首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Tryptophan as an Auxin Precursor in Cucumber Seedlings   总被引:7,自引:7,他引:0       下载免费PDF全文
The conversion of tryptophan-(14)C to indoleacetic acid-(14)C in cucumber hypocotyls occurred under both sterile and non-sterile conditions. This conversion was not reduced under sterile conditions. The growth response of cucumber hypocotyl segments to exogenously supplied tryptophan was almost as great under sterile conditions as when contaminating micro-organisms were present. These data are consistent with the hypothesis that tryptophan is a normal precursor of indoleacetic acid in cucumber tissues.The conversions of tryptamine-(14)C and indoleethanol-(14)C to indoleacetic acid-(14)C also occurred under both sterile and non-sterile conditions. Indoleethanol-(14)C was formed from tryptamine-(14)C. Hypocotyl segment growth responses to tryptamine and to indoleethanol were not decreased under sterile conditions.  相似文献   

2.
We report the further characterization of indole-3-ethanol oxidase from cucumber seedlings. The effects of various inhibitors suggest that the enzyme may be a flavoprotein with a metal ion and sulfhydryl groups required for full activity. Indole-3-acetaldehyde, a product of the reaction, inhibits the enzyme. This inhibition is overcome by O2 but not by indole-3-ethanol, indicating that the kinetic mechanism of the enzyme is a ping-pong Bi-Bi. The enzyme undergoes cooperative interactions with indoleethanol, yielding Hill coefficients as high as 2.96. Gibberellins are without effect on the enzyme, but it is inhibited by several acidic indoles possessing growth-promoting activity and by two synthetic auxins, 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid. Increasing concentrations of indoleacetic acid (IAA) brought about a slight reduction in the indoleethanol concentration producing halfmaximal velocity. Increasing levels of indoleethanol decreased the concentration of IAA required for half-maximal inhibition. At low concentrations of indoleethanol, low levels of IAA activated rather than inhibited. The effect of IAA was not overcome at higher levels of indoleethanol. These results may be interpreted as showing that IAA is a noncompetitive inhibitor which binds to that conformation of the enzyme which also binds indoleethanol. The significance of these interactions for the regulation of IAA biosynthesis is discussed.  相似文献   

3.
Tryptophan, tryptamine, or indolepyruvic acid were applied to 2 systems: a bacterial (pea stem sections containing the epiphytic bacteria) and a plant system (pea stem sections under sterile conditions). In the plant system, the production of indoleacetic acid and indoleethanol (tryptophol) from each applied indole derivative is clearly reduced by the aldehyde reagents bisulfite and dimedon, respectively. Indoleacetaldehyde is chromatographically detected after alkaline liberation from its bisulfite addition product. In the bacterial system, the production of indoleacetic acid and indoleethanol is likewise reduced by bisulfite and dimedon. However, after tryptophan or tryptamine application, we could not detect indoleacetaldehyde in the described way. In one case only, namely tryptamine application to the bacterial system, indoleethanol production (contrary to indoleacetic acid production) is scarcely reduced by the aldehyde reagents. This indicates a bacterial pathway tryptamine → indoleethanol which bypasses indoleacetaldehyde.  相似文献   

4.
Metabolites of indolepyruvic acid and indolelactic acid were investigated using 2 systems: a bacterial (pea stem homogenates containing the epiphytic bacteria) and a plant system (pea stem sections under sterile conditions). The products of spontaneous indolepyruvic acid decomposition in aqueous solution and during chromatography were investigated, too. Biological indolepyruvic acid conversion yields, besides those substance amounts which occur spontaneously, indoleacetic acid, indoleethanol (tryptophol) and (only in the sterile plant system) indoleacetaldehyde. An inhibitor extract from pea stems decreases the indoleacetic acid and increases the indoleethanol and indoleacetaldehyde gain. Indolelactic acid is not metabolized in the sterile plant sections. Indolelactic acid oxidation by the bacteria-containing homogenate yields indolepyruvic acid and is inhibited by the inhibitor extract.  相似文献   

5.
Experiments have been performed to investigate whether indoleacetic acid changes the balance between the rates of synthesis of different kinds of proteins. Sub-apical sections of etiolated peas were incubated with 14C- or 3H-labeled amino acid, and combined to give dual-labeled tissue. Cell fractions were prepared by differential centrifugation, and the dual-labeled protein of each fraction analyzed by gel-filtration. When 2 × 10−5 m indoleacetic acid was included with 14C-labeled amino acid, but not with the 3H-labeled amino acid, pronounced changes occurred in the pattern of incorporation of the 14C label into protein. These changes were greatest in the proteins of the particulate fraction which included nuclear material. Although the pattern of incorporation of lysine was shown to be different from that of leucine, the changes induced by indoleacetic acid were quantitatively similar whichever amino acid was used as a precursor. Dual-labeled protein was further fractionated using column chromatography on DEAE-cellulose. The results suggested that the effect of indoleacetic acid may not be completely general, and that the pattern of synthesis of many proteins may be unaltered by indoleacetic acid. When tissue was preincubated with 10 μg/ml actinomycin D for 30 minutes, incorporation of amino acid into protein was reduced but not abolished. Actinomycin D did, however, prevent the changes in the pattern of protein synthesis which were induced by indoleacetic acid.  相似文献   

6.
Göran Sandberg 《Planta》1984,161(5):398-403
Combined gas chromatography-mass spectrometry has been used to identify indole-3-ethanol (IEt) in a purified extract from needles of Pinus sylvestris L. Quantitative estimates obtained by high-performance liquid chromatography with fluorescence detection, corrected for samples losses occurring during purification, indicate that Pinus needles contain 46±4 ng g-1 IEt. This compares with 24.5±6.5 ng g-1 indole-3-acetic acid (IAA) and 2.3±0.4 ng g-1 indole-3-carboxylic acid (ICA) (Sandberg et al. 1984, Phytochemistry, 23, 99–102). Metabolism studies with needles incubated in a culture medium in darkness revealed that both [3-14C]-tryptophan and [2-14C]tryptamine mine are converted to [14C]IEt. It was also shown that [3-14C]IEt acted as a precursor of [14C]IAA. The observed metabolism appears to be enzymic in nature. The [2-14C]IAA was not catabolised to [14C]ICA in detectable quantities implying that, at best, only a minor portion of the endogenous ICA pool in the Pinus needles originates from IAA.Abbreviations DEAE diethylaminoethyl - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - ICA indole-3-carboxylic acid - IEt indole-3-ethanol - PVP polyvinylpyrrolidone  相似文献   

7.
Indoleacetaldehyde in cucumber seedlings   总被引:4,自引:4,他引:0       下载免费PDF全文
The presence of indoleacetaldehyde in cucumber (Cucumis sativus L.) cotyledons was demonstrated by thin layer chromatographic RF values in three solvent systems, by the formation and hydrolysis of a bisulfite adduct, and by chemical reduction to indoleethanol and oxidation to indoleacetic acid. Bioassays indicated a minimum indoleacetaldehyde content in etiolated cotyledons of 0.7 μg per kg fresh weight. Tissue samples from all parts of both green and etiolated cucumber seedlings reduced exogenously supplied indoleacetaldehyde to indoleethanol.  相似文献   

8.
Pea (Pisum sativum var. Alaska) and bean (Phaseolus vulgaris var. Red Kidney) stem sections treated with indoleacetic acid-1-14C, indoleacetic acid-2-14C, and indoleacetic acid-5-3H were homogenized, extracted with phenol, and the water-soluble, ethanol-insoluble material subjected to further fractionation. Following an 18-hour incubation period in indoleacetic acid-1-14C, most of the label was found as nonindole-14C in high molecular weight polysaccharide, as phenol extraction is specific for both RNA and polysaccharides. With indoleacetic acid-2-14C and -5-3H, and to a lesser extent with indoleacetic acid-1-14C, radioactive indoles were obtained by hydrolysis from a heterogeneous fraction between about 500 and 30,000 molecular weight, possibly polysaccharide in nature. Indoleacetic acid accounted for 8% and indole aldehyde accounted for 21% of the total radioactivity in the extract.  相似文献   

9.
Indoleacetic acid in physiological concentrations was shown to enhance the synthesis of citiate by purified citrate condensing enzyme from castor beans and pig heart. Michaelis constants reveal that with indoleacetic acid in the reaction mixture a higher concentration of acetyl-CoA was necessary to give maximal velocity. V values with indoleacetic acid in the reaction (physiological concentrations) exceeded V without indoleacetic acid in reaction. Citric acid synthesized from 14C acetyl CoA was highly radioactive when indoleacetie acid was present in the reaction, indicating that indoleacetic acid did in fact enhance the synthesis. The data were discussed from the point of view that these studies may provide the basis for studies directed at ultimate understanding of the mechanism of action of indoleacetic acid.  相似文献   

10.
Exogenous [14C]indole-3-acetic acid (IAA) is conjugated in citrus (Citrus sinensis) leaf tissues to one major substance which has been identified as indole-3-acetylaspartic acid (IAAsp). Ethylene pretreatment enhanced the catabolism of [14C]IAA to indole-3-carboxylic acid (ICA), which accumulated as glucose esters (ICGIu). Increased formation of ICGIu by ethylene was accompanied by a concomitant decrease in IAAsp formation. IAAsp and ICGIu were identified by combined gas chromatography-mass spectrometry. Formation of ICGIu was dependent on the concentration of ethylene and the duration of the ethylene pretreatment. It is suggested that the catabolism of IAA to ICA may be one of the mechanisms by which ethylene reduces endogenous IAA levels.  相似文献   

11.
Lau OL  Murr DP  Yang SF 《Plant physiology》1974,54(2):182-185
Auxin-induced ethylene production by mung bean (Phaseolus mungo L.) hypocotyl segments was markedly inhibited by 2,4-dinitrophenol regardless of whether or not kinetin was present. Uptake of indoleacetic acid-2-14C was also inhibited in the presence of 2,4-dinitrophenol. Segments treated only with indoleacetic acid rapidly converted indoleacetic acid into indole-3-acetylaspartic acid with time whereas kinetin suppressed indoleacetic acid conjugation. Formation of indole-3-acetylaspartic acid was significantly reduced when 2,4-dinitrophenol was present. The suppression of indoleacetic acid conjugation by kinetin and 2,4-dinitrophenol appeared to be additive, and the free indoleacetic acid level in segments treated with 2,4-dinitrophenol in the presence of indoleacetic acid or indoleacetic acid plus kinetin was remarkably higher than in corresponding segments which received no 2,4-dinitrophenol.  相似文献   

12.
Summary The application of 2,3,5-triiodobenzoic acid (TIBA, 10 mg·g-1 in lanolin) to the stem of intact pea seedlings (Pisum sativum L.) inhibited the basipetal transport of 14C from indoleacetic acid-1-14C (IAA-1-14C) applied to the apical bud, but not the transport of 14C in the phloem following the application of IAA-1-14C or sucrose-14C to mature foliage leaves. It was concluded that fundamentally different mechanisms of auxin transport operate in these two pathways.When TIBA was applied at the same time as, or 3.0 h after, the application of IAA-1-14C to the apical bud, 14C accumulated in the TIBA-treated and higher internodes; when TIBA was applied 24.0 h before the IAA-1-14C, transport in the stem above the TIBA-treated internode was considerably reduced. TIBA treatments did not consistently influence the total recovery of 14C, or the conversion of free IAA to indoleaspartic acid (IAAsp). These results are discussed in relation to the possible mechanism by which TIBA inhibits auxin transport,.Attention is drawn to the need for more detailed studies of the role of the phloem in the transport of endogenous auxin in the intact plant.Abbreviations TIBA 2,3,5-triiodobenzoic acid - IAAsp indoleaspartic acid  相似文献   

13.
Summary High perfomance liquid chromatography (HPLC) of the products of [5-3H] tryptophan metabolism byFrankia sp. Avc I1 indicates that small amounts of [3H] indole-3-acetic acid (IAA) are excreted into the growth medium.Frankia has a limited capacity for the catabolism of [2-14C]IAA and the product that accumulates is different from that detected inRhizobium japonicum cultures following inoculation with [2-14C]IAA. The data imply that the rate of turnover of IAA is much more rapid inRhizobium thanFrankia and that the two organisms employ different routes for the catabolism of IAA.  相似文献   

14.
It has been shown that intensive elongation of wheat coleoptile sections is correlated with indoleacetic acid-1-14C metabolism. In tissues actively growing the disappearance of indoleacetic acid-1-14C and formation of conjugates and metabolites (indoleacetamide, indoleacetyl-β-D-glucose, indoleacetyl aspartic acid) is twice as high as in sections where growth has been stopped by physical constraint (plaster) or in tissue which did not elongate by an unknown reason.  相似文献   

15.
Summary The relation of indoleacetic acid (IAA) transport to accumulation of auxin at the base of cuttings and to polar root formation was investigated with small cuttings from germinating embryos of Pinus lambertiana.The transport of endogenous auxin participates in regeneration of roots. This is shown by the facts that (1) more than 40% of the cuttings rooted without addition of exogenous indoleacetic acid; (2) the first regeneration always occurred at the basal tip of a slanting cut; and (3) 2,3,5-triiodobenzoic acid (TIBA), a specific inhibitor of auxin transport, totally inhibited rooting. Addition of IAA to the medium increased the number of roots formed per rooting hypocotyl.Sections of hypocotyls excised from dormant embryos and tested immediately after 2 h hydration were capable of polar transport of IAA. This polarity increased during the first 3 days of culture because of a marked increase in basipetal transport. Culturing the cuttings in 1 M IAA for 3–5 days doubled both the basipetal transport of 1-14C-IAA by hypocotyl segments and the accumulation of radioactivity at the base of cuttings.The extent of the accumulation at the base of cuttings was similar at early (2 days, first mitoses) and late stages (5 days, organized meristem) of regeneration and was not affected by removal of the regenerating region immediately prior to uptake and transport of 14C-IAA. The accumulation was inhibited by TIBA. In terms of increase in wet and dry weight and mitotic activity, the cotyledons rather than the regenerating root meristems were the most actively growing region of the cuttings. The upper part of the hypocotyl elongated more than the region of the slanting cut where regeneration was occurring.These results provide no support for the idea that the regenerating root controls the direction of polar transport by acting as a sink. The results are consistent with the view that polar auxin transport delivers auxin to the base of the cutting and raises the local concentration to levels sufficient to promote root formation.  相似文献   

16.
Levels of free tryptophan in the leaves, phloem and xylem saps of Ricinus communis L. were determined by colorimetric assay. Values of 0.38 g ml-1 in root pressure sap and 96.0 g ml-1 in phloem sap were recorded. Tryptophan levels were highest in mature and senescing leaves. Levels of indoleacetic acid (IAA) in the phloem sap and leaves were determined by gas chromatography—mass spectrometry using a deuterated internal standard. A mean value of 13.0 ng ml-1 was recorded in phloem sap. The distribution in the leaves showed an inverse relationship to that of tryptophan, being highest in young leaves.Abbreviations IAA indoleacetic acid - GC-MS Gas chromatography-mass spectrometry - PFP-derivative pentafluoropropionyl-derivative - TLC thin layer chromatography  相似文献   

17.
Regulation of Auxin Levels in Coleus blumei by Ethylene   总被引:12,自引:9,他引:3       下载免费PDF全文
An investigation of the effects of ethylene pretreatment on several facets of auxin metabolism in Coleus blumei Benth “Scarlet Rainbow” revealed a number of changes presumably induced by the gas. Transport of indoleacetic acid-1-14C in excised segments of the uppermost internode was inhibited by about 50%. Decarboxylation of indoleacetic acid-1-14C by enzyme breis was not affected by the pretreatment. Levels of extractable native auxin in upper leaf and apical bud tissue of the pretreated plants were approximately one-half of those present in untreated plants. The rate of formation of auxin from tryptophan by enzyme breis from pretreated plants was approximately one-half that occurring in incubation mixtures containing the enzyme system from untreated plants. The conjugation of indoleacetic acid-1-14C in a form characterized chromatographically as indoleacetylaspartic acid was increased 2-fold in the upper stem region of plants pretreated with ethylene.  相似文献   

18.
J. A. Pryke  T. ap Rees 《Planta》1976,131(3):279-284
Summary We did this work to see if there is a correlation between lignin synthesis and the activity of the pentose phosphate pathway. Excision of the third internode of the stem of Coleus blumei Benth. followed by incubation on sucrose and indoleacetic acid led to extensive formation of tracheids. During this lignification we determined the activities of glucose-6-phosphate dehydrogenase and fructose-1,6-diphosphate aldolase, and the extent to which [1-14C]-,[3,4-14C]-, and [6-14C]glucose labelled CO2 and the major cellular components. The results indicate that the pentose phosphate pathway was active during lignification, and that the activity of this pathway relative to glycolysis increased at the onset of lignification. Explants of storage tissue of Helianthus tuberosus L. were cultured under conditions which caused extensive lignification. 14CO2 production from [1-14C]-, [3,4-14C]-, and [6-14C]glucose indicated activity of the pentose phosphate pathway during tracheid formation. We suggest that lignification is accompanied by appreciable activity of the pentose phosphate pathway and that this could provide the reducing power for lignin synthesis.Abbreviations NADP nicotinamide-adenine dinucleotide phosphate - IAA indoleacetic acid  相似文献   

19.
Indoleacetic Acid synthesis in soybean cotyledon callus tissue   总被引:2,自引:1,他引:1       下载免费PDF全文
Growth of an auxin-requiring soybean cotyledon callus tissue (Glycine max L., Merr. var. Acme) was promoted by tryptophan, tryptamine, indole, indoleacetamide and, to a very slight degree, anthranilic acid. When tryptophan-3-14C was supplied in the growth medium, labeled indoleacetic acid (IAA) was found in both the tissue and the medium. Medium, from which the cells had been removed, was also found to convert labeled tryptophan to IAA. Soybean callus contained 0.044 μmole/g free tryptophan, but this is apparently not available for conversion to IAA. These results suggest that while exogenously supplied trytophan could elevate a specific internal pool where IAA synthesis occurs some of the growth on a tryptophan medium can be accounted for by external conversion.  相似文献   

20.
Isotope dilution analysis for the quantitation of labile compounds has been limited in applicability by the amount of sample necessary to determine specific activity. A method is described for the analysis of radiolabeled compounds which allows the direct determination of specific activity by gas chromatography. It requires the availability of the radiolabeled internal standard, as is customarily used in an isotope dilution assay, and also requires a chemically related radiolabeled compound to serve as a second internal standard. It is this second internal standard, added in known amounts, that permits quantitation of the gas chromatography. The method is illustrated by assaying indole-3-acetic acid in plant extracts using [14C]indole-3-acetic acid as the internal standard and adding [14C]indole-3-butyric acid as the second internal standard for quantitation of the gas chromatographic procedures. Used with a nitrogen-specific thermionic detector the method is selective and is sensitive at the nanogram level. The synthesis of [2-ring-14C]indole-3-butyric acid is also described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号