首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our experiments were designed to test the hypotheses that dietary lipids can affect whole-animal physiological processes in a manner concordant with changes in the fluidity of cell membranes. We measured (1) the lipid composition of five tissues, (2) body temperatures selected in a thermal gradient (T(sel)), (3) the body temperature at which the righting reflex was lost (critical thermal minimal [CTMin]), and (4) resting metabolic rate (RMR) at three body temperatures in desert iguanas (Dipsosaurus dorsalis) fed diets enriched with either saturated or unsaturated fatty acids. The composition of lipids in tissues of the lizards generally reflected the lipids in their diets, but the particular classes and ratios of fatty acids varied among sampled organs, indicating the conservative nature of some tissues (e.g., brain) relative to others (e.g., depot fat). Lizards fed the diet enriched with saturated fatty acids selected warmer nighttime body temperatures than did lizards fed a diet enriched with unsaturated fatty acids. This difference is concordant with the hypothesis that the composition of dietary fats influences membrane fluidity and that ectotherms may compensate for such changes in fluidity by selecting different body temperatures. The CTMin of the two treatment groups was indistinguishable. This may reflect the conservatism of some tissues (e.g., brain) irrespective of diet treatment. The RMR of the saturated treatment group nearly doubled between 30 degrees and 40 degrees C. Here, some discrete membrane domains in the lizards fed the saturated diet may have been in a more-ordered phase at 30 degrees C and then transformed to a less-ordered phase at 40 degrees C. In contrast, the RMR of the unsaturated treatment group exhibited temperature independence in metabolic rate from 30 degrees to 40 degrees C. Perhaps the unsaturated diet resulted in membranes that developed a higher degree of disorder (i.e., a certain phase) at a lower temperature than were membranes of lizards fed the saturated diet. Our study demonstrates links between dietary fats and whole-animal physiology; however, the mechanistic basis of these links, and the general knowledge of lipid metabolism in squamate reptiles, remain poorly understood and warrant further study.  相似文献   

2.
Summary We examined digestibility of dry matter, nutrients, and fiber, and food intake, metabolic fecal losses, weight change, and gut size of pocket gophers (Thomomys bottae) in relation to diet quality in the laboratory. Pocket gophers were maintained for 15–20 days on one of seven diets which contained from 18% to 56% neutral detergent fiber (NDF). NDF content of the diet was an excellent predictor of diet quality. Digestibility of dry matter, NDF, and nitrogen all decreased with increasing NDF content of the diet. In general, pocket gophers compensated for low diet quality by increasing dry matter intake, but those given high quality forage before the lowest quality diet reduced their intake. Thus, the response of pocket gophers to low quality diets may depend on their body condition. Because increased food intake resulted in increased total metabolic fecal losses and metabolic fecal nitrogen losses, decreasing food intake on low-quality diets may be advantageous. A further response of pocket gophers to decreased food quality was an increase in size of cecum and large intestine, suggesting that fermentation of cell walls became increasingly important as diet quality decreased.  相似文献   

3.
Summary What digestive adaptations permit herbivorous nonruminant mammals to sustain much higher metabolic rates than herbivorous lizards, despite gross similarity in digestive anatomy and physiology? We approached this question by comparing four herbivorous species eating the same diet of alfalfa pellets: two lizards (chuckwalla and desert iugana) and two mammals (desert woodrat and laboratory mouse). The mammals had longer small and large intestines, greater intestinal surface area, much higher (by an order of magnitude) food intake normalized to metabolic live mass, and much faster food passage times (a few hours instead of a few days). Among both reptiles and mammals, passage times increase with body size and are longer for herbivores than for carnivores. The herbivorous lizards, despite these much slower passage times, had slightly lower apparent digestive efficiencies than the mammals. At least for chuckwallas, this difference from mammals was not due to differences in body temperature regime. Comparisons of chuckwallas and woodrats in their assimilation of various dietary components showed that the woodrat's main advantage lay in greater assimilation of the dietary fiber fraction. Woodrats achieved greater fiber digestion despite shorter residence time, but possibly because of a larger fermentation chamber, coprophagy, and/or different conditions for microbial fermentation. We conclude with a comparative overview of digestive function in herbivorous lizards and mammals, and with a list of four major unsolved questions.  相似文献   

4.
In a continuation of our study of dietary differentiation among frugivorous primates with simple stomachs, we present the first comparison of differences in dietary macronutrient content between chimpanzees and cercopithecine monkeys. Previously we have shown that chimpanzee and monkey diets differ markedly in plant part and species content. We now examine whether this diet diversity is reflected in markedly different dietary macronutrient levels or the different feeding strategies yield the same macronutrient levels in their diets. For each primate group we calculated the total weighted mean dietary content of 4 macronutrients: crude lipid (lipid), crude protein (CP), water-soluble carbohydrates (WSC), and total nonstructural carbohydrates (TNC). We also calculated 4 fiber fractions: neutral-detergent fiber (NDF), which includes the subfractions hemicellulose (HC), cellulose (Cs), and sulfuric acid lignin (Ls). The HC and Cs are potentially fermentable fibers and would contribute to the energy provided by plant food, depending on the hind gut fermenting capacity of the individual primate species. The chimpanzee diet contained higher levels of WSC and TNC because during times of fruit abundance the chimpanzees took special advantage of ripe fruit, while the monkeys did not. The monkey diets contained higher levels of CP because the monkeys consumed a constant amount of leaf throughout the year. All four primate species consumed diets with similar NDF levels. However, the chimpanzees also took advantage of periods of ripe fruit abundance to decrease their Ls levels and to increase their HC levels. Conversely, the monkey diets maintained constant levels of the different fiber fractions thoughout the year. Nevertheless, despite these differences, the diets of the 4 frugivores were surprisingly similar, considering the substantial differences in body size. We conclude that the chimpanzee diet is of higher quality, particularly of lower fiber content, than expected on the basis of their body size.  相似文献   

5.
Summary Male and femalePsammodromus hispanicus from southern Europe were acclimated to four seasonal conditions of photoperiod and night time temperature. During the dark period, the lizards' body temperatures fell to ambient air temperature but during the light period the lizards were allowed to thermoregulate behaviourally and at such times the lizards' mean body temperature varied from 29.0°C to 32.6°C. The resting metabolic rate of these lizards was measured in 5°C steps from 5°C to 30°C or 35°C. Sexual condition had little effect on resting metabolic rate, but at low temperatures lizards acclimated to winter or spring seasonal conditions had lower resting metabolic rates than those acclimated to summer or autumn conditions. At temperatures above 20°C seasonal acclimation had no effect on resting metabolic rate. It is considered that the reduction in low temperature metabolic rate in spring and winter is induced by low night time temperatures and serves to conserve energy during those seasons when lizards must spend long periods at low temperature without being able to feed.  相似文献   

6.
We examined the effects of hibernation and fasting on intestinal glucose and proline uptake rates of chuckwallas (Sauromalus obesus) and on the size of organs directly or indirectly related to digestion. These lizards show geographic variation in body size and growth rate that parallels an elevational gradient in our study area. At low elevation, food is available only for a short time during the spring; at high elevation, food may also be available during summer and autumn, depending on rainfall conditions in a given year. We hypothesized that low-elevation lizards with a short season of food availability would show more pronounced regulation of gut size and function than high-elevation lizards with prolonged or bimodal food availability. Hibernating lizards from both elevations had significantly lower uptake rates per milligram intestine for both nutrients, and lower small intestine mass, than active lizards. The combination of these two effects resulted in significantly lower total nutrient uptake in hibernating animals compared to active ones. The stomach, large intestine, and cecum showed lower masses in hibernators, but these results were not statistically significant. The heart, kidney, and liver showed no difference in mass between hibernating and nonhibernating animals. Lizards from low elevations with a short growing season also showed a greater increase in both uptake rates and small intestine mass from the hibernating to the active state, compared to those from high elevations with longer growing seasons. Thus, compared to those from long growing season areas, lizards from short growing season areas have equal uptake capacity during hibernation but much higher uptake capacity while active and feeding. This pattern of regulation of gut function may or may not be an adaptive response, but it is consistent with variation in life-history characteristics among populations. In areas with a short season, those lizards that can extract nutrients quickly and then reduce the gut will be favored; in areas where food may be available later in the year, those lizards that maintain an active gut would be favored. While other researchers have found much greater magnitudes of gut regulation when making comparisons among species, we find the different patterns of change in gut function between different populations of chuckwallas particularly intriguing because they occur within a single species.  相似文献   

7.
Phenotypic selection is widely accepted as the primary cause of adaptive evolution in natural populations, but selection on complex functional properties linking physiology, behavior, and morphology has been rarely quantified. In ectotherms, correlational selection on thermal physiology, thermoregulatory behavior, and energy metabolism is of special interest because of their potential coadaptation. We quantified phenotypic selection on thermal sensitivity of locomotor performance (sprint speed), thermal preferences, and resting metabolic rate in captive populations of an ectothermic vertebrate, the common lizard, Zootoca vivipara. No correlational selection between thermal sensitivity of performance, thermoregulatory behavior, and energy metabolism was found. A combination of high body mass and resting metabolic rate was positively correlated with survival and negatively correlated with fecundity. Thus, different mechanisms underlie selection on metabolism in lizards with small body mass than in lizards with high body mass. In addition, lizards that selected the near average preferred body temperature grew faster that their congeners. This is one of the few studies that quantifies significant correlational selection on a proxy of energy expenditure and stabilizing selection on thermoregulatory behavior.  相似文献   

8.
The questions of whether herbivorous loricariid catfishes are hypometabolic or reduce metabolic demand in response to poor dietary quantity and quality were addressed by comparing resting routine metabolic rates in the presence and absence of different fibre content diets for three loricariid species. Metabolic rates of the three species scaled inter-specifically as body mass0·736, similar to most other vertebrates. Metabolic rates did not vary with diet quality for two species; one Panaque species had a significantly lower metabolic rate when fed only wood. Comparisons with the literature led to the conclusions that loricariids in general and Panaque in particular do not have unusually low metabolic rates for quiescent catfishes of their size.  相似文献   

9.
Many animals lower their resting metabolism (metabolic depression) when fasting or consuming inadequate food. We sought to document this response by subjecting five Steller sea lions to periods of: (1) complete fasting; or (2) restricting them to 50% of their normal herring diet. The sea lions lost an average of 1.5% of their initial body mass per day (2.30 kg/d) during the 9-14-day fast, and their resting metabolic rates decreased 31%, which is typical of a "fasting response". However, metabolic depression did not occur during the 28-day food restriction trials, despite the loss of 0.30% of body mass per day (0.42 kg/d). This difference in response suggests that undernutrition caused by reduced food intake may stimulate a "hunger response", which in turn might lead to increased foraging effort. The progressive changes in metabolism we observed during the fasts were related to, but were not directly caused by, changes in body mass from control levels. Combining these results with data collected from experiments when Steller sea lions were losing mass on low energy squid and pollock diets reveals a strong relationship between relative changes in body mass and relative changes in resting metabolism across experimental conditions. While metabolic depression caused by fasting or consuming large amounts of low energy food reduced the direct costs from resting metabolism, it was insufficient to completely overcome the incurred energy deficit.  相似文献   

10.
Summary The wombats Vombatus ursinus and Lasiorhinus latifrons have a capacious proximal colon with only a vestigial caecum. The pattern of microbial fermentation in the hindgut of both species was studied in captive animals fed a pelleted straw diet and in wild wombats feeding on their natural winter diets. Digesta pH was low in the stomach but near neutrality along the hindgut, indicating effective absorption and/or buffering of the colonic contents. Initial proportions and production rates of short chain fatty acids in vitro reflected the fermentation of plant cell walls. Proportions of isobutyrate, isovalerate and n-valerate increased towards the distal colon indicating proteolysis and subsequent fermentation of amino acids. The low ammonia content of digesta fluid suggested that ammonia released from these amino acids was absorbed and utilized by the wombats and their gut microbes. Wild wombats had higher concentrations and production rates of short chain fatty acids than captive animals, which was consistent with the higher apparent digestibility of their natural diet. The energy from short chain fatty acids in captive animals was 30–33% of digestible intake. Energy intakes were low and similar to resting metabolic rates estimated for marsupials. Actual resting metabolic rates of the wombats are probably lower than these estimates, and the proportion of energy derived from fermentation substantially higher than the 53–61% estimated in wild wombats. The energy from fermentation clearly enables wombats to utilize diets high in fibre.Abbreviations DEI digestible energy intake - DM dry matter - NDF neutral detergent fibre - SCFA short chain fatty acids - SD standard deviation - SMR standard metabolic rate  相似文献   

11.
The thermal coadaptation hypothesis posits that ectotherms thermoregulate behaviorally to maintain body temperatures (Tb) that maximize performance, such as net energy gain. Huey's (1982) energetics model describes how food availability and Tb interact to affect net energy gain. We tested the thermal coadaptation hypothesis and Huey's energetics model with growth rates of juvenile Yarrow's spiny lizards (Sceloporus jarrovii). We compared the preferred (selected) Tb range (Tsel) of lizards in high and low energy states to their optimal temperature (To) for growth over nine weeks, and determined whether the To for growth depended on food availability. We also measured the same lizards’ resting metabolic rate at five Tbs to test the energetics model assumptions that metabolic cost increases exponentially with Tb and does not differ between energy states. The Tsel of lizards on both diets overlapped with the To for growth. The assumptions of the energetics model were verified, but the To for net energy gain did not depend on food availability. Therefore, we found support for the thermal coadaptation hypothesis. We did not find support for the energetics model, but this may have been due to low statistical power.  相似文献   

12.
Body temperatures, standard and resting metabolism and diel activity patterns were determined in Garthia gaudichaudi, a small ( < 1g) gecko inhabiting a Chilean semi-arid region. Field body temperatures were significantly higher when lizards were inactive during the day than when active at night. In the laboratory, preferred temperatures during scotophase were considerably lower than those selected during the photophase, even when high temperatures were continuously available. Activity patterns appear to be better correlated with the photoperiod than with ambient temperatures (16–40°C). Under a 12:12 LD photoperiod, 92% of the total daily activity was carried out during darkness. Standard and resting metabolic rates were lower than those predicted for most squamate reptiles of similar size, but appear to be within the ranges reported for other nocturnal xeric geckos.  相似文献   

13.
Obesity is now considered a major public health concern globally as it predisposes to a number of chronic human diseases. Most developed countries have experienced a dramatic and significant rise in obesity since the 1980s, with obesity apparently accompanying, hand in hand, the adoption of "Western"-style diets and low-energy expenditure lifestyles around the world. Recent studies report an aberrant gut microbiota in obese subjects and that gut microbial metabolic activities, especially carbohydrate fermentation and bile acid metabolism, can impact on a number of mammalian physiological functions linked to obesity. The aim of this review is to present the evidence for a characteristic "obese-type" gut microbiota and to discuss studies linking microbial metabolic activities with mammalian regulation of lipid and glucose metabolism, thermogenesis, satiety, and chronic systemic inflammation. We focus in particular on short-chain fatty acids (SCFA) produced upon fiber fermentation in the colon. Although SCFA are reported to be elevated in the feces of obese individuals, they are also, in contradiction, identified as key metabolic regulators of the physiological checks and controls mammals rely upon to regulate energy metabolism. Most studies suggest that the gut microbiota differs in composition between lean and obese individuals and that diet, especially the high-fat low-fiber Western-style diet, dramatically impacts on the gut microbiota. There is currently no consensus as to whether the gut microbiota plays a causative role in obesity or is modulated in response to the obese state itself or the diet in obesity. Further studies, especially on the regulatory role of SCFA in human energy homeostasis, are needed to clarify the physiological consequences of an "obese-style" microbiota and any putative dietary modulation of associated disease risk.  相似文献   

14.
Prairie deer mice responded to long nights by reducing their metabolic rates, core temperatures, thermal conductances and incremental metabolic responses to cold stimulus, while increasing their capacities for nonshivering thermogenesis. Some winter animals spontaneously entered daily torpor in the mornings and thereby further reduced their metabolic rates and core temperatures. Provision of exogenous melatonin (by subdermal implants) mimiced short photoperiod effects on metabolic rates and core temperatures of wild-caught, laboratory maintained animals. Provision of supplemental dietary tryptophan to laboratory animals conditioned to natural light cycles mimiced metabolic effects of long nights in summer animals, and further reduced metabolic rates of winter mice, but did not affect their core temperature levels. Newly caught, laboratory maintained deer mice responded to natural seasonal clues of shortphotoperiod and increased dietary tryptophan by reducing their resting energy requirements through both lower metabolic and lower core temperature levels. Short photoperiod and seasonal change also promoted gonadal involution, and resulted in more socially tolerant huddling by mice with reduced core temperature. Reduced 24-hour LH excretion rates were also observed in winter animals which were exposed to seasonal light cycles at warm (25°C) room temperatures. We propose that seasonal acclimatization involves pineal effects on sex hormone-influenced social behaviors and on resting metabolism. These effects serve to conserve resting energy expenditure and promote hypothermic insulation by wild prairie deer mice.  相似文献   

15.
  • 1.1. We measured standard, resting and exercise metabolism of 28 Chaicides ocellatus (Scincidae). Individual lizards consistently showed statistically significant differences in mass-independent rates of standard and exercise metabolism during three replicates of the experiments at weekly intervals.
  • 2.2. Metabolic differences were also detected among groups of siblings.
  • 3.3. Mass-independent resting metabolic rates were closely correlated with standard rates, but there was no correlation of metabolic rates during forced activity with either standard or resting rates.
  • 4.4. These data suggest a heritable component of metabolism for lizards, but they do not support the “aerobic capacity model” of the origin of endothermy, which proposes that initial selection for high resting metabolic rates operated via selection for high rates of aerobic metabolism during exercise.
  相似文献   

16.
We fed prairie voles (Microtus ochrogaster) rat chow diluted with variable amounts of -cellulose to determine 1) how much fiber the voles could tolerate in their diet; 2) changes in food intake and digestibility of dry matter and of fiber; 3) the extent to which voles utilized fiber as an energy source; and 4) whether any of these variables differed between groups of animals maintained at 5 or 22°C. Fiber content of the diets ranged from 20 to 84%. Animals held at 5°C maintained body mass through a diet containing 69% fiber, while animals held at 22°C maintained body mass through the 84% fiber diet. Dry matter intake increased with fiber level from 9.3 to 15.0 g·day-1 for animals at 5°C and from 5.6 to 14.0 g·day-1 for animals at 22°C; intake on the highest fiber diet eaten by either group was not different. Dry matter digestibility decreased significantly as the fiber in the diets increased, but was not affected by temperature treatments. Digestible dry matter intake for each group remained constant regardless of diet quality, but on each diet digestible dry matter intake for animals at 5°C was significantly higher than that of the animals held at 22°C. Digestibility of the fiber portion of the experimental diets remained constant as food quality decreased, so the percent of daily energy need met by fiber utilization increased with higher food intake. On the lowest quality diet each group tolerated, fiber digestion provided approximately 42 and 68% of the energy needs of voles at 5 and 22°C, respectively.Abbreviations BM body mass - BMR basal metabolic rate - DE digestible energy - DM dry matter - DMD dry matter digestibility - DDMI digestible dry matter intake - MR metabolic rate - NDF neutral detergent fiber (=cell walls) - NDS neutral detergent solubles (=cell solubles) - SEM standard error of mean - T a ambient temperature  相似文献   

17.
Metabolomics assays have recently been used in humans for the identification of biomarkers for dietary assessment and diseases. The application of metabolomics to feline nutrition, however, has been very limited. The objective of this study was to identify how the feline blood metabolome changed in response to dietary macronutrient composition. Twelve adult domestic cats were fed four nutritionally complete diets [control, high-fat (HF), high-protein (HP), high-carbohydrate (HC)] at amounts to maintain ideal body weight and body condition score for 16 days. Overnight fasted plasma samples were collected on day 16 and subjected to liquid/gas chromatography and mass spectrometry. Principal component analysis showed that metabolite profiles of cats fed HP, HF, and HC dietary regimes formed distinct clusters. Cats fed the HP diet had a metabolite profile associated with decreased nucleotide catabolism, but increased amino acid metabolism and ketone bodies, indicating a greater use of protein and fat for energy. Cats fed the HP diet had a significant increase in metabolites associated with gut microbial metabolism. Cats fed the HF diet had metabolites indicative of increased lipid metabolism, including free fatty acids, monoacylglycerols, glycerol-3-phosphate, cholesterol, ketone bodies, and markers of oxidative stress. γ-glutamylleucine, 3-hydroxyisobutyrate, and 3-indoxyl sulfate were identified by random forest analysis to distinguish cats fed the three macronutrient-rich diets. In conclusion, macronutrient-rich diets primarily altered markers of amino acid and lipid metabolism, with little changes in markers of carbohydrate and energy metabolism. Moreover, the HP diet influenced several metabolites originating from gut microbial metabolism.  相似文献   

18.
Because small ruminants (<15 kg) have a high ratio of metabolic rate to fermentation capacity, they are expected to select and require low-fiber, nutrient-dense concentrate diets. However, recent studies suggest that small ruminants may not be as limited in their digestive capacity as previously thought. In this study, we examined harvesting, rumination, digestion, and passage of three diets (domestic figs Ficus carica, fresh alfalfa Medicago sativa, and Pacific willow leaves Salix lasiandra) ranging from 10 to 50% neutral detergent fiber content (NDF) in captive blue duikers (Cephalophus monticola, 4 kg). Harvesting and rumination rates were obtained by observing and videotaping animals on each diet, and digestibility and intake were determined by conducting total collection digestion trials. We estimated mean retention time of liquid and particulate digesta by administering Co-EDTA and forages labelled with YbNO3 in a pulse dose and monitoring fecal output over 4 days. Duikers harvested and ruminated the fig diet faster than the alfalfa and willow diets. Likewise, they achieved higher dry matter, energy, NDF, and protein digestibility when eating figs, yet achieved a higher daily digestible energy intake on the fresh willow and alfalfa than on the figs by eating proportionately more of these forages. Duikers maintained a positive nitrogen balance on all diets, including figs, which contained only 6.3% crude protein. Mean retention time of cell wall in the duikers’ digestive tract declined with increasing NDF and cellulose content of the diet. Digestibility coefficients and mean retention times of these small ruminants were virtually equivalent to those measured for ruminants two orders of magnitude larger, suggesting that they are well adapted for a mixed diet. Received: 10 August 1999 / Accepted: 16 November 1999  相似文献   

19.
This study was conducted to investigate the effects of konjac flour (KF) inclusion in gestation diets of sows on nutrients digestibility, lactation feed intake, reproductive performance of sows and preweaning performance of piglets. Two isoenergetic and isonitrogenous gestation diets were formulated: a control diet and a 2.1% KF-supplemented diet (KF diet). Both diets had the same NDF and insoluble fiber (ISF) levels, but the KF diet had higher soluble fiber (SF) level. The day after breeding, 96 multiparous sows were assigned to the two dietary treatments. Restrict-fed during gestation, in contrast, all sows were offered the same lactation diet ad libitum. Response criteria included sow BW, backfat depth, lactation feed intake, weaning-to-estrus interval, litter size and piglet’s weight at parturition and day 21 of lactation. On day 60 of gestation, 20 sows were used to measure nutrient digestibility. Results showed that the digestibility of dry matter, gross energy, crude fiber and ADF were not affected by the dietary treatments. The inclusion of KF in gestation diets increased NDF digestibility (P<0.05) and tended to increase the digestibility of CP (P=0.05) compared with the control diet group. In addition, dietary treatment during gestation did not affect litter size, BW and backfat gain during gestation, lactation weight, backfat loss or weaning-to-estrus interval of sows. However, sows fed the KF diet consumed more (P<0.05) lactation diet per day than sows in the control group. Accordingly, sows fed the KF diet showed greater average piglet weights on day 21 of lactation (P=0.09), and the litter weight of sows fed the KF diet on day 21 of lactation increased by 3.95 kg compared with sows fed the control diet (not significant). In conclusion, the inclusion of KF in gestation diets increased lactation feed intake of sows and tended to improve litter performance.  相似文献   

20.
Large brain sizes in humans have important metabolic consequences as humans expend a relatively larger proportion of their resting energy budget on brain metabolism than other primates or non-primate mammals. The high costs of large human brains are supported, in part, by diets that are relatively rich in energy and other nutrients. Among living primates, the relative proportion of metabolic energy allocated to the brain is positively correlated with dietary quality. Humans fall at the positive end of this relationship, having both a very high quality diet and a large brain size. Greater encephalization also appears to have consequences for aspects of body composition. Comparative primate data indicate that humans are 'under-muscled', having relatively lower levels of skeletal muscle than other primate species of similar size. Conversely, levels of body fatness are relatively high in humans, particularly in infancy. These greater levels of body fatness and reduced levels of muscle mass allow human infants to accommodate the growth of their large brains in two important ways: (1) by having a ready supply of stored energy to 'feed the brain', when intake is limited and (2) by reducing the total energy costs of the rest of the body. Paleontological evidence indicates that the rapid brain evolution observed with the emergence of Homo erectus at approximately 1.8 million years ago was likely associated with important changes in diet and body composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号