首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
红球菌 (Rhodococcus sp.) R04基因组有15种细胞色素P450单加氧酶,其中CYP125A18与结核分枝杆菌 (Mycobacterium tuberculosis) 和马红球菌 (Rhodococcus equi) 的CYP125有较高同源性。利用NCBI蛋白质数据库搜索同源序列,对Rhodococcus sp. R04的15种CYP450一级结构序列进行比对和系统发育分析;对CYP125A18基因进行了克隆表达,并用紫外分光光度法对蛋白质的光谱学特性以及与唑类药物互作情况进行分析。实验结果表明,Rhodococcus sp. R04 15种CYP450均含有保守的氨基酸序列和铁血红素催化中心。SDS-PAGE分析表明,CYP125A18分子量约为50 kD,CYP125A18还原态和CO结合后与CYP125A18氧化态的差示光谱表现为典型的CYP450光谱特性。CYP125A18与底物4-胆甾烯-3-酮结合后,血红素铁全部转变为高自旋状态;与唑类药物滴定后发生了II型光谱转变。解离常数表明,7种唑类药物与CYP125A18的亲和力由强到弱依次为酮康唑、益康唑、4-苯基咪唑、氟康唑、4-甲基-2-苯基咪唑、克霉唑、甲硝唑。上述发现对研究CYP125代谢胆固醇具有重要意义,同时为疾病耐药性研究及药物选择提供数据和理论支持。  相似文献   

2.
The CYP121 gene from the pathogenic bacterium Mycobacterium tuberculosis has been cloned and expressed in Escherichia coli, and the protein purified to homogeneity by ion exchange and hydrophobic interaction chromatography. The CYP121 gene encodes a cytochrome P450 enzyme (CYP121) that displays typical electronic absorption features for a member of this superfamily of hemoproteins (major Soret absorption band at 416.5 nm with alpha and beta bands at 565 and 538 nm, respectively, in the oxidized form) and which binds carbon monoxide to give the characteristic Soret band shift to 448 nm. Resonance Raman, EPR and MCD spectra show the protein to be predominantly low-spin and to have a typical cysteinate- and water-ligated b-type heme iron. CD spectra in the far UV region describe a mainly alpha helical conformation, but the visible CD spectrum shows a band of positive sign in the Soret region, distinct from spectra for other P450s recognized thus far. CYP121 binds very tightly to a range of azole antifungal drugs (e.g. clotrimazole, miconazole), suggesting that it may represent a novel target for these antibiotics in the M. tuberculosis pathogen.  相似文献   

3.
P450cam has long served as a prototype for the cytochrome P450 (CYP) gene family. But, little is known about how substrate enters its active site pocket, and how access is achieved in a way that minimizes exposure of the reactive heme. We hypothesize that P450cam may first bind substrate transiently near the mobile F-G helix that covers the active site pocket. Such a two-step binding process is kinetically required if P450cam rarely populates an open conformation-as suggested by previous literature and the inability to obtain a crystal structure of P450cam in an open conformation. Such a mechanism would minimize exposure of the heme by allowing P450cam to stay in a closed conformation as long as possible, since only brief flexing into an open conformation would be required to allow substrate entry. To test this model, we have attempted to dock a second camphor molecule into the crystal structure of camphor-bound P450cam. The docking identified only one potential entry site pocket, a well-defined cavity on the F-helix side of the F-G flap, 16 A from the heme iron. Location of this entry site pocket is consistent with our NMR T1 relaxation-based measurements of distances for a camphor that binds in fast exchange (active site camphor is known to bind in slow exchange). Presence of a second camphor binding site is also confirmed with [(1)H-(13)C] HSQC titrations of (13)CH3-threonine labeled P450cam. To confirm that camphor can bind outside of the active site pocket, (13)CH3-S-pyridine was bound to the heme iron to physically block the active site, and to serve as an NMR chemical shift probe. Titration of this P450cam-pyridine complex confirms that camphor can bind to a site outside the active site pocket, with an estimated Kd of 43 microM. The two-site binding model that is proposed based on these data is analogous to that recently proposed for CYP3A4, and is consistent with recent crystal structures of P450cam bound to tethered-substrates, which force a partially opened conformation.  相似文献   

4.
Lepesheva GI  Nes WD  Zhou W  Hill GC  Waterman MR 《Biochemistry》2004,43(33):10789-10799
New isoforms of CYP51 (sterol 14alpha-demethylase), an essential enzyme in sterol biosynthesis and primary target of azole antimycotic drugs, are found in pathogenic protists, Trypanosoma brucei(TB), T. vivax, T. cruzi, and Leishmania major. The sequences share approximately 80% amino acid identity and are approximately 25% identical to sterol 14alpha-demethylases from other biological kingdoms. Differences of residues conserved throughout the rest of the CYP51 family that align with the BC-loop and helices F and G of CYP51 from Mycobacterium tuberculosis (MT)) imply possible alterations in the topology of the active site cavity of the protozoan enzymes. CYP51 and cytochrome P450 reductase (CPR) from TB were cloned, expressed in Escherichia coli, and purified. The P450 has normal spectral features (including absolute absorbance, carbon monoxide, and ligand binding spectra), is efficiently reduced by TB and rat CPR but demonstrates altered specificity in comparison with human CYP51 toward three tested azole inhibitors, and contrary to the human, Candida albicans, and MT isoforms, reveals profound substrate preference toward obtusifoliol (turnover 5.6 min(-1)). It weakly interacts with the other known CYP51 substrates; slow lanosterol conversion predominantly produces the 14alpha-carboxyaldehyde intermediate. Although obtusifoliol specificity is typical for plant isoforms of CYP51, the set of sterol biosynthetic enzymes in the protozoan genomes together with available information about sterol composition of kinetoplastid cells suggest that the substrate preference of TBCYP51 may reflect a novel sterol biosynthetic pathway in Trypanosomatidae.  相似文献   

5.
The crystal structure of 14alpha-sterol demethylase from Mycobacterium tuberculosis (MTCYP51) [Proc. Natl. Acad. Sci. USA 98 (2001) 3068-3073] provides a template for analysis of eukaryotic orthologs which constitute the CYP51 family of cytochrome P450 proteins. Putative substrate recognition sites (SRSs) were identified in MTCYP51 based on the X-ray structures and have been compared with SRSs predicted based on Gotoh's analysis [J. Biol. Chem. 267 (1992) 83-90]. While Gotoh's SRS-4, 5, and 6 contribute in formation of the putative MTCYP51 substrate binding site, SRS-2 and 3 likely do not exist in MTCYP51. SRS-1, as part of the open BC loop, in the conformation found in the crystal can provide only limited contacts with the sterol. However, its role in substrate binding might dramatically increase if the loop closes in response to substrate binding. Thus, while the notion of SRSs has been very useful in leading to our current understanding of P450 structure and function, their identification by sequence alignment between distant P450 families will not necessarily be a good predictor of residues associated with substrate binding. Localization of CYP51 mutation hotspots in Candida albicans azole resistant isolates was analyzed with respect to SRSs. These mutations are found to be outside of the putative substrate interacting sites indicating the preservation of the protein active site under the pressure of azole treatment. Since the mutations residing outside the putative CYP51 active side can profoundly influence ligand binding within the active site, perhaps they provide insight into the basis of evolutionary changes which have occurred leading to different P450s.  相似文献   

6.
The Mycobacterium tuberculosis P450 enzymes are of interest for their pharmacological development potential, as evidenced by their susceptibility to inhibition by antifungal azole drugs that normally target sterol 14α-demethylase (CYP51). Although antifungal azoles show promise, direct screening of compounds against M. tuberculosis P450 enzymes may identify novel, more potent, and selective inhibitory scaffolds. Here we report that CYP130 from M. tuberculosis has a natural propensity to bind primary arylamines with particular chemical architectures. These compounds were identified via a high throughput screen of CYP130 with a library of synthetic organic molecules. As revealed by subsequent x-ray structure analysis, selected compounds bind in the active site by Fe-coordination and hydrogen bonding of the arylamine group to the carbonyl oxygen of Gly243. As evidenced by the binding of structural analogs, the primary arylamine group is indispensable, but synergism due to hydrophobic contacts between the rest of the molecule and protein amino acid residues is responsible for a binding affinity comparable with that of the antifungal azole drugs. The topology of the CYP130 active site favors angular coordination of the arylamine group over the orthogonal coordination of azoles. Upon substitution of Gly243 by an alanine, the binding mode of azoles and some arylamines reverted from type II to type I because of hydrophobic and steric interactions with the alanine side chain. We suggest a role for the conserved Ala(Gly)243-Gly244 motif in the I-helix in modulating both the binding affinity of the axial water ligand and the ligand selectivity of cytochrome P450 enzymes.CYP130 is one of the 20 Mycobacterium tuberculosis cytochrome P450 (P450, CYP)2 enzymes and is one of three (CYP51, CYP121, and CYP130) that have been studied as individually expressed proteins at the structural level. Evidence has accumulated for the importance of M. tuberculosis P450 enzymes in virulence (CYP132) (1), host infection (CYP125) (2), and pathogen viability (CYP128, CYP121) (3, 4), although neither their exact biological functions nor any of the endogenous substrates upon which these enzymes operate have yet been established. However, it has recently been shown in vitro that CYP121 catalyzes a C–C coupling reaction between two tyrosine groups (5). CYP130 is absent from the genome of Mycobacterium bovis, suggesting that it might play specific role(s) in the infection of the human host and thus constitute a potential therapeutic target.The potential of M. tuberculosis P450 enzymes for pharmacologic development was initially suggested by their susceptibility to inhibition by antifungal azole drugs such as fluconazole, econazole, and clotrimazole. These drugs block sterol 14α-demethylase CYP51 in fungi (6), tightly bind to M. tuberculosis P450 proteins (7, 8), and display inhibitory potential against latent and multidrug-resistant forms of tuberculosis both in vitro and in tuberculosis-infected mice (914).The substantial differences between fungal CYP51 and the potential P450 targets in microbial pathogens, including M. tuberculosis, suggest that the direct screening of compounds against M. tuberculosis CYP enzymes could identify novel inhibitory scaffolds that are more potent and selective than antifungal drugs. Structurally characterized screening targets are advantageous, as the already defined purification and crystallization protocols can be applied to obtain co-crystal structures and to elucidate the binding modes of screening hits. This approach has been successfully applied to CYP51, resulting in identification of novel inhibitory scaffolds for CYP51 therapeutic targets (15, 16).Toward this goal, the property of P450 enzymes to shift the ferric heme iron Soret band on ligand binding (17) provides an experimental platform for high throughput screening of compound libraries to select chemotypes with high binding affinities for the target. Expulsion of the heme iron axial water ligand from the Fe-coordination sphere by the incoming substrate followed by transition of the ferric heme from the low-spin hexacoordinated to the high-spin pentacoordinated state characterize type I spectral shifts and are a prerequisite for P450 catalytic activity. Replacement of a weak axial ligand, the water molecule, with a stronger one possessing a nitrogen-containing aliphatic or aromatic group coordinating to the heme iron characterizes type II spectral shifts.To find new high affinity ligands of CYP130, a commercial library of 20,000 small organic molecules comprising a large selection of molecular scaffolds was screened against the enzyme. In contrast to the results with CYP51, no type I binding hits were identified. Screening produced about a dozen structurally diverse type II hits that were unexpectedly devoid of the usual aromatic nitrogen atoms readily accessible for axial coordination of the heme iron, suggesting an alternative coordination mode. High resolution x-ray structure analysis determined that two compounds coordinated to the heme iron via a primary arylamine group, providing the first structural evidence on P450-heterocyclic arylamine interactions.  相似文献   

7.
The crystal structure of a cytochrome P450 from the thermoacidophile Picrophilus torridus, CYP231A2 (PTO1399), has been solved. This structure reveals a wide open substrate access channel. To better understand ligand-induced structural transitions in CYP231A2, protein-ligand interactions were investigated using 4-phenylimidazole. Comparison of the ligand-free and -bound CYP231A2 structures shows conformational changes where the F and G helices swing as a single rigid body about a pivot point at the N-terminal end of the F helix, allowing the F helix region to dip toward the heme, resulting in closer contacts with the ligand. Thermal melting data illustrate that the melting temperature for CYP231A2 increases nearly 10 degrees C upon ligand binding, thus illustrating that the closed conformation is substantially more stable. Furthermore, spectroscopic data indicate that the active site is stable at pH 4.5, although, unusually, the thiolate ligand to the iron can be reversibly protonated. CYP231A2 does not exhibit structural features normally associated with thermophilic proteins such as an increase in salt bridge networks or extensive aromatic clustering. The increase in thermal stability instead is best correlated with the smaller size and shorter loops in CYP231A2 compared to other P450s.  相似文献   

8.
Understanding the detailed metabolic mechanisms of membrane-associated cytochromes P450 is often hampered by heterogeneity, ill-defined oligomeric state of the enzyme, and variation in the stoichiometry of the functional P450.reductase complexes in various reconstituted systems. Here, we describe the detailed characterization of a functionally homogeneous 1:1 complex of cytochrome P450 3A4 (CYP3A4) and cytochrome P450 reductase solubilized via self-assembly in a nanoscale phospholipid bilayer. CYP3A4 in this complex showed a nearly complete conversion from the low- to high-spin state when saturated with testosterone (TS) and no noticeable modulation due to the presence of cytochrome P450 reductase. Global analysis of equilibrium substrate binding and steady-state NADPH consumption kinetics provided precise resolution of the fractional contributions to turnover of CYP3A4 intermediates with one, two, or three TS molecules bound. The first binding event accelerates NADPH consumption but does not result in significant product formation due to essentially complete uncoupling. Binding of the second substrate molecule is critically important for catalysis, as the product formation rate reaches a maximum value with two TS molecules bound, whereas the third binding event significantly improves the coupling efficiency of redox equivalent usage with no further increase in product formation rate. The resolution of the fractional contributions of binding intermediates of CYP3A4 into experimentally observed overall spin shift and the rates of steady-state NADPH oxidation and product formation provide new detailed insight into the mechanisms of cooperativity and allosteric regulation in this human cytochrome P450.  相似文献   

9.
The effects of various antimycotic reagents and some other reagents on a cytochrome P-450-linked monooxygenase system were investigated with respect to the activities of NADPH-ferricyanide reductase. NADPH-cytochrome c reductase of NADPH-adreno-ferredoxin reductase from NADPH to cytochrome c via adreno-ferredoxin, NADPH-cytochrome P-450-phenylisocyanide complex reductase, and the cholesterol side chain cleavage of the cytochrome P-450scc-linked monooxygenase system. No reagents inhibited the NADPH-ferricyanide reductase activity. Only cloconazole inhibited about 50% of NADPH-cytochrome c reductase activity. Cloconazole, econazole, clotrimazole, etomidate and ketoconazole inhibited both NADPH-cytochrome P-450-phenylisocyanide complex reductase and the side chain cleavage activity of cholesterol of the cytochrome P-450scc-linked monooxygenase system. Cloconazole, econazole, etomidate and ketoconazole behaved like non-competitive inhibitors for NADPH-cytochrome P-450-phenylisocyanide reductase activities and their Ki values were 10(-4)-10(-6) M. Cloconazole was a non-competitive inhibitor of NADPH-cytochrome c reductase and its Ki value was 8.3 x 10(-4) M. Cloconazole, clotrimazole, econazole, etomidate, ketoconazole and mitotane completely inhibited the side chain cleavage activity of cholesterol.  相似文献   

10.
Azole antifungals are central to therapy and act by inhibiting a cytochrome P450, sterol 14-demethylase and blocking normal sterol synthesis. Our recent identification of a mycobacterial sterol biosynthetic pathway led us to probe the efficacy of a range of these compounds against Mycobacterium smegmatis. Several showed equivalent or greater inhibitory effects to those against Candida albicans, and bactericidal activity was demonstrated for four compounds, clotrimazole, econazole, miconazole and tebuconazole. The major drug used clinically, fluconazole, was ineffective. The results are discussed in the light of the world-wide spread of tuberculosis, including drug-resistant forms and the requirement for new drugs.  相似文献   

11.
Over the past two decades a number of antifungal imidazole derivatives have been approved for use in agricultural. The purpose of this study was to characterize the interaction of a model antifungal imidazole compound with a cytochrome P450 isozyme in a species of fish. Clotrimazole inhibited rainbow trout (Oncorhyncus mykiss) hepatic CYP1A-catalyzed ethoxyresorufin O-deethylase (EROD) activity in vivo and in vitro. Although clotrimazole inhibited EROD activity in vivo, it did not effect CYP1A mRNA levels. Addition of clotrimazole to microsomes produced a type II binding spectrum and clotrimazole was determined to be a noncompetitive mixed-type inhibitor of EROD activity with an IC50 of 190 nM. Since antifungal imidazole compounds may be co-applied with other pesticides, inhibition of cytochrome P450 activity by antifungal imidazole compounds may lead to unexpected toxicological interactions.  相似文献   

12.
We report characterization and the crystal structure of the Mycobacterium tuberculosis cytochrome P450 CYP125, a P450 implicated in metabolism of host cholesterol and essential for establishing infection in mice. CYP125 is purified in a high spin form and undergoes both type I and II spectral shifts with various azole drugs. The 1.4-Å structure of ligand-free CYP125 reveals a “letterbox” active site cavity of dimensions appropriate for entry of a polycyclic sterol. A mixture of hexa-coordinate and penta-coordinate states could be discerned, with water binding as the 6th heme-ligand linked to conformation of the I-helix Val267 residue. Structures in complex with androstenedione and the antitubercular drug econazole reveal that binding of hydrophobic ligands occurs within the active site cavity. Due to the funnel shape of the active site near the heme, neither approaches the heme iron. A model of the cholesterol CYP125 complex shows that the alkyl side chain extends toward the heme iron, predicting hydroxylation of cholesterol C27. The alkyl chain is in close contact to Val267, suggesting a substrate binding-induced low- to high-spin transition coupled to reorientation of the latter residue. Reconstitution of CYP125 activity with a redox partner system revealed exclusively cholesterol 27-hydroxylation, consistent with structure and modeling. This activity may enable catabolism of host cholesterol or generation of immunomodulatory compounds that enable persistence in the host. This study reveals structural and catalytic properties of a potential M. tuberculosis drug target enzyme, and the likely mode by which the host-derived substrate is bound and hydroxylated.  相似文献   

13.
In cytochrome P450s, the active site is situated deep inside the protein next to the heme cofactor, and is often completely isolated from the surrounding solvent. To identify routes by which substrates may enter into and products exit from the active site, random expulsion molecular dynamics simulations were performed for three cytochrome P450s: CYP101, CYP102A1 and CYP107A1 [J. Mol. Biol. 303 (2000) 797; Proc. Natl. Acad. Sci. USA 99 (2002) 5361]. Amongst the different pathways identified, one pathway was found to be common to all three cytochrome P450s although the mechanism of ligand passage along it was different in each case and apparently adapted to the substrate specificity of the enzyme. Recently, a number of new crystal structures of cytochrome P450s have been solved. Here, we analyse the open channels leading to the active site that these structures reveal. We find that in addition to showing the common pathway, they provide experimental evidence for the existence of three additional channels that were identified by simulation. We also discuss how the location of xenon binding sites in CYP101 suggests a role for one of the pathways identified by molecular dynamics simulations as a route for gaseous species, such as oxygen, to access the active site.  相似文献   

14.
The activation of vitamin D to its hormonal form is mediated by cytochrome P450 enzymes. CYP2R1 catalyzes the initial step converting vitamin D into 25-hydroxyvitamin D. A CYP2R1 gene mutation causes an inherited form of rickets due to 25-hydroxylase deficiency. To understand the narrow substrate specificity of CYP2R1 we obtained the hemeprotein in a highly purified state, confirmed the enzyme as a vitamin D 25-hydroxylase, and solved the crystal structure of CYP2R1 in complex with vitamin D3. The CYP2R1 structure adopts a closed conformation with the substrate access channel being covered by the ordered B′-helix and slightly opened to the surface, which defines the substrate entrance point. The active site is lined by conserved, mostly hydrophobic residues. Vitamin D3 is bound in an elongated conformation with the aliphatic side-chain pointing toward the heme. The structure reveals the secosteroid binding mode in an extended active site and allows rationalization of the molecular basis of the inherited rickets associated with CYP2R1.  相似文献   

15.
A 1.9-A molecular structure of the microsomal cytochrome P450 2B4 with the specific inhibitor 4-(4-chlorophenyl)imidazole (CPI) in the active site was determined by x-ray crystallography. In contrast to the previous experimentally determined 2B4 structure, this complex adopted a closed conformation similar to that observed for the mammalian 2C enzymes. The differences between the open and closed structures of 2B4 were primarily limited to the lid domain of helices F through G, helices B' and C, the N terminus of helix I, and the beta(4) region. These large-scale conformational changes were generally due to the relocation of conserved structural elements toward each other with remarkably little remodeling at the secondary structure level. For example, the F' and G' helices were maintained with a sharp turn between them but are placed to form the exterior ceiling of the active site in the CPI complex. CPI was closely surrounded by residues from substrate recognition sites 1, 4, 5, and 6 to form a small, isolated hydrophobic cavity. The switch from open to closed conformation dramatically relocated helix C to a more proximal position. As a result, heme binding interactions were altered, and the putative NADPH-cytochrome P450 reductase binding site was reformed. This suggests a structural mechanism whereby ligand-induced conformational changes may coordinate catalytic activity. Comparison of the 2B4/CPI complex with the open 2B4 structure yields insights into the dynamics involved in substrate access, tight inhibitor binding, and coordination of substrate and redox partner binding.  相似文献   

16.
Site-directed mutagenesis has been used to replace alanine 305 with phenylalanine (A305F) and serine (A305S) in the active site of cytochrome P450 3A4 (CYP3A4). Enzyme kinetics for diazepam, erythromycin, nifedipine, and testosterone metabolism have been determined for both mutants and wild-type CYP3A4. The A305F mutation abolished diazepam oxidase activity and reduced the S(50) and V(max) for erythromycin N-demethylase activity from 17 to 10 microM and from 3.2 to 1.2 pmol product/min/pmol P450, respectively. The V(max) for testosterone 6beta-hydroxylase activity was also significantly reduced, from 2.3 to 0.6 pmol product/min/pmol P450, whereas the S(50) increased from 33 to 125 microM. The nifedipine oxidase activity was diminished to a lesser extent, down from 6.5 to 4.9 pmol product/min/pmol P450, whereas the S(50) increased from 9 to 42 microM. The K(i) for ketoconazole, a CYP3A4 selective inhibitor, was increased more than 10-fold from 0.050 to 0.55 microM, from 0.052 to 0.73 microM, and from 0.043 to 2.2 microM by the A305F mutation when measured against erythromycin, nifedipine, and testosterone metabolism activities, respectively. Similarly, the inhibition constants of the broader specificity inhibitors; clotrimazole, econazole, and miconazole were increased 3- to 15-fold by the A305F mutation. In contrast, the A305S mutation increased testosterone 6beta-hydroxylase (V(max) = 2.9 pmol product/min/pmol P450) and erythromycin N-demethylase (V(max) = 5.1 pmol product/min/pmol P450) activities, but reduced nifedipine oxidase activity (V(max) = 4.6 pmol product/min/pmol P450). K(i) values for ketoconazole and other azole inhibitors were unchanged by the A305S mutation. It is proposed that in CYP3A4, the mutagenesis of alanine 305 to a phenylalanine increases the steric hindrance of the catalytic center, thereby greatly reducing azole inhibitor binding affinity, but maintaining monoogygenase activity.  相似文献   

17.
CYP107W1 from Streptomyces avermitilis is a cytochrome P450 enzyme involved in the biosynthesis of macrolide oligomycin A. A previous study reported that CYP107W1 regioselectively hydroxylated C12 of oligomycin C to produce oligomycin A, and the crystal structure of ligand free CYP107W1 was determined. Here, we analyzed the structural properties of the CYP107W1-oligomycin A complex and characterized the functional role of the Trp178 residue in CYP107W1. The crystal structure of the CYP107W1 complex with oligomycin A was determined at a resolution of 2.6 Å. Oligomycin A is bound in the substrate access channel on the upper side of the prosthetic heme mainly by hydrophobic interactions. In particular, the Trp178 residue in the active site intercalates into the large macrolide ring, thereby guiding the substrate into the correct binding orientation for a productive P450 reaction. A Trp178 to Gly mutation resulted in the distortion of binding titration spectra with oligomycin A, whereas binding spectra with azoles were not affected. The Gly178 mutant’s catalytic turnover number for the 12-hydroxylation reaction of oligomycin C was highly reduced. These results indicate that Trp178, located in the open pocket of the active site, may be a critical residue for the productive binding conformation of large macrolide substrates.  相似文献   

18.
Azole and triazole drugs are cytochrome P450 inhibitors widely used as fungal antibiotics and possessing potent antimycobacterial activity. We present here the crystal structure of Mycobacterium tuberculosis cytochrome P450 CYP121 in complex with the triazole drug fluconazole, revealing a new azole heme ligation mode. In contrast to other structurally characterized cytochrome P450 azole complexes, where the azole nitrogen directly coordinates the heme iron, in CYP121 fluconazole does not displace the aqua sixth heme ligand but occupies a position that allows formation of a direct hydrogen bond to the aqua sixth heme ligand. Direct ligation of fluconazole to the heme iron is observed in a minority of CYP121 molecules, albeit with severe deviations from ideal geometry due to close contacts with active site residues. Analysis of both ligand-on and -off structures reveals the relative position of active site residues derived from the I-helix is a key determinant in the relative ratio of on and off states. Regardless, both ligand-bound states lead to P450 inactivation by active site occlusion. This previously unrecognized means of P450 inactivation is consistent with spectroscopic analyses in both solution and in the crystalline form and raises important questions relating to interaction of azoles with both pathogen and human P450s.  相似文献   

19.
CYP101D2 is a cytochrome P450 monooxygenase from Novosphingobium aromaticivorans which is closely related to CYP101A1 (P450cam) from Pseudomonas putida. Both enzymes selectively hydroxylate camphor to 5-exo-hydroxycamphor, and the residues that line the active sites of both enzymes are similar including the pre-eminent Tyr96 residue. However, Met98 and Leu253 in CYP101D2 replace Phe98 and Val247 in CYP101A1, and camphor binding only results in a maximal change in the spin state to 40 % high-spin. Substitutions at Tyr96, Met98 and Leu253 in CYP101D2 reduced both the spin state shift on camphor binding and the camphor oxidation activity. The Tyr96Ala mutant increased the affinity of CYP101D2 for hydrocarbon substrates including adamantane, cyclooctane, hexane and 2-methylpentane. The monooxygenase activity of the Tyr96Ala variant towards alkane substrates was also enhanced compared with the wild-type enzyme. The crystal structure of the substrate-free form of this variant shows the enzyme in an open conformation (PDB: 4DXY), similar to that observed with the wild-type enzyme (PDB: 3NV5), with the side chain of Ala96 pointing away from the heme. Despite this, the binding and activity data suggest that this residue plays an important role in substrate binding, evidencing that the enzyme probably undergoes catalysis in a more closed conformation, similar to those observed in the crystal structures of CYP101A1 (PDB: 2CPP) and CYP101D1 (PDB: 3LXI).  相似文献   

20.
信号失活是嗅觉动态过程的一个重要步骤, 这一过程涉及多样的气味降解酶类。本研究利用RT-PCR方法从家蚕Bombyx mori雄蛾的触角中克隆了一个细胞色素P450基因CYP6AE21。该基因含有一个1 572 bp的开放阅读框(open reading frame, ORF), 编码523个氨基酸, 预测分子量为60.5 kD, 等电点为8.4, 含有细胞色素P450的特征序列血红素结合位点区域。CYP6AE21和CYP6AE2基因一样在相同位置含有1个内含子序列, 且相应的2个外显子大小相同。两者的核苷酸序列相似性达到94.5%, 且在基因组上以头尾相连的方式成簇排列, 中间由约7.6 kb核苷酸序列隔开。CYP6AE21在幼虫的头部和脂肪体, 以及雄蛾和雌蛾的触角中表达量较高; 在幼虫的其他组织和蛾的多个组织中也有一定的表达。P450酶系的重要组分之一--NADPH细胞色素P450还原酶(cytochrome P450 reductase, CPR)基因也在雌蛾和雄蛾触角中高水平表达, 而在其他组织中表达量相对较低。亚细胞定位分析表明CYP6AE21表达产物定位于细胞质中。推测CYP6AE21和CYP6AE2是由其中一个基因加倍复制形成的; 此P450的功能之一可能是参与内化进细胞的气味分子的降解清除。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号