首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results are reviewed from studies of activity of hexokinase (2.7.1.1.EC), dehydrogenase glucose-6-phosphate (1.1.1.49 EC), and cholinesterase (3.1.1.7 EC) in subcellular fractions of rat brain at the background of chemical sympathectomy induced by long-term administration of guanethidine and subsequent irradiation with a dose of 7 Gy. In conditions of sympathectomy, the enzyme activity is inhibited; in irradiated sympathectomized rats, activity of hexokinase and cholinesterase increases to reach the level of that of intact animals while dehydrogenase remains inhibited.  相似文献   

2.
Immunological reactivity of partially purified hexokinase A (ATP:D-hexose 6-phosphotransferase, EC 2.7.1.1) from brain of several vertebrate species has been compared by using enzyme-linked immunosorbent assay and seven monoclonal antibodies raised against the rat brain enzyme. The epitopes recognized by three of these antibodies have been rather widely conserved among the species examined (rat, mouse, guinea pig, rabbit, cat, dog, sheep, cow, pig, chicken), while this was not the case for the epitopes recognized by the other antibodies, which differed markedly in their distribution among these species. The domain structure of these enzymes has been examined by peptide mapping (after limited tryptic digestion) in conjunction with immunoblotting techniques employing monoclonal antibodies. The results indicate that the overall domain structure of these enzymes is similar to that previously described for rat brain hexokinase A, but that there are significant differences in the size of these domains in enzymes from different species.  相似文献   

3.
Acetyl-CoA synthase (EC 6.2.1.1), Propionyl-CoA synthase (EC 6.2.1.-) and butyryl-CoA synthase (EC 6.2.1.2) were measured in subcellular fractions prepared by primary and density-gradient fractionation from adult rat brain by a method resulting in recoveries close to 100%. Most of the activity of the three enzymes was recovered in the crude mitochondrial fraction. On subfractionation of this crude mitochondrial fraction with continuous sucrose density gradients, most of the activity of the three enzymes was found at a higher density than NAD+-isocitrate dehydrogenase and at about the same density as glutamate dehydrogenase, confirming earlier reported data for acetyl-CoA synthase. The finding that propionyl-CoA synthase and butyryl-CoA synthase had about the same distribution in the gradients as acetyl-CoA synthase adds support to the hypothesis that mitochondria involved in the metabolism of these short-chain fatty acids (all three of which have been shown to result in a rapid and high labelling of glutamine in vivo) form a distinct subpopulation of the total mitochondrial population. The three synthase activities were found to differ from each other in their rate of change and their subcellular localization during rat brain development. This, in combination with the observation that in gradients of adult brain preparations the three activities did not completely overlap, suggests that the three synthase activities are not present in the same proportion to each other in the same subpopulation (s) of mitochondria in the brain.  相似文献   

4.
A method is described for the preparation of synaptosomes and synaptosomal membranes from chicken brain. Procedures for isolating rat synaptosomal membranes could not be used directly; several modifications of existing procedures are reported. Purity of the subcellular and subsynaptosomal fractions was monitored by electron microscopy and measurements of ferrocytochrome c: oxygen oxidoreductase (EC 1.9.3.)), monoamine: oxygen oxidoreductase (deaminating) EC 1.4.3.4), rotenone-insensitive NADH: cytochrome c oxidoreductase (EC 1.6.99.3), NADPH: cytochrome c oxidoreductase (EC 1.6.99.1), orthophosphoric monoester phosphohydrolase (EC 3.1.3.2), ATP phosphohydrolase (EC 3.6.1.4), and levels of RNA. Microsomes are the main contaminant of the synaptosomal membrane fraction. Mitochondrial and lysosomal enzymes occur in lesser amounts. No myelin contamination was observed. Marker enzymes for contaminants suggest that these synaptosomal membranes are as pure as membranes described by others, and the specific activity of a neuronal membrane marker, (Na+ -K+)-activated ATPase, is as high as other preparations. Levels of this enzyme in the membrane fraction are enriched 13-fold over homogenate ATPase levels.  相似文献   

5.
TYROSINE HYDROXYLASE IN RAT BRAIN: DEVELOPMENTAL CHARACTERISTICS   总被引:17,自引:15,他引:2  
Abstract— The development of tyrosine hydroxylase (tyrosine 3-hydroxylase, EC 1.14.3.a) activity has been examined in whole rat brain and in various regions and subcellular fractions thereof. The specific activity of tyrosine hydroxylase increased almost 15-fold from 15 days of gestation to adulthood. With maturation, those regions of the brain that contain only terminals of the catecholaminergic neurons showed the greatest increases in enzyme activity. There was a shift in the subcellular distribution of tyrosine hydroxylase from the soluble fraction in the fetal brain to the synaptosomal fraction in the adult brain. Tyrosine hydroxylase, dopamine hydroxylase (EC 1.14.2.1) and the specific uptake mechanism for norepinephrine appear to develop in a coordinated fashion.  相似文献   

6.
采用梯度离心和放射性同位素等方法从鼠脑中分离得到髓磷脂、突触囊、轻突触体、重突触体、线粒体6个亚细胞组分。分别测定了各亚细胞中硒-75、谷胱甘肽过氧化物酶和不饱和脂肪酸的含量,结果表明这些成分在鼠脑亚细胞中的分布呈现明显的相关性,同时首次在突触囊、线粒体和微粒体中检测到三种不同的谷胱甘肽过氧化物酶的活性峰,其中之一可能是红细胞谷胱甘肽过氧化物酶(EC1.11.1.9).还就机体的自我保护机制和硒在脑组织中的重要作用进行了讨论。  相似文献   

7.
The subcellular distribution of gamma-glutamylamino-transferase (EC 2.3.2.2) and transglutaminase (EC 2.3.2.1) has been investigated in rat brain tissue fractionated by a centrifugation and sedimentation technique. Neither of these enzymes was enriched in the synaptosomal fraction. Comparing the in vitro grown astrocytes with synaptosomes, we find that both of these enzymes may possibly be more important in the glial element of the synaptic region. gamma-Glutamylaminotransferase is most abundant in capillaries, confirming previous reports.  相似文献   

8.
Abstract: The enzymatic hydrolysis of UDP-galactose in rat and calf brain was studied. The hydrolysis occurs in two steps: The first is the conversion of UDP-galactose to galactose-1-phosphate catalyzed by nucleotide pyrophosphatase (EC 3.6.1.9), and the second is the conversion of the latter to free galactose by alkaline phosphatase (EC 3.1.3.1). The overall conversion has a pH optimum of 9.0, but there is considerable activity at pH 7.4, which is the optimum for UDP-galactose:ceramide galactosyltransferase in the synthesis of cerebrosides. Preparations from cytosol from calf brain cerebellum or stem that were enriched in UDP-galactose hydrolytic activity inhibit cerebroside synthesis under conditions optimal for the synthesis. Microsome-rich and nuclear debris fractions contain the highest apparent specific activity among the subcellular fractions studied. Hydrolysis of UDP-galactose occurs in all areas of brain, brainstem having the highest activity. The apparent specific activity in jimpy mouse brain homogenate is nearly twice as high as in the control brain homogenate.  相似文献   

9.
Reductase activity towards two aldose substrates has been examined in subcellular fractions prepared from rat brain. The reduction of glucuronate, which is sensitive to inhibition by the anticonvulsant drug sodium valproate, corresponds to the major high-Km aldehyde reductase in brain. Xylose reduction that is insensitive to valproate inhibition has characteristics consistent with the activity of aldose reductase (EC 1.1.1.21). Both enzymes are predominantly localized in the cytosolic fraction. The significance of the location of these two reductases is discussed in relation to the compartmentation of catecholamine metabolism in brain.  相似文献   

10.
Abstract: The enzyme complement of two different mitochondrial preparations from adult rat brain has been studied. One population of mitochondria (synaptic) is prepared by the lysis of synaptosomes, the other (nonsynaptic or free) by separation from homogenates. These populations have been prepared from distinct regions of the brain: cortex, striatum, and pons and medulla oblongata. The following enzymes have been measured: pyruvate dehydrogenase (EC 1.2.4.1), citrate synthase (EC 4.1.3.7), NAD-linked isocitrate dehydrogenase (EC 1.1.1.41), NADP-linked isocitrate dehydrogenase (EC 1.1.1.42), fumarase (EC 4.2.1.2), NAD-linked malate dehydrogenase (EC 1.1.1.37), D-3-hydroxybutyrate dehydrogenase (EC 1.1.1.30), and mitochondrially bound hexokinase (EC 2.7.1.1) and creatine kinase (EC 2.7.3.2). The nonsynaptic (free) mitochondria show higher enzyme specific activities in the regions studied than the corresponding values recorded for the synaptic mitochondria. The significance of these observations is discussed in the light of the different metabolic activities of the two populations of mitochondria and the compartmentation of the metabolic activities of the brain.  相似文献   

11.
The MDR1 gene product, P-glycoprotein (P-gp), was shown to confer multidrug resistance to cancer cells, but its overexpression is also suggested to be involved in pharmacoresistance of epilepsy by acting as an energy-dependent drug-efflux pump in the blood-brain barrier (BBB). In normal brain tissue, P-gp is almost exclusively expressed by capillary endothelial cells (EC) of the BBB, whereas little or no expression is detected in other cell types. Increased P-gp expression was observed after seizures, but localization of this increase, i.e., within brain capillary EC or within parenchymal or perivascular astrocytes, which contribute to the BBB function, is controversial. To test whether these antithetic data arise from unusual properties of the antigen itself, we compared different immunohistochemical techniques and monoclonal or polyclonal antibodies to P-gp in normal rat brain and rat brain after kainate-induced seizures. Using acetone-fixed cryostat sections of snap-frozen tissue, strong P-gp labeling was detected in EC and, after seizures, in hippocampal neurons, but not in astrocytes. In contrast, EC and neuronal P-gp immunolabeling were not seen in paraformaldehyde-fixed sections, whereas both perivascular and parenchymal astrocytes exhibited strong P-gp labeling after seizures. The lack of P-gp labeling in EC by paraformaldehyde fixation, was reversed by treatment of the sections with acetate/ethanol. These experiments demonstrate that various fixation conditions have a striking effect on the immunohistochemical localization of P-gp in rat brain and detection of its increased expression by seizures. When data obtained from different immunohistochemical techniques are taken together, seizures seem to induce overexpression of P-gp in four different cell types, i.e., EC, perivascular astrocytes, parenchymal astrocytes, and neurons.  相似文献   

12.
T J Singh  K P Huang 《FEBS letters》1985,190(1):84-88
The distribution of glycogen synthase (casein) kinase-1 (CK-1) among different rat tissues and subcellular fractions was investigated. Using casein, glycogen synthase and phosphorylase kinase as substrates, CK-1 activity was detected in kidney, spleen, liver, testis, lung, brain, heart, skeletal muscle and adipose tissue. The distribution of CK-1 among different subcellular fractions of rat liver was; cytosol (72.1%), microsome (17.6%), mitochondria (9.6%) and nuclei (0.7%). CK-1 from rat tissues was shown to have a similarly wide substrate specificity as highly purified CK-1 from rabbit skeletal muscle. Such wide substrate specificity and distribution among different mammalian tissues and subcellular organelles indicate that CK-1 may be involved in the regulation of diverse cellular functions.  相似文献   

13.
Energy-Metabolising Enzymes in Brain Regions of Adult and Aging Rats   总被引:3,自引:5,他引:3  
Abstract: The regional enzyme activities of glucose metabolism in the rat brain were investigated. Hexokinase (EC 2.7.1.1) and pyruvate dehydrogenase (EC 1.2.4.1), key enzymes for glucose metabolism, showed no changes in activity in all the regions studied of the aging brain as compared with the adult brain. However, the activity of d -3-hydroxybutyrate dehydrogenase (EC 1.1.1.30) is low throughout the adult brain and, in contrast with hexokinase and pyruvate dehydrogenase, its activity decreases significantly during aging. Other enzymes that showed significant decreases during aging are aldolase (EC 4.1.2.13), lactate dehydrogenase (EC 1.1.1.27), citrate synthase (EC 4.1.3.7), and NAD+-linked isocitrate dehydrogenase (EC 1.1.1.41). The catabolic enzyme in cholinergic metabolism, acetylcholinesterase (EC 3.1.1.7), selected as an example of a non-energy-metabolising enzyme, also showed significant decreases in all regions of the brain in aging, although its highest activity remained in the striatum. These results are discussed with respect to the energy metabolism in various brain regions and their status with aging.  相似文献   

14.
An isolation procedure for synaptic plasma membranes from whole chick brain is reported that uses the combined flotation-sedimentation density gradient centrifugation procedure described by Jones and Matus (Jones. D. H. and Matus. A. I. (1974) Biochim. Biophys. Acta 356, 276–287) for rat brain. The particulate of the osmotically shocked and sonicated crude mitochondrial fraction was used for a flotation-sedimentation gradient step. Four fractions were recovered from the gradient after 30 min centrifugation. The fractions were identified and characterized by electron microscopy and by several markers for plasma membrane and other subcellular organcelles. Fraction 2 was recovered from the 28.5–34% (w/v) sucrose interphase and contained the major part of the activities of the neuronal plasma membrane marker enzymes. The specific activities of the (Na++K+)-activated ATPase (EC 3.6.1.3), acetylcholinesterase (EC 3.1.1.7) and 5′-nucleotidase (EC 3.1.3.5) were, respectively, 4.5. 2.0 and 1.2 times higher than in the homogenate. However, Fraction 2 also contained considerable amounts of activities of putative lysosomal and microsomal markers in addition to lower amounts of mitochondrial and myelin markers. Although no prepurification of synaptosomes from the crude mitochondrial fraction was performed, the synaptic plasma membranes obtained showed many properties analogous to similar preparations from rat brain described in recent years.  相似文献   

15.
An isolation procedure for synaptic plasma membranes from whole chick brain is reported that uses the combined flotation-sedimentation density gradient centrifugation procedure described by Jones and Matus (Jones, D. H. and Matus, A. I. (1974) Biochim. Biophys. Acta 356, 276-287) for rat brain. The particulate of the osmotically shocked and sonicated crude mitochondrial fraction was used for a flotation-sedimentation gradient step. Four fractions were recovered from the gradient after 30 min centrifugation. The fractions were identified and characterized by electron microscopy and by several markers for plasma membrane and other subcellular organelles. Fraction 2 was recovered from the 28.5-34% (w/v) sucrose interphase and contained the major part of the activities of the neuronal plasma membrane marker enzymes. The specific activities of the (Na+ +K+)-activated ATPase (EC 3.6.1.3), acetylcholinesterase (EC 3.1.1.7) and 5'-nucleotidase (EC 3.1.3.5) were, respectively, 4.5, 2.0 and 1.2 times higher than in the homogenate. However, Fraction 2 also contained considerable amounts of activities of putative lysosomal and microsomal markers in addition to lower amounts of mitochondrial and myelin markers. Although no prepurification of synaptosomes from the crude mitochondrial fraction was performed, the synaptic plasma membranes obtained showed many properties analogous to similar preparations from rat brain described in recent years.  相似文献   

16.
Acetylcholinesterase (AChE, EC 3.1.1.7) of rat retina was studied with respect to its kinetic and other properties, and a comparison was made with the enzyme from brain. The subcellular distribution of the retinal AChE showed that the enzyme was concentrated in the synaptosomal-mitochondrial fraction although in the brain the AChE was distributed more evenly between the fractions studied. The enzyme from both retina and brain was easily solubilised and exhibited a Km of the order of 10(-4) M. The pH optimum was 8.3-8.6 for the AChE from both tissues for both the soluble and particulate enzyme.  相似文献   

17.
The subcellular and regional distribution of endo-oligopeptidase (EC 3.4.22.19), an enzyme capable of generating enkephalin by single cleavage from enkephalin-containing peptides, was determined by an enzymatic assay using metorphamide and by immunochemical techniques in the CNS of the rat. The rat CNS contains a membrane-associated form of endo-oligopeptidase, an enzyme predominantly associated with the soluble fraction of brain homogenates. Subcellular fractionation showed that approximately 17% of the total activity of the enzyme is associated with membrane fractions including synaptosomes. Synaptosomal membranes were prepared from neocortex, striatum, hypothalamus, medulla, spinal cord, and cerebellum. The amount of EC 3.4.22.19 activity solubilized by 3-[( 3-cholamidopropyl]dimethylammonio)-1-propanesulfonate from synaptosomal membranes was similar in neocortex, striatum, and hypothalamus, being three- to 10-fold greater than in spinal cord, cerebellum, and medulla. A polyclonal antibody exhibiting high affinity for endo-oligopeptidase was raised in rabbits against the purified rat brain enzyme and used to localize endo-oligopeptidase by Western blotting and by immunoperoxidase techniques. A strong band corresponding to the Mr of EC 3.4.22.19 was found in solubilized proteins obtained from synaptosomal membranes prepared from hypothalamus, neocortex, and striatum when subjected to Western blotting. The immunohistochemical localization of endo-oligopeptidase indicated that the immunoreactivity was confined to gray matter in regions known to be rich in peptide-containing neurons such as the striatum. In the cerebellum, a region poor in peptides, no staining could be detected. The nonuniform distribution of endo-oligopeptidase in rat brain suggests a role in neurotransmitter processing in the CNS.  相似文献   

18.
The etiology of radiation-induced cerebrovascular rarefaction remains unknown. In the present study, we examined the effect of whole-brain irradiation on endothelial cell (EC) proliferation/apoptosis and expression of various angiogenic factors in rat brain. F344 × BN rats received either whole-brain irradiation (a single dose of 10 Gy γ rays) or sham irradiation and were maintained for 4, 8 and 24 h after irradiation. Double immunofluorescence staining was employed to visualize EC proliferation/apoptosis in brain. The mRNA and protein expression levels of vascular endothelial growth factor (VEGF), angiopoietin-1 (Ang-1), endothelial-specific receptor tyrosine kinase (Tie-2), and Ang-2 in brain were determined by real-time RT-PCR and immunofluorescence staining. A significant reduction in CD31-immunoreactive cells was detected in irradiated rat brains compared with sham-irradiated controls. Whole-brain irradiation significantly suppressed EC proliferation and increased EC apoptosis. In addition, a significant decrease in mRNA and protein expression of VEGF, Ang-1 and Tie-2 was observed in irradiated rat brains. In contrast, whole-brain irradiation significantly upregulated Ang-2 expression in rat brains. The present study provides novel evidence that whole-brain irradiation differentially affects mRNA and protein expression of VEGF, Ang-1, Tie-2 and Ang-2. These changes are closely associated with decreased EC proliferation and increased EC apoptosis in brain.  相似文献   

19.
Abstract: We measured long-chain fatty acid:coenzyme A (CoA) ligase (EC 6.2.1.3) activity with four fatty acids in brain homogenates, and cellular and subcellular fractions to determine whether there are differences in activity that could be correlated with differences in fatty acid composition and metabolism. In rat brain homogenates, ligase activity varied appreciably with the four acids, with 18:2 > 18:1 > 16:0 > 22:1 (nmol acyl-CoA formed/min/mg protein; 1.46, 1.20, 0.96, and 0.57, respectively). This order was similar under all incubation conditions tested, including variable pH and fatty acid concentrations. The relative specific activities (RSA, 16:0 = 1.0) with the four substrates were similar in rat brain homogenate, mitochondria, and microsomes, with the highest specific activities in the latter fraction. The RSA were also similar in ox brain homogenates, in rabbit brain microsomes prepared from gray and white matter, in neurons isolated from rat brain, and in cultured neuroblastoma cells. Rat liver homogenates had a significantly different pattern of RSA. These results indicate that the ligase(s) has a preference for certain fatty acids, but suggest that the major control of fatty acid composition and metabolism is a function of subsequent metabolic steps.  相似文献   

20.
Abstract: NAD-dependent aldehyde dehydrogenases (EC 1.2.1.3) were isolated from various subcellular organelles as well as from different regions of rat brain. The mitochondrial, microsomal, and cytosolic fractions were found to contain 40%, 28%, and 12%, respectively, of the total aldehyde dehydrogenase (5.28 ± 0.44 nmol NADH/min/g tissue) found in rat brain homogenate when assayed with 70 μ. M propionaldehyde at pH 7.5. The total activity increased to 17.3 ± 2.7 nmol NADH/min/g tissue when assayed with 5 m M propionaldehyde. Under these conditions the three organelles contained 49%, 23%, and 9%, respectively, of the activity. The enzyme isolated from cytosol possessed the lowest K m. The molecular weight of the enzyme isolated from all three subcellular organelles was ∼100,000. Four activity bands were found by electrophoresis of crude homogenates, isolated mitochondria, or microsomes on cellulose acetate strips. Cytosol possessed just two of the forms. The total activity was essentially the same in homogenates obtained from cortex, subcortex, pons-medulla, or cerebellum. Further, the enzyme had the same molecular distribution and total activity in each of these four brain regions. Disulfiram was found to be an in vivo and in vitro inhibitor of the enzymes obtained from these brain regions. Mercaptoethanol, required for the stability of the enzyme, reversed the inhibition produced by disulfiram. The effect was greater for enzyme isolated from cytosol than from mitochondria. Calculations led to the prediction that aldehydes such as acetaldehyde are oxidized in cytosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号