首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
alpha-Chymotrypsin was immobilized on Eudragit S-100 via covalent coupling with 93% retention of proteolytic activity. The conjugate behaved as a smart biocatalyst and functioned as a pH-dependent reversibly soluble-insoluble biocatalyst. The pH optimum of chymotrypsin broadened on immobilization, and the immobilized preparation showed better stability at and above pH 6.5 as compared to the free enzyme. The immobilized enzyme showed a slight shift in the temperature optimum and enhanced thermal stability retaining 70% of its original activity after 1 h of exposure to 40 degrees C as compared to the 25% residual activity for the free enzyme under identical conditions. K(m) and V(max) values did not change on immobilization. Also, the immobilized preparation was quite stable to reuse, it retained almost 85% of its original activity even after a fifth precipitation cycle. UV spectroscopy and circular dichroism were used to probe structural changes in the enzyme upon immobilization.  相似文献   

2.
Invertase was immobilized by radiocopolymerization of some synthetic monomers which were mixed in various combinations. Irradiation was conducted aerobically while the mixture of monomers and enzyme was frozen. Retained activity was 51~76%. Immobilized invertase shifted its optimum pH by about 0.7 to the acidic site.

The optimum reaction temperature of enzyme became a little higher (Ca 5°C) by immobilization. Heat stability was improved by immobilization. Release of fixed enzyme was found to be considerably low (1.2~4.1%) and release of several immobilized proteins decreased as the molecular weight increased.  相似文献   

3.
Tannase enzyme from Aspergillus oryzae was immobilized on various carriers by different methods. The immobilized enzyme on chitosan with a bifunctional agent (glutaraldehyde) had the highest activity. The catalytic properties and stability of the immobilized tannase were compared with the corresponding free enzyme. The bound enzyme retained 20·3% of the original specific activity exhibited by the free enzyme. The optimum pH of the immobilized enzyme was shifted to a more acidic range compared with the free enzyme. The optimum temperature of the reaction was determined to be 40 °C for the free enzyme and 55 °C for the immobilized form. The stability at low pH, as well as thermal stability, were significantly improved by the immobilization process. The immobilized enzyme exhibited mass transfer limitation as reflected by a higher apparent Km value and a lower energy of activation. The immobilized enzyme retained about 85% of the initial catalytic activity, even after being used 17 times.  相似文献   

4.
分别采用海藻酸钠、明胶和壳聚糖为载体,并以戊二醛为交联剂,通过包埋-交联和吸附-交联两种耦合固定化方法制备固定化锰过氧化物酶。探讨了酶的不同固定化条件和固定化酶的部分性能。与游离酶相比,制备的3种固定化酶最适反应pH分别由7·0降低到5·0、5·0和3·0,最适反应温度分别由35℃升高到75℃、55℃和75℃。3种固定化酶的耐热性都显著提高,其中用壳聚糖制成的固定化酶在pH2·2~11的宽范围内表现出很好的酸碱耐受性。30℃连续测定6~9次酶活力,重复使用的3种固定化酶显示出良好的稳定性。将固定化酶应用在偶氮染料的脱色中,用明胶制成的固定化酶在静置和摇床条件下,以及用海藻酸钠制成的固定化酶在摇床条件下,均表现出与游离酶相近的脱色能力,并且在重复进行的摇床实验中,脱色能力未降低,反应前后的酶活力均没有损失。  相似文献   

5.
Endo-polygalacturonase (endo-PG) was immobilized on a wide range of natural and synthetic macromolecular supports and their modified derivatives representing many chemical classes, including esters, amides, phenols, alkyl- and arylamines, and carboxyl derivatives. The immobilization entailed methods of adsorption alone as well as covalent bond formation using glutaraldehyde or carbodiimide or via the diazo-coupling reaction. The most promising system proved to be immobilization on trimalehylchitosan (TMC) via adsorption followed by treatment with glutaraldehyde (GA). The binding capacity of the support is on the order of 13,000 IU/g, half of which is active. Various properties of immobilized endo-PG were evaluated. The optimum pH of the enzyme shifted to the alkaline side. The relative catalytic activity was considerably high even at room temperature and remained so above 70 degrees C. The thermal stability at pH 3-4 was notably improved by immobilization, the half-time doubling. Finally, the apparent K(m) was greater for immobilized endo-PG than for native enzyme, while the V(max) was smaller for the immobilized enzyme.  相似文献   

6.
Cultural conditions optimum for beta-galactosidase production by Saccharomyces anamensis are pH 4.5, temperature 26 +/- 2 degrees C, and 30 h of incubation period. Addition of lactose at 24 h fermentation greatly increase the level of enzyme. Optimum pHl, temperature, pH stability, and thermostability of yeast beta-galactosidase are negligibly affected by immobilization. The K(m) values of enzyme in the native and immobilized cells are 102mM and 148mM, respectively. Glucose noncompetitively inhibits the enzyme activity. Addition of substances such as dithioerythritol, glutathione, and bovine serum albumin to the native cell during assay procedure and immobilized cell prior to immobilization have stimulatory effects on enzyme activity. Metal ions like Ca(2+), Mg(2+) enhance the beta-galactosidase activity for both intact and bound cells. Immobilized cells retain 68.6% of the beta-galactosidase activity of intact cells and there is no significant loss of activity on storage at 4 degrees C for 28 days.  相似文献   

7.
Glucose oxidase (GOD) was immobilized in Bombyx mori silk fibroin membrane by only physical treatment, i.e., stretching without any chemical reagents. This is due to the structural transition of the silk fibroin membrane from random coil to antiparallel beta-sheet (Silk II) induced by the stretching treatment. Permeability coefficients of glucose and oxygen through the fibroin membrane were determined; the permeability of glucose decreased with increasing degree of stretching. The immobilized enzyme activity was characterized with apparent Michaelis constant K(m) (app) and maximal activity V(m). Optimum pH of the activity of the immobilized enzyme was shifted to the value around neutrality, and the activity was maintained to the higher values on both sides of the optimum pH compared with the case of free enzymes. Thermal stability was scarcely lost even at 50 degrees C, although the free enzyme lost about 70% of the original activity. Thus, the stabilities of the enzyme vs. pH and heat were much improved by the immobilization with silk. Glucose sensor prepared with this GOD-immobilized fibroin membrane was developed; the capabilities such as the response time, calibration curve, and repeating usage were determined.  相似文献   

8.
Saccharomyces cerevisiae invertase, chemically modified with chitosan, was immobilized on a carboxymethylcellulose-coated chitin support via polyelectrolyte complex formation. The yield of immobilized protein was determined to be 72% and the enzyme retained 68% of the initial invertase activity. The optimum temperature for invertase was increased by 5 degrees C and its thermostability was enhanced by about 9 degrees C after immobilization. The immobilized enzyme was stable against incubation in high ionic strength solutions and was 12.6-fold more resistant to thermal treatment at 65 degrees C than the native counterpart. The prepared biocatalyst retained 98% and 100% of the original catalytic activity after 10 cycles of reuse and 70 h of continuous operational regime in a packed bed reactor, respectively. The immobilized enzyme retained 95% of its activity after 50 days of storage at 37 degrees C.  相似文献   

9.
An effective carrier matrix for diastase alpha amylase immobilization has been fabricated by gum acacia-gelatin dual templated polymerization of tetramethoxysilane. Silver nanoparticle (AgNp) doping to this hybrid could significantly enhance the shelf life of the impregnated enzyme while retaining its full bio-catalytic activity. The doped nanohybrid has been characterized as a thermally stable porous material which also showed multipeak photoluminescence under UV excitation. The immobilized diastase alpha amylase has been used to optimize the conditions for soluble starch hydrolysis in comparison to the free enzyme. The optimum pH for both immobilized and free enzyme hydrolysis was found to be same (pH=5), indicating that the immobilization made no major change in enzyme conformation. The immobilized enzyme showed good performance in wide temperature range (from 303 to 323 K), 323 K being the optimum value. The kinetic parameters for the immobilized, (K(m)=10.30 mg/mL, V(max)=4.36 μmol mL(-1)min(-1)) and free enzyme (K(m)=8.85 mg/mL, V(max)=2.81 μmol mL(-1)min(-1)) indicated that the immobilization improved the overall stability and catalytic property of the enzyme. The immobilized enzyme remained usable for repeated cycles and did not lose its activity even after 30 days storage at 40°C, while identically synthesized and stored silver undoped hybrid lost its ~31% activity in 48 h. Present study revealed the hybrids to be potentially useful for biomedical and optical applications.  相似文献   

10.
The immobilization of papain on the mesoporous molecular sieve MCM‐48 (with a pore size of 6.2 nm in diameter) with the aid of glutaraldehyde, and the characteristics of this immobilized papain are described. The optimum conditions for immobilization were as follows: 20 mg native free enzyme/g of the MCM‐48 and 0.75 % glutaraldehyde, 2 h at 10–20 °C and pH 7.0. Under these optimum conditions for immobilization, the activity yield [%] of the immobilized enzyme was around 70 %. The influence of the pH on the activity of the immobilized enzyme was much lower compared to the free enzyme. The thermostability of the immobilized enzyme, whose half‐life was more than 2500 min, was greatly improved and was found to be significantly higher than that of the free enzyme (about 80 min). The immobilized enzyme also showed good operational stability, and the activity of the immobilized enzyme continued to maintain 76.5 % of the initial activity even after a 12‐day continuous operation. Moreover, the immobilized enzyme still exhibited good storage stability. From these results, papain immobilized on the MCM‐48 with the aid of glutaraldehyde, can be used as a high‐performance biocatalyst in biotechnological processing, in particular in industrial and medical applications.  相似文献   

11.
In this paper, the stabilization of a lipase from Bacillus thermocatenulatus (BTL2) by a new strategy is described. First, the lipase is selectively adsorbed on hydrophobic supports. Second, the carboxylic residues of the enzyme are modified with ethylenediamine, generating a new enzyme having 4-fold more amino groups than the native enzyme. The chemical amination did not present a significant effect on the enzyme activity and only reduced the enzyme half-life by a 3-4-fold factor in inactivations promoted by heat or organic solvents. Next, the aminated and purified enzyme is desorbed from the support using 0.2% Triton X-100. Then, the aminated enzyme was immobilized on glyoxyl-agarose by multipoint covalent attachment. The immobilized enzyme retained 65% of the starting activity. Because of the lower p K of the new amino groups in the enzyme surface, the immobilization could be performed at pH 9 (while the native enzyme was only immobilized at pH over 10). In fact, the immobilization rate was higher at this pH value for the aminated enzyme than that of the native enzyme at pH 10. The optimal stabilization protocol was the immobilization of aminated BTL2 at pH 9 and the further incubation for 24 h at 25 degrees C and pH 10. This preparation was 5-fold more stable than the optimal BTL2 immobilized on glyoxyl agarose and around 1200-fold more stable than the enzyme immobilized on CNBr and further aminated. The catalytic properties of BTL2 could be greatly modulated by the immobilization protocol. For example, from (R/S)-2- O-butyryl-2-phenylacetic acid, one preparation of BTL2 could be used to produce the S-isomer, while other preparation produced the R-isomer.  相似文献   

12.
The carminomycin 4-O-methyltransferase enzyme from Streptomyces peucetius was covalently immobilized on 3M Emphaze ABI-activated beads. Optimal conditions of time, temperature, pH, ionic strength, enzyme, substrate (carminomycin), and cosubstrate (S-adenosyl-L-methionine) concentrations were defined for the immobilization reaction. Protein immobilization yield ranged from 52% to 60%. Including carminomycin during immobilization had a positive effect on the activity of the immobilized enzyme but a strongly negative effect on the coupling efficiency. The immobilized enzyme retained at least 57% of its maximum activity after storage at 4 degrees C for more than 4 months. The properties of the free and immobilized enzyme were compared to determine whether immobilization could alter enzyme activity. Both soluble and bound enzyme exhibited the same pH profile with an optimum near 8.0. Immobilization caused an approximately 50% decrease in the apparent K(m) (K'(m)) for carminomycin while the K'(m) for S-adenosyl-L-methionine was approximately doubled. A 57% decrease in the V(max) value occurred upon immobilization. These changes are discussed in terms of active site modifications as a consequence of the enzyme immobilization. This system has a potential use in bioreactors for improving the conversion of carminomycin to daunorubicin. (c) 1995 John Wiley & Sons, Inc.  相似文献   

13.
Cellobiase from Aspergillus niger was glycosylated by covalent coupling to cyanogen bromide activated dextran. The conjugated enzyme retained 62% of the original specific activity exhibited by the native cellobiase. The optimum pH as well as the pH stability of the conjugated form remain almost the same as for the native enzyme. Compared to the native enzyme, the conjugated form exhibited a higher optimal reaction temperature and energy of activation, a higher K(m) (Michaelis constant) and lower Vmax (maximal reaction rate), and improved thermal stability. The thermal deactivation of the native and conjugated cellobiase obeyed the first-order kinetics. The calculated half-life values of heat inactivation at 60, 70 and 80 degrees C was 10.7, 6.25, and 4.05 h, respectively, whereas at these temperatures the native enzyme was less stable (half-life of 3.5, 1.69, and 0.83 h, respectively). The deactivation rate constant at 80 degrees C for the conjugated cellobiase is about 7.9 x 10(-2) h-1, which is lower than that of the native enzyme (36.0 x 10(-2) h-1). The activation energy for denaturation of the native enzyme is about 10.58 kcal/mol, which is 7.25 kcal/mol lower than that of the conjugated enzyme. The effect of different surfactants and some metal ions on the activity of the conjugated cellobiase has been investigated.  相似文献   

14.
Glucose oxidase (GOD) was immobilized on cellulose acetate-polymethylmethacrylate (CA-PMMA) membrane. The immobilized GOD showed better performance as compared to the free enzyme in terms of thermal stability retaining 46% of the original activity at 70 degrees C where the original activity corresponded to that obtained at 20 degrees C. FT-IR and SEM were employed to study the membrane morphology and structure after treatment at 70 degrees C. The pH profile of the immobilized and the free enzyme was found to be similar. A 2.4-fold increase in Km value was observed after immobilization whereas Vmax value was lower for the immobilized GOD. Immobilized glucose oxidase showed improved operational stability by maintaining 33% of the initial activity after 35 cycles of repeated use and was found to retain 94% of activity after 1 month storage period. Improved resistance against urea denaturation was achieved and the immobilized glucose oxidase retained 50% of the activity without urea in the presence of 5M urea whereas free enzyme retained only 8% activity.  相似文献   

15.
The Saccharomyces cerevisiae PGU1 gene was successfully expressed in Schizosaccharomyces pombe. The optimum pH and temperature for the recombinant enzyme were 5 and 40 degrees C, respectively, these being around 0.5 U higher and 5 degrees C lower than those shown by the native enzyme. The K(m) value was about fourfold higher than that of the S. cerevisiae enzyme. The recombinant endopolygalacturonase was more efficient in reducing the viscosity of polygalacturonic acid and was also more stable at different pHs and temperatures than the native enzyme.  相似文献   

16.
Glucoamylase (exo-1,4-α-d-glucosidase, EC 3.2.3.1) was coupled to several porous silica matrices by an improved metal-link/chelation process using alkylamine derivatives of titanium(IV)-activated supports. In order to select the titanium activation procedure which gave stable enzyme preparations, long-term stability tests were performed. The immobilized glucoamylase preparations, in which the carrier was activated to dryness with a 15% w/v TiCl4 solution, displayed very stable behaviour, with half-lives of ~60 days. The optimum operating conditions were determined for these preparations. There are significant differences between the behaviour of the immobilized enzyme and the free enzyme. The apparent Km increased on immobilization due to diffusional resistances. The pH optimum for the immobilized preparation showed a slight shift to acid pH relative to that of the soluble enzyme. Also, the optimum temperature descreased to 60°C after immobilization. In order to test Michaelis-Menten kinetics at high degrees of conversion, time-course analysis of soluble starch hydrolysis was performed. It was observed that simple Michaelis-Menten kinetics are not applicable to the free/immobilized glucoamylase-starch system at high degrees of conversion.  相似文献   

17.
In this work we use micro-size poly(methyl methacrylate)/acrylaldehyde microspheres as a support for pepsin immobilization. The aldehyde groups on the microspheres offer a very simple, mild and firm combination for enzyme immobilization. The amount of enzyme we can bind to this support reaches 82 mg/g, which is much higher than for other supports (mostly less than 10 mg/g). Compared to free enzyme, the Km of immobilized enzyme is increased, whereas the Vmax is decreased. Further, the Vmax/Km value for immobilized pepsin is about 50% of the value for free enzyme. This is better than values reported previously, generally lower than 35%. The optimum temperature shifts from 43 degrees C for free pepsin to 47 degrees C. However, the optimum pH does not change between free and immobilized enzyme. This improved resistance of the immobilized enzyme towards changes in temperature and pH also shows that the aldehyde modified poly(methyl methacrylate)/acrylaldehyde microspheres can be a valuable support for pepsin immobilization.  相似文献   

18.
Three mutations on the penicillin acylase surface (increasing the number of Lys in a defined area) were performed. They did not alter the enzyme's stability and kinetic properties; however, after immobilization on glyoxyl-agarose, the mutant enzyme showed improved stability under all tested conditions (e.g., pH 2.5 at 4 degrees C, pH 5 at 60 degrees C, pH 7 at 55 degrees C, or 60% dimethylformamide), with stabilization factors ranging from 4 to 11 compared with the native enzyme immobilized on glyoxyl-agarose.  相似文献   

19.
In this study, a new matrix for immobilization of acetylcholinesterase was investigated by using alginate and kappa-carrageenan. The effects of pH, temperature, storage and thermal stability on the free and immobilized acetylcholinesterase activity were examined. Maximum reaction rate (V(max)) and Michaelis-Menten constant (K(m)) was also investigated for free and immobilized enzymes. For free and immobilized enzymes into Ca-alginate and alginate/kappa-carrageenan polymer blends, optimum pH and temperature was found to be 7 and 30 degrees C, respectively. For free enzyme, maximum reaction rate (V(max)) and Michaelis-Menten constant (K(m)) values were found to be 6.35 mM and 50 mM min(-1), respectively, the same values for immobilized enzymes were determined as 8.68, 12.7 mM and 39.7, 52.9 mM min(-1), respectively. Storage and thermal stability of acetylcholinesterase was increased by as a result of immobilization.  相似文献   

20.
Abstract

Extracellular lipase from an indigenous Bacillus aryabhattai SE3-PB was immobilized in alginate beads by entrapment method. After optimization of immobilization conditions, maximum immobilization efficiencies of 77%?±?1.53% and 75.99%?±?3.49% were recorded at optimum concentrations of 2% (w/v) sodium alginate and 0.2?M calcium chloride, respectively, for the entrapped enzyme. Biochemical properties of both free and immobilized lipase revealed no change in the optimum temperature and pH of both enzyme preparations, with maximum activity attained at 60?°C and 9.5, respectively. In comparison to free lipase, the immobilized enzyme exhibited improved stability over the studied pH range (8.5–9.5) and temperature (55–65?°C) when incubated for 3?h. Furthermore, the immobilized lipase showed enhanced enzyme-substrate affinity and higher catalytic efficiency when compared to soluble enzyme. The entrapped enzyme was also found to be more stable, retaining 61.51% and 49.44% of its original activity after being stored for 30 days at 4?°C and 25?°C, respectively. In addition, the insolubilized enzyme exhibited good reusability with 18.46% relative activity after being repeatedly used for six times. These findings suggest the efficient and sustainable use of the developed immobilized lipase for various biotechnological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号