首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Solid-state 2H NMR spectroscopy has been employed to study the channel conformation of gramicidin A (GA) in unoriented 1,2-dimyristoyl-sn-glycerol-3-phosphocholine (DMPC) multilayers. Quadrupolar echo spectra were obtained at 44 degrees C and 53 degrees C, from gramicidin A labels in which the proton attached to the alpha carbon of residue 3, 4, 5, 10, 12, or 14 was replaced with deuterium. Because of the nearly axially symmetric electric field gradient tensor, the quadrupolar splittings obtained from an unoriented multilamellar dispersion of DMPC and singly labeled GA directly yield unambiguous orientational constraints on the C-2H bonds. The average of the ratios of the quadrupolar splittings of the left-handed amino acids to those of the right-handed amino acids, (delta vQL/delta vQD), is expected to be 0.97 +/- 0.04 for a relaxed right-handed beta 6.3LD helix, while a ratio of 0.904 +/- 0.003 is expected for a left-handed beta LD6.3 helix. Since we have experimentally determined this ratio to be 1.01 +/- 0.04, we conclude that that the helix sense of the channel conformation of GA is right-handed. Assuming that the dominant motions are fast axial diffusion of the gramicidin molecule and reorientation of the diffusion axis with respect to the local bilayer normal, then the theoretical splittings may all be scaled down by a constant motional narrowing factor. In this case, a relaxed right-handed beta LD6.3 helix, whose axis of motional averaging is roughly along the presumed helix axis, gave the best fit to experimental results. The reasonably uniform correspondence between the splittings predicted by the relaxed right-handed beta LD6.3 helix and the observed splittings, for labels from both the inner and outer turn of GA, did not reflect a peptide backbone flexibility gradient, since an outer turn (i.e., the turn of the helix closest to the interface with water) with greater flexibility would show additional motional narrowing for labels located there.  相似文献   

2.
J H Davis 《Biochemistry》1988,27(1):428-436
Lyotropic nematic liquid-crystalline phases, such as that formed by potassium laurate/decanol/KCl/water, are found to accept readily large amphiphilic solute molecules. Since these phases spontaneously orient in high magnetic fields, it becomes possible to obtain NMR spectra of biologically interesting solutes in an oriented axially symmetric environment. The amide hydrogens of the peptide backbone of gramicidin D (Dubos) were exchanged for deuterium, and the gramicidin was incorporated into a lyotropic nematic phase made with deuteriated buffer in place of water. 2H NMR spectra of oriented, exchange-labeled gramicidin were then obtained. The strong water signal from the deuteriated buffer was eliminated by using selective excitation and a polynomial subtraction procedure. The 2H NMR spectra at high temperature consist of twelve major quadrupolar doublets. The splittings observed are largely independent of temperature, suggesting a highly rigid backbone structure. Two of the doublets, which are chemically shifted relative to the others, show stronger temperature dependence. These two probably arise from the exchangeable amino hydrogens on the tryptophan indole moieties of the peptide. While we cannot yet assign all of the doublets, the spectra and nuclear magnetic relaxation data are consistent with a rigid slightly distorted beta LD6.3 helix undergoing axially symmetric reorientation about the director of the liquid-crystalline phase. The correlation time for the axially symmetric reorientation is determined by relaxation measurements to be about 10(-7) s.  相似文献   

3.
K P Datema  K P Pauls  M Bloom 《Biochemistry》1986,25(13):3796-3803
Solid gramicidin A and S and their interaction with DPPC bilayers were examined by 2H NMR as well as 31P NMR and differential scanning calorimetry (DSC). The deuterium spectra arose from deuterons associated with the peptide through chemical exchange in 2H2O. The spectra from both peptides were characterized by a quadrupolar splitting parameter, omega Q/2 pi approximately 150 kHz, and an asymmetry parameter, eta approximately 0.17. An additional 33 kHz, eta = 0 component arising from deuterons on mobile ornithine side chains was present in gramicidin S. In the gel phase of dipalmitoylphosphatidylcholine liposomes the gramicidins gave spectra that had components identical with those obtained from the solids. In the liquid-crystalline phase gramicidin A containing samples gave multicomponent spectra with a maximum quadrupolar splitting value of 133 kHz, eta = 0. A minimum in the T2e was observed, coinciding with the onset of the broadened phase transition measured by DSC and 31P NMR, due to the onset of axial rotation of the peptide in the bilayer. The different powder patterns in the liquid-crystalline spectra from gramicidin A probably arise from different amide sites along the transmembrane channel. The broad component of the 2H NMR spectra from gramicidin S in liposome preparations was not affected by the lipid-phase transition. The T2e was also constant over this temperature range. The results are consistent with a location of gramicidin S at the membrane surface.  相似文献   

4.
Infrared spectroscopy has been applied to the study of a number of aqueous systems of model and natural biomembranes. The absorption bands arising from water and buffer solutions were eliminated by means of an infrared spectrometer data station. Spectra were examined using H2O and 2H2O aqueous buffer systems. Pure lecithin-water systems, and various model biomembranes containing cholesterol, gramicidin A, bacteriorhodopsin or Ca2+-ATPase were examined. The infrared spectra of the reconstituted biomembranes were compared with those of the corresponding natural biomembranes, i.e. the purple membrane of Halobacterium halobium and also sarcoplasmic reticulum membranes, respectively.Changes in lipid chain conformation caused by the various intrinsic molecules incorporated within the model lipid bilayer structures were monitored by studying the shifts in frequency (cm?1) of the CH2 symmetric and asymmetric absorption bands arising from the lipid chains. The effect of gramicidin A and also the intrinsic proteins, as indicated by the shift of band frequencies, are quite different from that of cholesterol at temperatures above the main lipid transition temperature tc. Cholesterol causes a reduction in gauche isomers which increases with concentration of cholesterol within the lipid bilayer. Whilst gramicidin A and the intrinsic proteins at low concentration cause a reduction of gauche isomers, at higher concentrations of these molecules, however, there is little difference in gauche isomer content when the intrinsic molecule is present compared with that of the fluid lipid alone. These results are considered and compared with previously published studies using deuterium nuclear magnetic resonance spectroscopy on similar model biomembrane systems. Below the lipid tc value, all the intrinsic molecules produce an increase in gauche isomers presumably by disturbing the lipid chain packing in the crystalline lipid arrangement.Information about the polypeptide structure within gramicidin A. the reconstituted proteins and also the proteins in the natural biomembranes was obtained by examining the region of the infrared spectrum between 1600 and 1700 cm?1 associated with the amide I and amide II bands. An examination of the infrared band frequencies of the different systems in this region leads to the conclusions: (1) that gramicidin A within a phospholipid bilayer structure probably has a single helix rather than a double helix structure; (2) that there are differences in band widths of the reconstituted Ca2+-ATPase and bacteriorhodopsin compared with the spectra of the corresponding sarcoplasmic reticulum and purple membrane; (3) different membrane proteins adopt different conformations as evinced by a comparison of the spectra of the sarcoplasmic reticulum and purple membrane; (4) the polypeptide arrangement in the purple membrane is mainly helical but the abnormal frequency of the amide I band suggests that some distortion of the helix occurs: and (5) the sarcoplasmic reticulum membrane contains unordered as well as α-helix polypeptide arrangements.  相似文献   

5.
The methyl-d(3) amide derivative of the polyene antibiotic amphotericin B was synthesized, assayed for biological activity, incorporated into mechanically aligned bilayers of dipalmitoylphosphatidylcholine (DPPC), and examined by deuterium and phosphorus NMR. The amide derivative has a lesser, but qualitatively similar, biological activity relative to amphotericin B. Incorporation of the amide derivative and ergosterol into aligned DPPC bilayers resulted in a single, stable bilayer phase, as shown by phosphorus NMR of the DPPC headgroups. Deuterium NMR spectra revealed one major (2)H quadrupolar splitting and one major (2)H-(1)H dipolar splitting in the liquid-crystalline phase, consistent with a high degree of alignment and a single, averaged physical state for amphotericin B methyl-d(3) amide in the bilayer. Variations of the quadrupolar and dipolar splittings as a function of macroscopic sample orientation and temperature indicated that the amide derivative undergoes fast rotation about a motional axis that is parallel to the bilayer normal.  相似文献   

6.
Solid-state nuclear magnetic resonance (NMR) measurements on 13C-labeled analogues of the ion channel-forming peptide, gramicidin A, have been used to directly determine the structure of this peptide in lipid membranes. Seven gramicidin analogues, each labeled in a single carbonyl group of gly2, L-ala3, D-leu4, L-val7, D-leu10, D-leu12, or D-leu14 were synthesized by the solid-phase method. These gramicidin analogues were incorporated into aligned multilayers of dimyristoylphosphatidylcholine, or diether lipid bearing 14- or 16-carbon chains, at a 1:15 peptide:lipid mole ratio. Proton-enhanced, 13C, solid-state spectra were obtained at several temperatures and over a range of sample orientations with respect to the spectrometer magnetic field to permit accurate measurement of the chemical shift anisotropies. The observed anisotropies indicate that all of the labeled carbonyl bonds are oriented almost parallel to the molecular long axis and perpendicular to the lipid bilayer plane. These orientations are consistent with gramicidin forming a beta 6.3 single-strand helix that is oriented parallel to the methylene chains of the lipid molecules. Comparison of the linewidths from labeled residues that are in the innermost turn of the helix (gly2, ala3, and D-leu4), in the center of the molecule (val7), and in the turn nearest the lipid bilayer surface (D-leu10, D-leu12, and D-leu14) suggests that although the peptide behaves largely as a rigid barrel, segments of the peptide close to the membrane surface possess greater motional freedom.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Z Zhang  S M Pascal  T A Cross 《Biochemistry》1992,31(37):8822-8828
A conformational transition is described for the polypeptide, gramicidin A, in which a dimer that forms a left-handed intertwined antiparallel helix is converted to a single-stranded amino terminus to amino terminus right-handed helix. The starting structure is determined here by solution NMR methods while reference is made to the well-established folding motif of gramicidin in a lipid bilayer for the ultimate conformation of this transition. Furthermore, an organic solvent system of benzene and ethanol in which gramicidin has a unique conformation is identified. This conformation is shown to be very similar to that derived from X-ray diffraction of crystals prepared from a similar solvent system.  相似文献   

8.
L K Nicholson  T A Cross 《Biochemistry》1989,28(24):9379-9385
Due to the difficulty of obtaining protein/lipid cocrystals for diffraction studies, structural research on intrinsic membrane proteins and polypeptides has been largely restricted to indirect experimental techniques. Hence, many fundamental questions associated with peptide/lipid systems remain unanswered. In particular, the handedness of the gramicidin A transmembrane ion channel incorporated into lipid bilayers has been an open question for nearly two decades. In this study, solid-state 15N NMR spectroscopy is employed to probe directly the secondary structure of the polypeptide backbone. Recent determinations of the 15N chemical shift anisotropy tensor with respect to the molecular frame enable the quantitative evaluation of the 15N chemical shift resonances obtained from oriented dimyristoylphosphatidylcholine (DMPC) bilayer samples containing specific site 15N labeled gramicidin. This direct structural approach verifies the beta-sheet hydrogen-bonding pattern proposed by Urry [Urry, D. W. (1971) Proc. Natl. Acad. Sci. U.S.A. 68, 672-676] and determines that in our DMPC bilayer preparations the gramicidin channel is right-handed. Additional structural information is provided by the 15N chemical shift data in the form of orientational constraints on the C alpha-C alpha axis orientation of individual peptides relative to the helix axis. The significance of these solid-state NMR results lies in the direct determination of the helix sense and the verification of the beta-type hydrogen bonding, in the development of the solid-state NMR methods for obtaining such information, and in emphasizing the importance of having direct structural data at atomic resolution.  相似文献   

9.
Motional order and motional rates in unsonicated phospholipid bilayers were assessed as a function of unsaturation of the phospholipid. A measurement sensitive to motional order was obtained using 2H-NMR of 18:1, 18:1-phosphatidylcholine labelled at positions 9 and 10 with deuterium and included as a probe in phospholipid bilayers of interest at 10 mole percent. Spin lattice relaxation times from magic angle spinning 13C-NMR spectra of phospholipid dispersions of interest were used as a measure of motional rates. Measurements were made of phospholipid bilayers containing from 0 to 8 double bonds per molecule. No large effect of an increase in unsaturation was noted for the 2H-NMR quadrupole splittings or for the 13C-NMR spin lattice relaxation rate.  相似文献   

10.
P O Quist 《Biophysical journal》1998,75(5):2478-2488
The natural-abundance 13C NMR spectrum of gramicidin A in a lipid membrane was acquired under magic-angle spinning conditions. With fast sample spinning (15 kHz) at approximately 65 degrees C the peaks from several of the aliphatic, beta-, alpha-, aromatic, and carbonyl carbons in the peptide could be resolved. The resolution in the 13C spectrum was superior that observed with 1H NMR under similar conditions. The 13C linewidths were in the range 30-100 Hz, except for the alpha- and beta-carbons, the widths of which were approximately 350 Hz. The beta-sheet-like local structure of gramicidin A was observed as an upfield shift of the gramicidin alpha and carbonyl resonances. Under slow sample spinning (500 Hz), the intensity of the spinning sidebands from 13C in the backbone carbonyls was used to determine the residual chemical shift tensor. As expected, the elements of the residual chemical shift tensor were consistent with the single-stranded, right-handed beta6.3 helix structure proposed for gramicidin A in lipid membranes.  相似文献   

11.
The effects of phase transition from normal to interdigitated lipid bilayer on the function and structure of membrane proteins were studied using linear gramicidin (gramicidin A) as a model. Interdigitated bilayer structure of dipalmitoylphosphatidylglycerol (DPPG) liposomes that was induced by atropine could not be changed notably by intercalating of gramicidin. The K+ transportation of gramicidin in both normal and interdigitated bilayer was assayed by measuring the membrane potential. Results showed that gramicidin in interdigitated bilayer exhibited lower transport capability. Intrinsic fluorescence spectrum of gramicidin in interdigitated bilayer blue-shifted 2.8 nm from the spectrum in normal bilayer, which means that interdigitation provides a more hydrophobic environment for gramicidin. Circular dichroism measurement results indicated that the conformation of gramicidin in interdigitated bilayer is not the typical beta6.3 helix as in the normal bilayer. The results suggested that the interdigitated lipid bilayer might largely affect the structure and function of membrane proteins.  相似文献   

12.
Polarized infrared spectroscopy has been used to investigate the orientation of gramicidin A incorporated in dimyristoylphosphatidylcholine liposomes. Dichroism measurements of the major lipid (C = O ester, PO2-, CH2) and peptide (amide A, I, II) bands were performed on liposomes (with or without gramicidin) oriented by air-drying. The mean orientation of the lipid groups and of the pi LD helix chain in the gramicidin has been determined. It can be inferred from infrared frequencies of gramicidin that the dominant conformation of the peptide in liposomes cannot be identified to the antiparallel double-helical dimer found in organic solution. No shift in lipid frequencies was observed upon incorporation of gramicidin in the liposomes. However, a slight reorganization of the lipid hydrocarbon chains which become oriented more closely to the normal to the bilayer is evidenced by a change in the dichroism of the CH2 vibrations. The infrared dichroism results of gramicidin imply a perpendicular orientation of the gramicidin transmembrane channel with the pi LD helix axis at less than 15 degrees with respect to the normal to the bilayer.  相似文献   

13.
Monolayers of gramicidin A, pure and in mixtures with dimyristoylphosphatidylcholine (DMPC), were studied in situ at the air/H2O and air/D2O interfaces by polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). Simulations of the entire set of amide I absorption modes were also performed, using complete parameter sets for different conformations based on published normal mode calculations. The structure of gramicidin A in the DMPC monolayer could clearly be assigned to a beta6.3 helix. Quantitative analysis of the amide I bands revealed that film pressures of up to 25-30 mN/m the helix tilt angle from the vertical in the pure gramicidin A layer exceeded 60 degrees. A marked dependence of the peptide orientation on the applied surface pressure was observed for the mixed lipid-peptide monolayers. At low pressure the helix lay flat on the surface, whereas at high pressures the helix was oriented almost parallel to the surface normal.  相似文献   

14.
Solid state deuterium (2H) NMR inversion-recovery and Jeener-Broekaert relaxation experiments were performed on oriented multilamellar dispersions consisting of 1,2-dilauroyl-sn-glycero-3-phosphatidylcholine and 2H exchange-labeled gramicidin D, at a lipid to protein molar ratio (L/P) of 15:1, in order to study the dynamics of the channel conformation of the peptide in a liquid crystalline phase. Our dynamic model for the whole body motions of the peptide includes diffusion of the peptide around its helix axis and a wobbling diffusion around a second axis perpendicular to the local bilayer normal in a simple Maier-Saupe mean field potential. This anisotropic diffusion is characterized by the correlation times, tau R parallel and tau R perpendicular. Aligning the bilayer normal perpendicular to the magnetic field and graphing the relaxation rate, 1/T1Z, as a function of (1-S2N-2H), where S2N-2H represents the orientational order parameter, wer were able to estimate the correlation time, tau R parallel, for rotational diffusion. Although in the quadrupolar splitting, which varies as (3 cos2 theta D-1), has in general two possible solutions to theta D in the range 0 < or = theta D < or = 90 degrees, the 1/T1Z vs. (1-S2N-2H) curve can be used to determine a single value of theta D in this range. Thus, the 1/T1Z vs. (1-S2N-2H) profile can be used both to define the axial diffusion rate and to remove potential structural ambiguities in the splittings. The T1Z anisotropy permits us to solve for the two correlation times (tau R parallel = 6.8 x 10(-9) s and tau R perpendicular = 6 x 10(-6) s). The simulated parameters were corroborated by a Jeener-Broekaert experiment where the bilayer normal was parallel to the principal magnetic field. At this orientation the ratio, J2(2 omega 0)/J1(omega 0) was obtained in order to estimate the strength of the restoring potential in a model-independent fashion. This measurement yields the rms angle, <theta 2>1/2 (= 16 +/- 2 degrees at 34 degrees C), formed by the peptide helix axis and the average bilayer normal.  相似文献   

15.
The 2H-NMR spectra of selectively deuterated cholesterol, intercalated in egg phosphatidyl-choline, were examined. The orientation of the axis of motional averaging was calculated using the observed quadrupole splittings and the atomic coordinates. With the known orientation of the rotation axis, quadrupole splittings observed for deuterium labels on cholesterol can be related to the molecular order parameter of the sterol. In addition, knowledge of the axis orientation allows prediction of the magnitudes of quadrupole splittings for deuterium at other positions, which is useful in the choice of labelling for particular applications. Finally, preliminary relaxation time measurements yield information on the rates of anisotropic motion of cholesterol in bilayer membranes.  相似文献   

16.
Deuterium NMR is used to study the selectively labeled Val1...(2-2H)Ala3...gramicidin A molecule to investigate the structure and dynamics of the C alpha-2H bond in the Ala3 residue of gramicidin. Val1...(2-2H)Ala3...gramicidin A is synthesized, purified, and characterized and then incorporated into oriented bilayers of dimyristoylphosphatidylcholine sandwiched between glass coverslips. Phosphorus NMR line shapes obtained from this sample are consistent with the presence of the bilayer phase and indicate that no nonbilayer phases are present in significant amounts. Deuterium NMR line shapes obtained from this sample indicate that the motional axis of the gramicidin Ala3 residue is parallel to the coverslip normal, that the distribution of motional axis orientations has a width of 2 degrees, and that only one major conformational and dynamical state of the Ala3 C alpha-2H bond is observed on the NMR time scale. Furthermore, the Ala3 C alpha-2H bond angle relative to the motional axis is 19-20 degrees if fast axial rotation is assumed to be the only motion present but is less than or equal to 19-20 degrees in the absence of such an assumption. This result indicates that various double-stranded, helical dimer models are very unlikely to represent the structure of gramicidin in the sample studied but that the single-stranded, beta 6.3 helical dimer models are consistent with the experimental data. However, a definitive distinction between the left-handed, single-stranded, beta 6.3 helical dimer model and the right-handed, single-stranded, beta 6.3 helical dimer model cannot be made on the basis of the experimental data obtained in this study.  相似文献   

17.
In order to resolve whether gramicidin A channels are formed by right- or left-handed beta-helices, we synthesized an optically reversed (or mirror image) analogue of gramicidin A, called gramicidin A-, to test whether it forms channels that have the same handedness as channels formed by gramicidin M- (F. Heitz et al., Biophys. J. 40:87-89, 1982). In gramicidin M- the four tryptophan residues have been replaced with phenylalanine, and the circular dichroism (CD) spectrum therefore reflects almost exclusively contributions from the polypeptide backbone. The CD spectrum of gramicidin M- in dimyristoylphosphatidylcholine vesicles is consistent with a left-handed helical backbone folding motif (F. Heitz et al., Biophys. Chem. 24:149-160, 1986), and the CD spectra of gramicidins A and A- are essentially mirror images of each other. Based on hybrid channel experiments, gramicidin A- and M- channels are structurally equivalent, while gramicidin A and A- channels are nonequivalent, being of opposite helix sense. Gramicidin A- channels are therefore left-handed, and natural gramicidin A channels in phospholipid bilayers are right-handed beta 6.3-helical dimers.  相似文献   

18.
The combined application of one- and two-dimensional high-field NMR techniques has led to the first assignment of the 1H, 13C, and 15N spectra of the pentadecapeptide gramicidin A in dimethylsulphoxide solution. The 62.9-MHz and 100.6-MHz 13C spin-lattice relaxation times and 13C-[1H] NOE factors for the backbone alpha carbons have been analysed in the 'model-free' approach to give a single correlation time (tau m) for isotropic overall molecular motion and an order parameter and internal correlation time for each C alpha H group in the backbone. The relatively high and constant values for the order parameter along the backbone indicate a degree of ordering of the structure, while the internal correlation times show that internal motions are progressively more rapid towards the N terminus. The average values of the vicinal HNC alpha H couplings are 7.4 Hz and 8.4 Hz respectively for the alternate L- and D-amino acid residues. The values are not consistent with either a ribbon conformation for the backbone or a right-handed beta 6.3 helix; they are consistent with the model proposed by Glickson et al. [Glickson, J. D., Mayers, D. F., Settine, J. M. & Urry, D. W. (1972) Biochemistry 11, 477-486] in which there is a rapid conformational order in equilibrium disorder equilibrium, the ordered structure being the left-handed beta 6.3 helix and the disordered state having local random-coil character.  相似文献   

19.
The lattice model of Flory has been extended in order to consider equilibrium between isotropic and nematic phases containing helix–coil type chains. Nearly complete exclusion of coil sequences from the lyotropic nematic phase produces an enhanced cooperativity in the helix–coil transition. In poor solvents this enhancement begins to occur at concentrations typical of some experiments.  相似文献   

20.
Three analogues of the helical ionophore gramicidin A have been synthesized with 13C-labeled carbonyls (13C=O) incorporated at either Gly2, Ala3, or Val7. A fourth compound incorporated 13C at both the carbonyl and α-carbon of Gly2 within the same molecule. These labels were studied using solid-state, proton-enhanced, 13C nuclear magnetic resonance (NMR) in hydrated dispersions of dimyristoylphosphatidylcholine (DMPC)-gramicidin A. The dispersions were aligned on glass coverslips whose orientation to the magnetic field could be varied through 180°. The orientation dependence of the NMR spectrum was used to obtain an accurate measurement of the 13C chemical shift anisotropy (CSA), and in the case of the fourth compound, the 13C—13C dipolar coupling constant. From the measured CSA and estimates of the orientation of the 13C shielding tensor, we are able to determine the direction of the 13C=O bonds and to compare these with the predictions of the various reported models for the configuration of gramicidin A in phospholipid bilayers. Our results are consistent with the left-handed ππ6.3LD single-stranded helix (Urry, D. W., J. T. Walker, and T. L. Trapane. 1982. J. Membr. Biol. 69:225-231). The right-handed ππ6.3LD single-stranded helix observed for gramicidin A in sodium dodecyl sulfate micelles (Arseniev, A. S., I. L. Barsukov, V. F. Bystrov, A. L. Loize, and Yu A. Ovchinnikov. 1985. FEBS (Fed. Eur. Biochem. Soc.) Lett. 186:168-174) yields a poorer fit to the data. However, the width of the carbonyl resonances suggests a distribution of molecular geometries possibly resulting from a spread in the helix pitch and handedness. Double-stranded helices and β sheet structures are excluded. In dispersions in which the lipid is in the Lα phase, the gramicidin A undergoes rapid reorientation about an axis which is centered on the normal to the plane of the coverslips. When the supporting lipid is in the Lβ′ phase the helices are rigid on the timescale of 13C-NMR. The configuration of gramicidin A is unaltered by Lα-Lβ′ phase transition of the bilayer lipid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号