directly reduce the bound Fe(III) with the concomitant production of a one-electron oxidized drug radical. This Fe(II) can reduce oxygen to hydrogen peroxide and cleave the peroxide to yield the hydroxyl radical. In addition, the drug X Fe complex can catalyze the transfer of electrons from reduced glutathione to molecular oxygen to yield superoxide, hydrogen peroxide, and hydroxyl radicals. The adriamycin X Fe complex binds to DNA to form a ternary drug X Fe X DNA complex, which is also able to catalyze the thiol-dependent reduction of oxygen and the formation of hydroxyl radical from hydrogen peroxide. As a consequence of this chemistry, the adriamycin X Fe complex can cleave DNA on the addition of glutathione or hydrogen peroxide. Although less well defined, the adriamycin X Fe complex can bind to cell membranes and cause oxidative destruction of these membranes in the presence of thiols or hydrogen peroxide.  相似文献   

19.
The in vitro effects of four different species of arsenic (arsenate, arsenite, monomethylarsonic acid, and dimethylarsinic acid) in mobilizing iron from horse spleen ferritin under aerobic and anaerobic conditions were investigated. Dimethylarsinic acid (DMA(V)) and dimethylarsinous acid (DMA(III)) significantly released iron from horse spleen ferritin either with or without the presence of ascorbic acid, a strong synergistic agent. Ascorbic acid-mediated iron release was time-dependent as well as both DMA(III) and ferritin concentration-dependent. Iron release from ferritin by DMA(III)) alone or with ascorbic acid was not significantly inhibited by superoxide dismutase (150 or 300 units/ml). However, the iron release was greater under anaerobic conditions (nitrogen gas), which indicates direct chemical reduction of iron from ferritin by DMA(III), with or without ascorbic acid. Both DMA(V) and DMA(III)) released iron from both horse spleen and human liver ferritin. Further, the release of ferritin iron by DMA(III)) with ascorbic acid catalyzed bleomycin-dependent degradation of calf thymus DNA. These results indicate that exogenous methylated arsenic species and endogenous ascorbic acid can cause (a) the release of iron from ferritin, (b) the iron-dependent formation of reactive oxygen species, and (c) DNA damage. This reactive oxygen species pathway could be a mechanism of action of arsenic carcinogenesis in man.  相似文献   

20.
Activities of the iron complexes of evolutionary importance like K4[Fe(CN)6], K4[Fe(CN)5(gly)], and K4[Fe(CN)5(trigly)] have been tested towards some redox reactions of biological significance, namely, decomposition of hydrogen peroxide, dehydrogenation of NADH and ascorbic acid both coupled with reduction of methylene blue. It has been observed that the catalytic activities of iron (II) complexes towards the redox reactions studied at pH 9.18 followed the order, K4[Fe(CN)6]4[Fe(CN)5(gly)]4[Fe(CN)5(trigly)]. Decomposition of H2O2 catalysed by cyanocomplexes of iron (II) has been discussed through the formation of an innersphere complex in which loosly bound ligands like, glycine and triglycine are replaced by hydroperoxide ion. A tentative mechanism for the catalysed decomposition of H2O2 has been discussed.Based upon the experimental observations a hypothesis on the evolution of iron containing enzymes has been envisaged as: iron(II) ion iron(II) cyanide complexes mixed ligand iron(II) cyanide and amino acid complexes iron(II) complexes of macromolecules proenzyme or early enzyme containing iron(II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号